[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases

Abstract

Systemic autoimmune diseases are characterized by the failure of the immune system to differentiate self from non-self. These conditions are associated with significant morbidity and mortality, and they can affect many organs and systems, having significant clinical heterogeneity. Recent discoveries have highlighted that neutrophils, and in particular the neutrophil extracellular traps that they can release upon activation, can have central roles in the initiation and perpetuation of systemic autoimmune disorders and orchestrate complex inflammatory responses that lead to organ damage. Dysregulation of neutrophil cell death can lead to the modification of autoantigens and their presentation to the adaptive immune system. Furthermore, subsets of neutrophils that seem to be more prevalent in patients with systemic autoimmune disorders can promote vascular damage and increased oxidative stress. With the emergence of new technologies allowing for improved assessments of neutrophils, the complexity of neutrophil biology and its dysregulation is now starting to be understood. In this Review, we provide an overview of the roles of neutrophils in systemic autoimmune and autoinflammatory diseases and address putative therapeutic targets that may be explored based on this new knowledge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The life cycle and functions of neutrophils.
Fig. 2: Targeting neutrophil extracellular traps.
Fig. 3: Organ-specific effects of neutrophils in autoimmune and autoinflammatory diseases.

Similar content being viewed by others

References

  1. Nauseef, W. M. & Borregaard, N. Neutrophils at work. Nat. Immunol. 15, 602–611 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Ley, K. et al. Neutrophils: new insights and open questions. Sci. Immunol. 3, eaat4579 (2018).

    Article  PubMed  Google Scholar 

  3. Newburger, P. E. & Dale, D. C. Evaluation and management of patients with isolated neutropenia. Semin. Hematol. 50, 198–206 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Noubouossie, D. F., Reeves, B. N., Strahl, B. D. & Key, N. S. Neutrophils: back in the thrombosis spotlight. Blood 133, 2186–2197 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Apel, F., Zychlinsky, A. & Kenny, E. F. The role of neutrophil extracellular traps in rheumatic diseases. Nat. Rev. Rheumatol. 14, 467–475 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Mutua, V. & Gershwin, L. J. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin. Rev. Allergy Immunol. 61, 194–211 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Evrard, M. et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364–379.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 21, 1119–1133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grieshaber-Bouyer, R. et al. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat. Commun. 12, 2856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ng, L. G., Ostuni, R. & Hidalgo, A. Heterogeneity of neutrophils. Nat. Rev. Immunol. 19, 255–265 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Wigerblad, G. et al. Single-cell analysis reveals the range of transcriptional states of circulating human neutrophils. J. Immunol. https://doi.org/10.4049/jimmunol.2200154 (2022). References 10–13 highlight recent advances in the concept of neutrophil heterogeneity.

    Article  PubMed  Google Scholar 

  14. Tak, T., Tesselaar, K., Pillay, J., Borghans, J. A. & Koenderman, L. What’s your age again? Determination of human neutrophil half-lives revisited. J. Leukoc. Biol. 94, 595–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Pillay, J. et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116, 625–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Casanova-Acebes, M. et al. Neutrophils instruct homeostatic and pathological states in naive tissues. J. Exp. Med. 215, 2778–2795 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yipp, B. G. et al. The lung is a host defense niche for immediate neutrophil-mediated vascular protection. Sci. Immunol. 2, eaam8929 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Casanova-Acebes, M. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scheiermann, C., Gibbs, J., Ince, L. & Loudon, A. Clocking in to immunity. Nat. Rev. Immunol. 18, 423–437 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Ella, K., Csepanyi-Komi, R. & Kaldi, K. Circadian regulation of human peripheral neutrophils. Brain Behav. Immun. 57, 209–221 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, D. et al. Neutrophil ageing is regulated by the microbiome. Nature 525, 528–532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takeda, N. & Maemura, K. Circadian clock and the onset of cardiovascular events. Hypertens. Res. 39, 383–390 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Gupta, S. et al. Sex differences in neutrophil biology modulate response to type I interferons and immunometabolism. Proc. Natl Acad. Sci. USA 117, 16481–16491 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sinha, S. et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat. Med. 28, 201–211 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Blazkova, J. et al. Multicenter systems analysis of human blood reveals immature neutrophils in males and during pregnancy. J. Immunol. 198, 2479–2488 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Denny, M. F. et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J. Immunol. 184, 3284–3297 (2010). An early paper describing LDGs in patients with SLE and their association with vascular damage.

    Article  CAS  PubMed  Google Scholar 

  28. Hacbarth, E. & Kajdacsy-Balla, A. Low density neutrophils in patients with systemic lupus erythematosus, rheumatoid arthritis, and acute rheumatic fever. Arthritis Rheum. 29, 1334–1342 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Mistry, P. et al. Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 116, 25222–25228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carlucci, P. M. et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. JCI Insight 3, e99276 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pember, S. O., Barnes, K. C., Brandt, S. J. & Kinkade, J. M. Jr. Density heterogeneity of neutrophilic polymorphonuclear leukocytes: gradient fractionation and relationship to chemotactic stimulation. Blood 61, 1105–1115 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Iba, T. & Levy, J. H. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J. Thromb. Haemost. 16, 231–241 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hidalgo, A. et al. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvab329 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Grieshaber-Bouyer, R. et al. Ageing and interferon gamma response drive the phenotype of neutrophils in the inflamed joint. Ann. Rheum. Dis. 81, 805–814 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Hidalgo, A., Chilvers, E. R., Summers, C. & Koenderman, L. The neutrophil life cycle. Trends Immunol. 40, 584–597 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Cowland, J. B. & Borregaard, N. Granulopoiesis and granules of human neutrophils. Immunol. Rev. 273, 11–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Dinauer, M. C. Inflammatory consequences of inherited disorders affecting neutrophil function. Blood 133, 2130–2139 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dinauer, M. C. Disorders of neutrophil function: an overview. Methods Mol. Biol. 412, 489–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Burgener, S. S. & Schroder, K. Neutrophil extracellular traps in host defense. Cold Spring Harb. Perspect. Biol. 12, a037028 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004). The first description of NETs.

    Article  CAS  PubMed  Google Scholar 

  42. Yipp, B. G. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 18, 1386–1393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Keshari, R. S. et al. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One 7, e48111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016). This paper describes mitochondrial products and nucleic acid oxidation in association with NET formation and immune dysregulation in patients with SLE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Amulic, B. et al. Cell-cycle proteins control production of neutrophil extracellular traps. Dev. Cell 43, 449–462.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Metzler, K. D., Goosmann, C., Lubojemska, A., Zychlinsky, A. & Papayannopoulos, V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 8, 883–896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stojkov, D. et al. ROS and glutathionylation balance cytoskeletal dynamics in neutrophil extracellular trap formation. J. Cell Biol. 216, 4073–4090 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sollberger, G. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 3, eaar6689 (2018).

    Article  PubMed  Google Scholar 

  50. Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci. Immunol. 3, eaar6676 (2018).

    Article  PubMed  Google Scholar 

  51. O’Neil, L. J. et al. Neutrophil-mediated carbamylation promotes articular damage in rheumatoid arthritis. Sci. Adv. 6, eabd2688 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, Y. et al. Peptidylarginine deiminases 2 and 4 modulate innate and adaptive immune responses in TLR-7-dependent lupus. JCI Insight 3, e124729 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tsourouktsoglou, T. D. et al. Histones, DNA, and citrullination promote neutrophil extracellular trap inflammation by regulating the localization and activation of TLR4. Cell Rep. 31, 107602 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014). A description of aggregated NET formation contributing to disease resolution.

    Article  CAS  PubMed  Google Scholar 

  56. Hahn, J. et al. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases. FASEB J. 33, 1401–1414 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Catrina, A. I., Svensson, C. I., Malmstrom, V., Schett, G. & Klareskog, L. Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 79–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Goldblatt, F. & O’Neill, S. G. Clinical aspects of autoimmune rheumatic diseases. Lancet 382, 797–808 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Herrada, A. A. et al. Innate immune cells’ contribution to systemic lupus erythematosus. Front. Immunol. 10, 772 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Barrat, F. J., Crow, M. K. & Ivashkiv, L. B. Interferon target-gene expression and epigenomic signatures in health and disease. Nat. Immunol. 20, 1574–1583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arts, R. J. W., Joosten, L. A. B. & Netea, M. G. The potential role of trained immunity in autoimmune and autoinflammatory disorders. Front. Immunol. 9, 298 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhao, J. et al. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat. Genet. 49, 433–437 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohlsson, S. M. et al. Neutrophils from vasculitis patients exhibit an increased propensity for activation by anti-neutrophil cytoplasmic antibodies. Clin. Exp. Immunol. 176, 363–372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Karmakar, U. & Vermeren, S. Crosstalk between B cells and neutrophils in rheumatoid arthritis. Immunology 164, 689–700 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bonaventura, A., Vecchie, A., Abbate, A. & Montecucco, F. Neutrophil extracellular traps and cardiovascular diseases: an update. Cells 9, 231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Nemeth, T., Sperandio, M. & Mocsai, A. Neutrophils as emerging therapeutic targets. Nat. Rev. Drug Discov. 19, 253–275 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Rahman, A. & Isenberg, D. A. Systemic lupus erythematosus. N. Engl. J. Med. 358, 929–939 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Schwartzman-Morris, J. & Putterman, C. Gender differences in the pathogenesis and outcome of lupus and of lupus nephritis. Clin. Dev. Immunol. 2012, 604892 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Crow, M. K. Type I interferon in the pathogenesis of lupus. J. Immunol. 192, 5459–5468 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Deng, Y. & Tsao, B. P. Advances in lupus genetics and epigenetics. Curr. Opin. Rheumatol. 26, 482–492 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Hakkim, A. et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl Acad. Sci. USA 107, 9813–9818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leffler, J. et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J. Immunol. 188, 3522–3531 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Bruschi, M. et al. Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis. J. Rheumatol. 47, 377–386 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Donnelly, S. et al. Impaired recognition of apoptotic neutrophils by the C1q/calreticulin and CD91 pathway in systemic lupus erythematosus. Arthritis Rheum. 54, 1543–1556 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Cairns, A. P., Crockard, A. D., McConnell, J. R., Courtney, P. A. & Bell, A. L. Reduced expression of CD44 on monocytes and neutrophils in systemic lupus erythematosus: relations with apoptotic neutrophils and disease activity. Ann. Rheum. Dis. 60, 950–955 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alves, C. M. et al. Superoxide anion production by neutrophils is associated with prevalent clinical manifestations in systemic lupus erythematosus. Clin. Rheumatol. 27, 701–708 (2008).

    Article  PubMed  Google Scholar 

  83. van der Linden, M. et al. Neutrophil extracellular trap release is associated with antinuclear antibodies in systemic lupus erythematosus and anti-phospholipid syndrome. Rheumatology 57, 1228–1234 (2018).

    Article  PubMed  Google Scholar 

  84. Midgley, A. & Beresford, M. W. Increased expression of low density granulocytes in juvenile-onset systemic lupus erythematosus patients correlates with disease activity. Lupus 25, 407–411 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Gestermann, N. et al. Netting neutrophils activate autoreactive B cells in lupus. J. Immunol. 200, 3364–3371 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Coit, P. et al. Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils. J. Autoimmun. 58, 59–66 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bashant, K. R. et al. Proteomic, biomechanical and functional analyses define neutrophil heterogeneity in systemic lupus erythematosus. Ann. Rheum. Dis. 80, 209–218 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Yu, Y. & Su, K. Neutrophil extracellular traps and systemic lupus erythematosus. J. Clin. Cell Immunol. https://doi.org/10.4172/2155-9899.1000139 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Jimenez-Alcazar, M. et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 358, 1202–1206 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Al-Mayouf, S. M. et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat. Genet. 43, 1186–1188 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Ozcakar, Z. B. et al. DNASE1L3 mutations in hypocomplementemic urticarial vasculitis syndrome. Arthritis Rheum. 65, 2183–2189 (2013).

    Article  PubMed  Google Scholar 

  92. Han, D. S. C. & Lo, Y. M. D. The Nexus of cfDNA and nuclease biology. Trends Genet. 37, 758–770 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Chauhan, S. K., Rai, R., Singh, V. V., Rai, M. & Rai, G. Differential clearance mechanisms, neutrophil extracellular trap degradation and phagocytosis, are operative in systemic lupus erythematosus patients with distinct autoantibody specificities. Immunol. Lett. 168, 254–259 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Antiochos, B. et al. The DNA sensors AIM2 and IFI16 are SLE autoantigens that bind neutrophil extracellular traps. eLife 11, e72103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Apel, F. et al. The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps. Sci. Signal. 14, eaax7942 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Tumurkhuu, G. et al. Oxidative DNA damage accelerates skin inflammation in pristane-induced lupus model. Front. Immunol. 11, 554725 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Georgakis, S. et al. NETs decorated with bioactive IL-33 infiltrate inflamed tissues and induce IFN-alpha production in patients with SLE. JCI Insight 6, e147671 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Blanco, L. P. et al. RNA externalized by neutrophil extracellular traps promotes inflammatory pathways in endothelial cells. Arthritis Rheumatol. 73, 2282–2292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rahman, S. et al. Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus. Ann. Rheum. Dis. 78, 957–966 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Carmona-Rivera, C., Zhao, W., Yalavarthi, S. & Kaplan, M. J. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann. Rheum. Dis. 74, 1417–1424 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Cross, M. et al. The global burden of rheumatoid arthritis: estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 73, 1316–1322 (2014).

    Article  PubMed  Google Scholar 

  104. Smolen, J. S., Aletaha, D. & McInnes, I. B. Rheumatoid arthritis. Lancet 388, 2023–2038 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Gonzalez, A. et al. Mortality trends in rheumatoid arthritis: the role of rheumatoid factor. J. Rheumatol. 35, 1009–1014 (2008).

    PubMed  PubMed Central  Google Scholar 

  106. Gronwall, C. et al. A comprehensive evaluation of the relationship between different IgG and IgA anti-modified protein autoantibodies in rheumatoid arthritis. Front. Immunol. 12, 627986 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Makrygiannakis, D. et al. Citrullination is an inflammation-dependent process. Ann. Rheum. Dis. 65, 1219–1222 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Catrina, A., Krishnamurthy, A. & Rethi, B. Current view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis. RMD Open 7, e001228 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sokolove, J. et al. Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-mediated inflammation in rheumatoid arthritis. Arthritis Rheumatol. 66, 813–821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Krishnamurthy, A. et al. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann. Rheum. Dis. 75, 721–729 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791–1802 (2012). This study connects ACPAs to osteoclast activation and bone resorption in rheumatoid arthritis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jones, J. E., Causey, C. P., Knuckley, B., Slack-Noyes, J. L. & Thompson, P. R. Protein arginine deiminase 4 (PAD4): Current understanding and future therapeutic potential. Curr. Opin. Drug Discov. Devel. 12, 616–627 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Pillinger, M. H. & Abramson, S. B. The neutrophil in rheumatoid arthritis. Rheum. Dis. Clin. North Am. 21, 691–714 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra140 (2013).

    Article  Google Scholar 

  115. Wang, W., Peng, W. & Ning, X. Increased levels of neutrophil extracellular trap remnants in the serum of patients with rheumatoid arthritis. Int. J. Rheum. Dis. 21, 415–421 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Demoruelle, M. K. et al. Antibody responses to citrullinated and noncitrullinated antigens in the sputum of subjects with rheumatoid arthritis and subjects at risk for development of rheumatoid arthritis. Arthritis Rheumatol. 70, 516–527 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Holers, V. M. et al. Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat. Rev. Rheumatol. 14, 542–557 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Foulquier, C. et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 56, 3541–3553 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Romero, V. et al. Immune-mediated pore-forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci. Transl. Med. 5, 209ra150 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Carmona-Rivera, C. et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci. Immunol. 2, eaag3358 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Carmona-Rivera, C. et al. Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis. JCI Insight 5, e139388 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Nakabo, S. et al. Activated neutrophil carbamylates albumin via the release of myeloperoxidase and reactive oxygen species regardless of NETosis. Mod. Rheumatol. 30, 345–349 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Trouw, L. A., Rispens, T. & Toes, R. E. M. Beyond citrullination: other post-translational protein modifications in rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 331–339 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Wright, H. L., Makki, F. A., Moots, R. J. & Edwards, S. W. Low-density granulocytes: functionally distinct, immature neutrophils in rheumatoid arthritis with altered properties and defective TNF signalling. J. Leukoc. Biol. 101, 599–611 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Ramanathan, K. et al. Neutrophil activation signature in juvenile idiopathic arthritis indicates the presence of low-density granulocytes. Rheumatology 57, 488–498 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sangaletti, S. et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 120, 3007–3018 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Grayson, P. C. & Kaplan, M. J. At the Bench: Neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases. J. Leukoc. Biol. 99, 253–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Schreiber, A. et al. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc. Natl Acad. Sci. USA 114, E9618–E9625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nakazawa, D., Masuda, S., Tomaru, U. & Ishizu, A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat. Rev. Rheumatol. 15, 91–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Nakazawa, D., Tomaru, U., Yamamoto, C., Jodo, S. & Ishizu, A. Abundant neutrophil extracellular traps in thrombus of patient with microscopic polyangiitis. Front. Immunol. 3, 333 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Yoshida, M. et al. Myeloperoxidase anti-neutrophil cytoplasmic antibody affinity is associated with the formation of neutrophil extracellular traps in the kidney and vasculitis activity in myeloperoxidase anti-neutrophil cytoplasmic antibody-associated microscopic polyangiitis. Nephrology 21, 624–629 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Kusunoki, Y. et al. Peptidylarginine deiminase inhibitor suppresses neutrophil extracellular trap formation and MPO-ANCA production. Front. Immunol. 7, 227 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Grayson, P. C. et al. Neutrophil-related gene expression and low-density granulocytes associated with disease activity and response to treatment in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 67, 1922–1932 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lyons, P. A. et al. Novel expression signatures identified by transcriptional analysis of separated leucocyte subsets in systemic lupus erythematosus and vasculitis. Ann. Rheum. Dis. 69, 1208–1213 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Lundberg, I. E. et al. Idiopathic inflammatory myopathies. Nat. Rev. Dis. Primers 7, 86 (2021).

    Article  PubMed  Google Scholar 

  137. Gao, S. et al. The roles of neutrophil serine proteinases in idiopathic inflammatory myopathies. Arthritis Res. Ther. 20, 134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wu, S. et al. Correlation of PMN elastase and PMN elastase-to-neutrophil ratio with disease activity in patients with myositis. J. Transl. Med. 17, 420 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang, S., Shen, H., Shu, X., Peng, Q. & Wang, G. Abnormally increased low-density granulocytes in peripheral blood mononuclear cells are associated with interstitial lung disease in dermatomyositis. Mod. Rheumatol. 27, 122–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Seto, N. et al. Neutrophil dysregulation is pathogenic in idiopathic inflammatory myopathies. JCI Insight 5, e134189 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zhang, S. et al. Enhanced formation and impaired degradation of neutrophil extracellular traps in dermatomyositis and polymyositis: a potential contributor to interstitial lung disease complications. Clin. Exp. Immunol. 177, 134–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Peng, Y., Zhang, S., Zhao, Y., Liu, Y. & Yan, B. Neutrophil extracellular traps may contribute to interstitial lung disease associated with anti-MDA5 autoantibody positive dermatomyositis. Clin. Rheumatol. 37, 107–115 (2018).

    Article  PubMed  Google Scholar 

  143. Giannakopoulos, B. & Krilis, S. A. The pathogenesis of the antiphospholipid syndrome. N. Engl. J. Med. 368, 1033–1044 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Knight, J. S. et al. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target. JCI Insight 2, e93897 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Massberg, S. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 16, 887–896 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Sule, G. et al. Increased adhesive potential of antiphospholipid syndrome neutrophils mediated by beta2 integrin Mac-1. Arthritis Rheumatol. 72, 114–124 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. van den Hoogen, L. L., Fritsch-Stork, R. D. E., van Roon, J. A. G. & Radstake, T. R. D. J. Low-density granulocytes are increased in antiphospholipid syndrome and are associated with anti-beta(2)-glycoprotein I antibodies: comment on the article by Yalavarthi et al. Arthritis Rheumatol. 68, 1320–1321 (2016).

    PubMed  Google Scholar 

  148. van den Hoogen, L. L. et al. Neutrophil extracellular traps and low-density granulocytes are associated with the interferon signature in systemic lupus erythematosus, but not in antiphospholipid syndrome. Ann. Rheum. Dis. 79, e135 (2020).

    Article  PubMed  Google Scholar 

  149. Leffler, J. et al. Degradation of neutrophil extracellular traps is decreased in patients with antiphospholipid syndrome. Clin. Exp. Rheumatol. 32, 66–70 (2014).

    PubMed  Google Scholar 

  150. Yalavarthi, S. et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 67, 2990–3003 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zha, C. et al. Anti-beta2GPI/beta2GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology 138, 140–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Marder, W. et al. Placental histology and neutrophil extracellular traps in lupus and pre-eclampsia pregnancies. Lupus Sci. Med. 3, e000134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Ali, R. A. et al. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nat. Commun. 10, 1916 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Szekanecz, Z. et al. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat. Rev. Rheumatol. 17, 585–595 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Zhou, Q. et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N. Engl. J. Med. 370, 911–920 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Navon Elkan, P. et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N. Engl. J. Med. 370, 921–931 (2014).

    Article  PubMed  Google Scholar 

  157. Meyts, I. & Aksentijevich, I. Deficiency of adenosine deaminase 2 (DADA2): updates on the phenotype, genetics, pathogenesis, and treatment. J. Clin. Immunol. 38, 569–578 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pinto, B., Deo, P., Sharma, S., Syal, A. & Sharma, A. Expanding spectrum of DADA2: a review of phenotypes, genetics, pathogenesis and treatment. Clin. Rheumatol. 40, 3883–3896 (2021).

    Article  PubMed  Google Scholar 

  159. Carmona-Rivera, C. et al. Deficiency of adenosine deaminase 2 triggers adenosine-mediated NETosis and TNF production in patients with DADA2. Blood 134, 395–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020). The first description of VEXAS syndrome, involving a somatic mutation that causes severe disease and induces profound myeloid cell dysregulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Patel, B. A., Ferrada, M. A., Grayson, P. C. & Beck, D. B. VEXAS syndrome: an inflammatory and hematologic disease. Semin. Hematol. 58, 201–203 (2021).

    Article  PubMed  Google Scholar 

  162. Grayson, P. C., Patel, B. A. & Young, N. S. VEXAS syndrome. Blood 137, 3591–3594 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Lindor, N. M., Arsenault, T. M., Solomon, H., Seidman, C. E. & McEvoy, M. T. A new autosomal dominant disorder of pyogenic sterile arthritis, pyoderma gangrenosum, and acne: PAPA syndrome. Mayo Clin. Proc. 72, 611–615 (1997).

    Article  CAS  PubMed  Google Scholar 

  164. Wise, C. A. et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum. Mol. Genet. 11, 961–969 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Marzano, A. V., Borghi, A., Meroni, P. L. & Cugno, M. Pyoderma gangrenosum and its syndromic forms: evidence for a link with autoinflammation. Br. J. Dermatol. 175, 882–891 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Holzinger, D. & Roth, J. Alarming consequences - autoinflammatory disease spectrum due to mutations in proline-serine-threonine phosphatase-interacting protein 1. Curr. Opin. Rheumatol. 28, 550–559 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Mistry, P. et al. Dysregulated neutrophil responses and neutrophil extracellular trap formation and degradation in PAPA syndrome. Ann. Rheum. Dis. 77, 1825–1833 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Desai, J., Steiger, S. & Anders, H. J. Molecular pathophysiology of gout. Trends Mol. Med. 23, 756–768 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Dalbeth, N., Merriman, T. R. & Stamp, L. K. Gout. Lancet 388, 2039–2052 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Taylor, P. C. et al. Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor alpha blockade in patients with rheumatoid arthritis. Arthritis Rheum. 43, 38–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Silfvast-Kaiser, A., Paek, S. Y. & Menter, A. Anti-IL17 therapies for psoriasis. Expert Opin. Biol. Ther. 19, 45–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Campbell, I. K. et al. Therapeutic targeting of the G-CSF receptor reduces neutrophil trafficking and joint inflammation in antibody-mediated inflammatory arthritis. J. Immunol. 197, 4392–4402 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. De Soyza, A. et al. A randomised, placebo-controlled study of the CXCR2 antagonist AZD5069 in bronchiectasis. Eur. Respir. J. 46, 1021–1032 (2015).

    Article  PubMed  Google Scholar 

  174. Catella-Lawson, F. et al. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N. Engl. J. Med. 345, 1809–1817 (2001).

    Article  CAS  PubMed  Google Scholar 

  175. Smith, C. K. et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol. 66, 2532–2544 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Silvestre-Roig, C. et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature 569, 236–240 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hsieh, I. N., Deluna, X., White, M. R. & Hartshorn, K. L. Histone H4 directly stimulates neutrophil activation through membrane permeabilization. J. Leukoc. Biol. 109, 763–775 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Silva, C. M. S. et al. Gasdermin D inhibition prevents multiple organ dysfunction during sepsis by blocking NET formation. Blood 138, 2702–2713 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang, X. et al. Effects of Gasdermin D in modulating murine lupus and its associated organ damage. Arthritis Rheumatol. 72, 2118–2129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Willis, V. C. et al. N-alpha-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J. Immunol. 186, 4396–4404 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Martinod, K. et al. PAD4-deficiency does not affect bacteremia in polymicrobial sepsis and ameliorates endotoxemic shock. Blood 125, 1948–1956 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Sulem, P. et al. Identification of a large set of rare complete human knockouts. Nat. Genet. 47, 448–452 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Sorensen, O. E. et al. Papillon-Lefevre syndrome patient reveals species-dependent requirements for neutrophil defenses. J. Clin. Invest. 124, 4539–4548 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Zavada, J. et al. Cyclosporine A or intravenous cyclophosphamide for lupus nephritis: the Cyclofa-Lune study. Lupus 19, 1281–1289 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Lee, Y. H., Lee, H. S., Choi, S. J., Dai Ji, J. & Song, G. G. Efficacy and safety of tacrolimus therapy for lupus nephritis: a systematic review of clinical trials. Lupus 20, 636–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Macanovic, M. et al. The treatment of systemic lupus erythematosus (SLE) in NZB/W F1 hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin. Exp. Immunol. 106, 243–252 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Davis, J. C. Jr. et al. Recombinant human Dnase I (rhDNase) in patients with lupus nephritis. Lupus 8, 68–76 (1999).

    Article  PubMed  Google Scholar 

  188. Nelander, K. et al. Early clinical experience with AZD4831, a novel myeloperoxidase inhibitor, developed for patients with heart failure with preserved ejection fraction. Clin. Transl. Sci. 14, 812–819 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zheng, W. et al. PF-1355, a mechanism-based myeloperoxidase inhibitor, prevents immune complex vasculitis and anti-glomerular basement membrane glomerulonephritis. J. Pharmacol. Exp. Ther. 353, 288–298 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Blanco, L. P. et al. Improved mitochondrial metabolism and reduced inflammation following attenuation of murine lupus with coenzyme Q10 analog idebenone. Arthritis Rheumatol. 72, 454–464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Fortner, K. A. et al. Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL-lpr mice. Lupus Sci. Med. 7, e000387 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Kim, J. et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366, 1531–1536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wang, H., Li, T., Chen, S., Gu, Y. & Ye, S. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin. Arthritis Rheumatol. 67, 3190–3200 (2015).

    Article  CAS  PubMed  Google Scholar 

  194. Boeltz, S. et al. To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ. 26, 395–408 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Kienhofer, D. et al. Experimental lupus is aggravated in mouse strains with impaired induction of neutrophil extracellular traps. JCI Insight 2, e92920 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Gordon, R. A. et al. Lupus and proliferative nephritis are PAD4 independent in murine models. JCI Insight 2, e92926 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Hanata, N. et al. Peptidylarginine deiminase 4 promotes the renal infiltration of neutrophils and exacerbates the TLR7 agonist-induced lupus mice. Front. Immunol. 11, 1095 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Scapini, P., Marini, O., Tecchio, C. & Cassatella, M. A. Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol. Rev. 273, 48–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Torres-Ruiz, J. et al. Neutrophil extracellular traps contribute to COVID-19 hyperinflammation and humoral autoimmunity. Cells 10, 2545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Liu, C. Y. et al. Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14-/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 136, 35–45 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.W. and M.J.K. are supported by the intramural research program at NIAMS (ZIAAR041199).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Mariana J. Kaplan.

Ethics declarations

Competing interests

NIAMS has collaborative research agreements with Pfizer, Bristol Myers Squibb and Astra Zeneca. M.J.K. is on the Scientific Advisory Board of Citryll and Neutrolis. G.W. declares no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks V. Papayannopoulos, C. Silvestre-Roig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Neutrophil extracellular traps

(NETs). Networks of extracellular DNA fibres containing granule proteins, such as myeloperoxidase and neutrophil elastase, that are formed by neutrophils as part of an active process.

NADPH oxidase

Membrane-bound enzymatic complex that catalyses the production of superoxide free radicals (a type of reactive oxygen species), which are used by neutrophils to kill microorganisms. This reaction is also known as the respiratory burst.

Citrullination

A post-translational modification of proteins that changes the amino acid arginine into a citrulline through deimination.

Carbamylation

A post-translational modification of proteins that attaches isocyanic acid to arginine, forming homocitrulline.

cGAS–STING pathway

An innate immune pathway that senses double-stranded DNA and activates a cellular response, often involving type I interferons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wigerblad, G., Kaplan, M.J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol 23, 274–288 (2023). https://doi.org/10.1038/s41577-022-00787-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-022-00787-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing