[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-coding RNAs in disease: from mechanisms to therapeutics

Abstract

Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The classic and non-classic functions of miRNAs.
Fig. 2: The main functions of lncRNAs.
Fig. 3: The main functions of circRNAs.
Fig. 4: Examples of the different mechanisms of ncRNAs in human diseases.
Fig. 5: ncRNAs are important biomarkers and therapeutic targets.

Similar content being viewed by others

References

  1. The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007). This work describes the ENCODE project aiming to identify all functional elements of the human genome, especially ncRNAs.

    PubMed Central  ADS  Google Scholar 

  2. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) project. Science 306, 636–640 (2004).

    ADS  Google Scholar 

  3. Kapranov, P., Willingham, A. T. & Gingeras, T. R. Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 8, 413–423 (2007).

    CAS  PubMed  Google Scholar 

  4. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007). This work presents the earliest evidence of a role for miRNAs in cardiac function.

    PubMed  ADS  Google Scholar 

  5. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007).

    CAS  PubMed  Google Scholar 

  6. Giraldez, A. J. et al. microRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838 (2005).

    CAS  PubMed  ADS  Google Scholar 

  7. Chmielarz, P. et al. Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis. 8, e2813 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Calin, G. A. & Croce, C. M. microRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).

    CAS  PubMed  Google Scholar 

  9. Sayed, D., Hong, C., Chen, I. Y., Lypowy, J. & Abdellatif, M. microRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100, 416–424 (2007).

    CAS  PubMed  Google Scholar 

  10. Care, A. et al. microRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).

    CAS  PubMed  Google Scholar 

  11. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    CAS  PubMed  ADS  Google Scholar 

  12. McDonald, J. T. et al. Role of miR-2392 in driving SARS-CoV-2 infection. Cell Rep. 37, 109839 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Uszczynska-Ratajczak, B., Lagarde, J., Frankish, A., Guigo, R. & Johnson, R. Towards a complete map of the human long non-coding RNA transcriptome. Nat. Rev. Genet. 19, 535–548 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, Y.-C. et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res. 44, D209–D215 (2016).

    CAS  PubMed  Google Scholar 

  15. Shen, C. et al. Identification of a dysregulated circRNA-associated gene signature for predicting prognosis, immune landscape, and drug candidates in bladder cancer. Front. Oncol. 12, 1018285 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Y. J., Zhu, W. K., Qi, F. Y. & Che, F. Y. circHIPK3 promotes neuroinflammation through regulation of the miR-124-3p/STAT3/NLRP3 signaling pathway in Parkinson’s disease. Adv. Clin. Exp. Med. 32, 315–329 (2022).

    CAS  Google Scholar 

  17. Zhou, H. et al. Identification of circular RNA BTBD7_hsa_circ_0000563 as a novel biomarker for coronary artery disease and the functional discovery of BTBD7_hsa_circ_0000563 based on peripheral blood mononuclear cells: a case control study. Clin. Proteom. 19, 37 (2022).

    MathSciNet  CAS  Google Scholar 

  18. Ward, Z. et al. Identifying candidate circulating RNA markers for coronary artery disease by deep RNA-sequencing in human plasma. Cells 11, 3191 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mattick, J. S. RNA regulation: a new genetics. Nat. Rev. Genet. 5, 316–323 (2004).

    CAS  PubMed  Google Scholar 

  20. Orellana, E. A., Siegal, E. & Gregory, R. I. tRNA dysregulation and disease. Nat. Rev. Genet. 23, 651–664 (2022).

    CAS  PubMed  Google Scholar 

  21. Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).

    CAS  PubMed  Google Scholar 

  22. Bansal, P. & Arora, M. Small interfering RNAs and RNA therapeutics in cardiovascular diseases. Adv. Exp. Med. Biol. 1229, 369–381 (2020).

    CAS  PubMed  Google Scholar 

  23. Anastasiadou, E., Jacob, L. S. & Slack, F. J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 18, 5–18 (2018).

    CAS  PubMed  Google Scholar 

  24. Fabbri, M., Girnita, L., Varani, G. & Calin, G. A. Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res. 29, 1377–1388 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  PubMed  Google Scholar 

  26. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    CAS  PubMed  Google Scholar 

  27. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019). This work presents the recent update of miRBase, the official miRNA database, which is regularly updated and widely used.

    CAS  PubMed  Google Scholar 

  28. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    CAS  PubMed  Google Scholar 

  29. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bartel, D. P. microRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. microRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008).

    CAS  PubMed  ADS  Google Scholar 

  33. Shang, R., Lee, S., Senavirathne, G. & Lai, E. C. microRNAs in action: biogenesis, function and regulation. Nat. Rev. Genet. https://doi.org/10.1038/s41576-023-00611-y (2023).

    Article  PubMed  Google Scholar 

  34. Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007). This study shows that, besides their well-known target-repressing function, miRNAs can also activate their target genes.

    CAS  PubMed  ADS  Google Scholar 

  35. Li, G. et al. CCAR1 5′ UTR as a natural miRancer of miR-1254 overrides tamoxifen resistance. Cell Res. 26, 655–673 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Orom, U. A., Nielsen, F. C. & Lund, A. H. microRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell 30, 460–471 (2008).

    PubMed  Google Scholar 

  37. Bayraktar, R., Van Roosbroeck, K. & Calin, G. A. Cell-to-cell communication: microRNAs as hormones. Mol. Oncol. 11, 1673–1686 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Drula, R. et al. 17β-Estradiol promotes extracellular vesicle release and selective miRNA loading in ERα-positive breast cancer. Proc. Natl Acad. Sci. USA 120, e2122053120 (2023). This study provides mechanistic evidence that hormones influence extracellular vesicle secretion and loading with miRNAs.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fabbri, M. TLRs as miRNA receptors. Cancer Res. 72, 6333–6337 (2012).

    CAS  PubMed  Google Scholar 

  40. Fabbri, M. et al. microRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl Acad. Sci. USA 109, E2110–E2116 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, X., Liang, H., Zhang, J., Zen, K. & Zhang, C. Y. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 22, 125–132 (2012).

    CAS  PubMed  Google Scholar 

  42. Lehmann, S. M. et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat. Neurosci. 15, 827–835 (2012). Together with Fabbri et al. (Cancer Res., 2012), this study describes the TLR-binding activity of miRNAs.

    CAS  PubMed  Google Scholar 

  43. Chen, X., Liang, H., Zhang, J., Zen, K. & Zhang, C. Y. microRNAs are ligands of Toll-like receptors. RNA 19, 737–739 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Brannan, C. I., Dees, E. C., Ingram, R. S. & Tilghman, S. M. The product of the H19 gene may function as an RNA. Mol. Cell Biol. 10, 28–36 (1990). This work presents the discovery of H19 lncRNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brown, C. J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991). This publication describes the role of Xist lncRNA in X-chromosome inactivation.

    CAS  PubMed  ADS  Google Scholar 

  46. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019). This work discusses the GENCODE project, a large project that continues to annotate all genome features in the human and mouse genome including protein-coding loci with alternatively spliced variants, non-coding loci and pseudogenes.

    CAS  PubMed  Google Scholar 

  47. Zhao, L. et al. NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res. 49, D165–D171 (2021).

    CAS  PubMed  ADS  Google Scholar 

  48. Wu, H., Yang, L. & Chen, L. L. The diversity of long noncoding RNAs and their generation. Trends Genet. 33, 540–552 (2017).

    CAS  PubMed  Google Scholar 

  49. Yin, Y. et al. U1 snRNP regulates chromatin retention of noncoding RNAs. Nature 580, 147–150 (2020).

    CAS  PubMed  ADS  Google Scholar 

  50. Guo, C. J. et al. Distinct processing of lncRNAs contributes to non-conserved functions in stem cells. Cell 181, 621–636.e22 (2020).

    CAS  PubMed  Google Scholar 

  51. Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes. Dev. 25, 1915–1927 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dragomir, M. P., Kopetz, S., Ajani, J. A. & Calin, G. A. Non-coding RNAs in GI cancers: from cancer hallmarks to clinical utility. Gut 69, 748–763 (2020).

    CAS  PubMed  Google Scholar 

  53. Slack, F. J. & Chinnaiyan, A. M. The role of non-coding RNAs in oncology. Cell 179, 1033–1055 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).

    CAS  PubMed  Google Scholar 

  55. Petermann, E., Lan, L. & Zou, L. Sources, resolution and physiological relevance of R-loops and RNA–DNA hybrids. Nat. Rev. Mol. Cell Biol. 23, 521–540 (2022).

    CAS  PubMed  Google Scholar 

  56. Statello, L., Guo, C. J., Chen, L. L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    CAS  PubMed  Google Scholar 

  57. Tan, J. Y. & Marques, A. C. The activity of human enhancers is modulated by the splicing of their associated lncRNAs. PLoS Comput. Biol. 18, e1009722 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Li, X. et al. Comprehensive characterization genetic regulation and chromatin landscape of enhancer-associated long non-coding RNAs and their implication in human cancer. Brief. Bioinform 23, bbab401 (2022).

    PubMed  Google Scholar 

  59. Hou, Y., Zhang, R. & Sun, X. Enhancer lncRNAs influence chromatin interactions in different ways. Front. Genet. 10, 936 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Arab, K. et al. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol. Cell 55, 604–614 (2014).

    CAS  PubMed  Google Scholar 

  61. Grossi, E. et al. A lncRNA–SWI/SNF complex crosstalk controls transcriptional activation at specific promoter regions. Nat. Commun. 11, 936 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Yang, X., Yang, J., Lei, P. & Wen, T. lncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging 11, 8777–8791 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Fan, L. et al. Hotair promotes the migration and proliferation in ovarian cancer by miR-222-3p/CDK19 axis. Cell Mol. Life Sci. 79, 254 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sharma, S. et al. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA–protein scaffold complex. Proc. Natl Acad. Sci. USA 108, 11381–11386 (2011).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  66. Li, S. et al. Long noncoding RNA HOTAIR interacts with Y-box protein-1 (YBX1) to regulate cell proliferation. Life Sci. Alliance 4, e202101139 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pisignano, G. et al. Going circular: history, present, and future of circRNAs in cancer. Oncogene 42, 2783–2800 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, Z., Yang, T. & Xiao, J. Circular RNAs: promising biomarkers for human diseases. EBioMedicine 34, 267–274 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    CAS  PubMed  ADS  Google Scholar 

  70. Ma, S., Kong, S., Wang, F. & Ju, S. circRNAs: biogenesis, functions, and role in drug-resistant tumours. Mol. Cancer 19, 119 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Czubak, K., Sedehizadeh, S., Kozlowski, P. & Wojciechowska, M. An overview of circular RNAs and their implications in myotonic dystrophy. Int. J. Mol. Sci. 20, 4385 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Guo, J. U., Agarwal, V., Guo, H. & Bartel, D. P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15, 409 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Conn, V. M. et al. Circular RNAs drive oncogenic chromosomal translocations within the MLL recombinome in leukemia. Cancer Cell 41, 1309–1326 (2023).

    CAS  PubMed  Google Scholar 

  75. Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885 (2015).

    CAS  PubMed  Google Scholar 

  76. Zheng, Q. et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 7, 11215 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  77. Du, W. W. et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44, 2846–2858 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. Du, W. W. et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 24, 357–370 (2017).

    CAS  PubMed  Google Scholar 

  79. Chen, N. et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19, 218 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang, Z. G. et al. The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function. Mol. Ther. 25, 2062–2074 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yeasmin, F., Yada, T. & Akimitsu, N. Micropeptides encoded in transcripts previously identified as long noncoding RNAs: a new chapter in transcriptomics and proteomics. Front. Genet. 9, 144 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Pauli, A., Valen, E. & Schier, A. F. Identifying (non-)coding RNAs and small peptides: challenges and opportunities. Bioessays 37, 103–112 (2015).

    CAS  PubMed  Google Scholar 

  83. Lauressergues, D. et al. Primary transcripts of microRNAs encode regulatory peptides. Nature 520, 90–93 (2015). This work discovers that miRNA transcripts can encode sPEPs.

    CAS  PubMed  ADS  Google Scholar 

  84. Spencer, H. L. et al. The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function. Cardiovasc. Res. 116, 1981–1994 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, M. et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun. 9, 4475 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  86. Barczak, W. et al. Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response. Nat. Commun. 14, 1078 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Chew, G.-L. et al. Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Development 140, 2828–2834 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Nelson, B. R. et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351, 271–275 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  89. Chugunova, A. et al. LINC00116 codes for a mitochondrial peptide linking respiration and lipid metabolism. Proc. Natl Acad. Sci. USA 116, 4940–4945 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Dragomir, M. P. et al. FuncPEP: a database of functional peptides encoded by non-coding RNAs. Noncoding RNA 6, 41 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Luo, X. et al. SPENCER: a comprehensive database for small peptides encoded by noncoding RNAs in cancer patients. Nucleic Acids Res. 50, D1373–D1381 (2022).

    CAS  PubMed  Google Scholar 

  92. Wang, Y. & Wang, Z. Efficient backsplicing produces translatable circular mRNAs. RNA 21, 172–179 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Pamudurti, N. R. et al. Translation of circRNAs. Mol. Cell 66, 9–21 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang, Y. et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27, 626–641 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Weingarten-Gabbay, S. et al. Comparative genetics. systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351, aad4939 (2016).

    PubMed  Google Scholar 

  96. Fan, X., Yang, Y., Chen, C. & Wang, Z. Pervasive translation of circular RNAs driven by short IRES-like elements. Nat. Commun. 13, 3751 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  97. Chen, C. K. et al. Structured elements drive extensive circular RNA translation. Mol. Cell 81, 4300–4318.e13 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mendell, J. T. & Olson, E. N. microRNAs in stress signaling and human disease. Cell 148, 1172–1187 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hogg, D. R. & Harries, L. W. Human genetic variation and its effect on miRNA biogenesis, activity and function. Biochemical Soc. Trans. 42, 1184–1189 (2014).

    CAS  Google Scholar 

  100. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 8, 286–298 (2007).

    CAS  PubMed  Google Scholar 

  101. Huang, Z. et al. HMDD v3.0: a database for experimentally supported human microRNA–disease associations. Nucleic Acids Res. 47, D1013–D1017 (2019).

    CAS  PubMed  ADS  Google Scholar 

  102. Chen, G. et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 41, D983–D986 (2013).

    CAS  PubMed  ADS  Google Scholar 

  103. Bao, Z. et al. LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Res. 47, D1034–D1037 (2019).

    CAS  PubMed  Google Scholar 

  104. Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002). This work presents the earliest discovery of the association between miRNA alterations and cancer, which has established the field of disease-related ncRNA research.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  105. Matsui, M. & Corey, D. R. Non-coding RNAs as drug targets. Nat. Rev. Drug. Discov. 16, 167–179 (2017).

    CAS  PubMed  Google Scholar 

  106. Calin, G. A. et al. miR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl Acad. Sci. USA 105, 5166–5171 (2008).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  107. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  108. Zhang, L. et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA 103, 9136–9141 (2006).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  109. Lu, J. et al. microRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    CAS  PubMed  ADS  Google Scholar 

  110. Mi, S. et al. microRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc. Natl Acad. Sci. USA 104, 19971–19976 (2007).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. Dhawan, A., Scott, J. G., Harris, A. L. & Buffa, F. M. Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downregulation of tumour suppressors. Nat. Commun. 9, 5228 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  112. Jacobsen, A. et al. Analysis of microRNA–target interactions across diverse cancer types. Nat. Struct. Mol. Biol. 20, 1325–1332 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Pfeffer, S. R., Yang, C. H. & Pfeffer, L. M. The role of miR-21 in cancer. Drug. Dev. Res. 76, 270–277 (2015).

    CAS  PubMed  Google Scholar 

  114. Singh, A. et al. The role of microRNA-21 in the onset and progression of cancer. Future Med. Chem. 13, 1885–1906 (2021).

    CAS  PubMed  Google Scholar 

  115. Sun, L. H., Tian, D., Yang, Z. C. & Li, J. L. Exosomal miR-21 promotes proliferation, invasion and therapy resistance of colon adenocarcinoma cells through its target PDCD4. Sci. Rep. 10, 8271 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  116. Qiu, L. & Weng, G. The diagnostic value of serum miR-21 in patients with ovarian cancer: a systematic review and meta-analysis. J. Ovarian Res. 15, 51 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Amit, M. et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 578, 449–454 (2020). This work presents initial evidence of cell-to-cell communication between malignant cells and peripheral neurons through extracellular miRNAs.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  118. Ding, L. et al. The dual role of microRNAs in colorectal cancer progression. Int. J. Mol. Sci. 19, 2791 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Kadkhoda, S., Hussen, B. M., Eslami, S. & Ghafouri-Fard, S. A review on the role of miRNA-324 in various diseases. Front. Genet. 13, 950162 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Chirshev, E., Oberg, K. C., Ioffe, Y. J. & Unternaehrer, J. J. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin. Transl Med. 8, 24 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. Abels, E. R. et al. Glioblastoma-associated microglia reprogramming is mediated by functional transfer of extracellular miR-21. Cell Rep. 28, 3105–3119 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Calin, G. A. et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12, 215–229 (2007). This work presents initial evidence that genomic ultraconserved regions are transcribed as ncRNAs.

    CAS  PubMed  Google Scholar 

  123. Rigoutsos, I. et al. N-BLR, a primate-specific non-coding transcript leads to colorectal cancer invasion and migration. Genome Biol. 18, 98 (2017). This work discusses a detailed mechanism of primate-specific lncRNA involvement in human cancers.

    PubMed  PubMed Central  Google Scholar 

  124. Kang, M. et al. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol. Cancer 19, 143 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhou, H. et al. A peptide encoded by pri-miRNA-31 represses autoimmunity by promoting Treg differentiation. EMBO Rep. 23, e53475 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Prel, A., Dozier, C., Combier, J. P., Plaza, S. & Besson, A. Evidence that regulation of pri-miRNA/miRNA expression is not a general rule of miPEPs function in humans. Int. J. Mol. Sci. 22, 3432 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lee, C. Q. E. et al. Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity. Nat. Commun. 12, 2130 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  128. Fang, J., Morsalin, S., Rao, V. N. & Reddy, E. S. P. Decoding of non-coding DNA and non-coding RNA: pri-micro RNA-encoded novel peptides regulate migration of cancer cells. J. Pharm. Sci. Pharmacol. 3, 23–27 (2017).

    Google Scholar 

  129. Huang, J. Z. et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol. Cell 68, 171–184 (2017).

    CAS  PubMed  Google Scholar 

  130. Wang, Y. et al. lncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J. Exp. Med. 217, jem.20190950 (2020). This work is one of the earliest to present evidence of a lncRNA-encoded peptide that has a role in cancer.

    PubMed  Google Scholar 

  131. Guo, B. et al. Micropeptide CIP2A-BP encoded by LINC00665 inhibits triple-negative breast cancer progression. EMBO J. 39, e102190 (2020).

    CAS  PubMed  Google Scholar 

  132. Yang, Y. et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl Cancer Inst. 110, 304–315 (2018).

    CAS  PubMed  Google Scholar 

  133. Zhang, M. et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 37, 1805–1814 (2018).

    CAS  PubMed  Google Scholar 

  134. Tsao, C. W. et al. Heart disease and stroke statistics — 2023 update: a report from the American Heart Association. Circulation 147, e93–e621 (2023).

    PubMed  Google Scholar 

  135. Lorenzen, J. M. & Thum, T. Long noncoding RNAs in kidney and cardiovascular diseases. Nat. Rev. Nephrol. 12, 360–373 (2016).

    CAS  PubMed  Google Scholar 

  136. Aufiero, S., Reckman, Y. J., Pinto, Y. M. & Creemers, E. E. Circular RNAs open a new chapter in cardiovascular biology. Nat. Rev. Cardiol. 16, 503–514 (2019).

    PubMed  Google Scholar 

  137. Usuelli, V. et al. miR-21 antagonism reprograms macrophage metabolism and abrogates chronic allograft vasculopathy. Am. J. Transpl. 21, 3280–3295 (2021).

    CAS  Google Scholar 

  138. Liang, H. et al. A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. Int. J. Biochem. Cell Biol. 44, 2152–2160 (2012).

    CAS  PubMed  Google Scholar 

  139. Thum, T. et al. microRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008).

    CAS  PubMed  ADS  Google Scholar 

  140. Hinkel, R. et al. antimiR-21 prevents myocardial dysfunction in a pig model of ischemia/reperfusion injury. J. Am. Coll. Cardiol. 75, 1788–1800 (2020).

    CAS  PubMed  Google Scholar 

  141. Hosen, M. R. et al. Circulating microRNA-122-5p is associated with a lack of improvement in left ventricular function after transcatheter aortic valve replacement and regulates viability of cardiomyocytes through extracellular vesicles. Circulation 146, 1836–1854 (2022).

    CAS  PubMed  Google Scholar 

  142. Liu, Y., Song, J. W., Lin, J. Y., Miao, R. & Zhong, J. C. Roles of microRNA-122 in cardiovascular fibrosis and related diseases. Cardiovasc. Toxicol. 20, 463–473 (2020).

    PubMed  PubMed Central  Google Scholar 

  143. Dong, K. et al. CARMN is an evolutionarily conserved smooth muscle cell-specific lncRNA that maintains contractile phenotype by binding myocardin. Circulation 144, 1856–1875 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Plaisance, I. et al. Cardiomyocyte lineage specification in adult human cardiac precursor cells via modulation of enhancer-associated long noncoding RNA expression. JACC Basic. Transl Sci. 1, 472–493 (2016).

    PubMed  PubMed Central  Google Scholar 

  145. Cai, B. et al. The long noncoding RNA CAREL controls cardiac regeneration. J. Am. Coll. Cardiol. 72, 534–550 (2018).

    PubMed  Google Scholar 

  146. Li, M. et al. lncRNA-ZFAS1 promotes myocardial ischemia–reperfusion injury through DNAmethylation-mediated Notch1 down-regulation in mice. JACC Basic. Transl Sci. 7, 880–895 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  147. Chen, L. et al. A novel lncRNA SNHG3 promotes osteoblast differentiation through BMP2 upregulation in aortic valve calcification. JACC Basic. Transl Sci. 7, 899–914 (2022).

    PubMed  PubMed Central  Google Scholar 

  148. Li, H. et al. lncExACT1 and DCHS2 regulate physiological and pathological cardiac growth. Circulation 145, 1218–1233 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Fasolo, F. et al. Long noncoding RNA MIAT controls advanced atherosclerotic lesion formation and plaque destabilization. Circulation 144, 1567–1583 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Omura, J. et al. Identification of long noncoding RNA H19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension. Circulation 142, 1464–1484 (2020).

    CAS  PubMed  Google Scholar 

  151. Ponnusamy, M. et al. Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation 139, 2668–2684 (2019).

    CAS  PubMed  Google Scholar 

  152. Lu, D. et al. A circular RNA derived from the insulin receptor locus protects against doxorubicin-induced cardiotoxicity. Eur. Heart J. 43, 4496–4511 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ding, F. et al. circHIPK3 prevents cardiac senescence by acting as a scaffold to recruit ubiquitin ligase to degrade HuR. Theranostics 12, 7550–7566 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Zeng, Z. et al. Circular RNA circMAP3K5 acts as a microRNA-22-3p sponge to promote resolution of intimal hyperplasia via TET2-mediated smooth muscle cell differentiation. Circulation 143, 354–371 (2021).

    CAS  PubMed  Google Scholar 

  155. Wu, N. et al. Silencing mouse circular RNA circSlc8a1 by circular antisense cA-circSlc8a1 induces cardiac hepatopathy. Mol. Ther. 31, 1688–1704 (2023).

    CAS  PubMed  Google Scholar 

  156. Xu, J. et al. The circular RNA circNlgn mediates doxorubicin-induced cardiac remodeling and fibrosis. Mol. Ther. Nucleic Acids 28, 175–189 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Poller, W. et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur. Heart J. 39, 2704–2716 (2018).

    CAS  PubMed  Google Scholar 

  158. Hampton, T. Noncoding RNA may help treat heart disease. JAMA 315, 1327–1327 (2016).

    Google Scholar 

  159. Ziats, M. N. & Rennert, O. M. Identification of differentially expressed microRNAs across the developing human brain. Mol. Psychiatry 19, 848–852 (2014).

    CAS  PubMed  Google Scholar 

  160. Oh, Y. M. et al. Age-related Huntington’s disease progression modeled in directly reprogrammed patient-derived striatal neurons highlights impaired autophagy. Nat. Neurosci. 25, 1420–1433 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Reed, E. R. et al. microRNAs in CSF as prodromal biomarkers for Huntington disease in the PREDICT-HD study. Neurology 90, e264–e272 (2018).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  162. Maes, O. C., Chertkow, H. M., Wang, E. & Schipper, H. M. microRNA: implications for Alzheimer disease and other human CNS disorders. Curr. Genomics 10, 154–168 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Scheper, M. et al. Dysregulation of miR-543 in Parkinson’s disease: impact on the neuroprotective gene SIRT1. Neuropathol. Appl. Neurobiol. 49, e12864 (2022).

    PubMed  PubMed Central  Google Scholar 

  164. Hezroni, H., Perry, R. B. T. & Ulitsky, I. Long noncoding RNAs in development and regeneration of the neural lineage. Cold Spring Harb. Symp. Quant. Biol. 84, 165–177 (2019).

    PubMed  Google Scholar 

  165. Schneider, M. F. et al. lncRNA RUS shapes the gene expression program towards neurogenesis. Life Sci. Alliance 5, e202201504 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lin, N. et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol. Cell 53, 1005–1019 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Wu, D. P. et al. Circular RNAs: emerging players in brain aging and neurodegenerative diseases. J. Pathol. 259, 1–9 (2023).

    CAS  PubMed  Google Scholar 

  168. Chen, J. et al. Novel circular RNA 2960 contributes to secondary damage of spinal cord injury by sponging miRNA-124. J. Comp. Neurol. 529, 1456–1464 (2021).

    CAS  PubMed  Google Scholar 

  169. Doxakis, E. Insights into the multifaceted role of circular RNAs: implications for Parkinson’s disease pathogenesis and diagnosis. NPJ Parkinsons Dis. 8, 7 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Verduci, L., Tarcitano, E., Strano, S., Yarden, Y. & Blandino, G. circRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis. 12, 468 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Dube, U. et al. An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat. Neurosci. 22, 1903–1912 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Moure, U. A. E. et al. Advances in the Immune regulatory role of non-coding RNAs (miRNAs and lncRNAs) in insect–pathogen interactions. Front. Immunol. 13, 856457 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Eichner, H., Karlsson, J. & Loh, E. The emerging role of bacterial regulatory RNAs in disease. Trends Microbiol. 30, 959–972 (2022).

    CAS  PubMed  Google Scholar 

  174. Yi, K. et al. Long noncoding RNA and its role in virus infection and pathogenesis. FBL 24, 777–789 (2019).

    CAS  PubMed  Google Scholar 

  175. Kalantari, P. et al. miR-718 represses proinflammatory cytokine production through targeting phosphatase and tensin homolog (PTEN). J. Biol. Chem. 292, 5634–5644 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Chen, X. M., Splinter, P. L., O’Hara, S. P. & LaRusso, N. F. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J. Biol. Chem. 282, 28929–28938 (2007).

    CAS  PubMed  Google Scholar 

  177. Cui, H. et al. Long noncoding RNA Malat1 regulates differential activation of macrophages and response to lung injury. JCI Insight 4, e124522 (2019).

    PubMed  PubMed Central  Google Scholar 

  178. Du, M. et al. The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation. Nat. Commun. 8, 2049 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  179. Sun, D. et al. lncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep. 18, 1801–1816 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Chen, J. et al. Ablation of long noncoding RNA MALAT1 activates antioxidant pathway and alleviates sepsis in mice. Redox Biol. 54, 102377 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Hotchkiss, R. S. et al. Sepsis and septic shock. Nat. Rev. Dis. Prim. 2, 16045 (2016).

    PubMed  Google Scholar 

  182. Vasilescu, C. et al. microRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS ONE 4, e7405 (2009). This work is the founder paper of the research field of miRNAs in human sepsis.

    PubMed  PubMed Central  ADS  Google Scholar 

  183. Zhang, Q. et al. Screening of core genes prognostic for sepsis and construction of a ceRNA regulatory network. BMC Med. Genomics 16, 37 (2023).

    PubMed  PubMed Central  Google Scholar 

  184. Xiao, C. et al. miR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146–159 (2007).

    CAS  PubMed  Google Scholar 

  185. Rao, D. S. et al. microRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1. Immunity 33, 48–59 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Mehta, A. et al. The microRNA-212/132 cluster regulates B cell development by targeting Sox4. J. Exp. Med. 212, 1679–1692 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Lindner, S. E. et al. The miR-15 family reinforces the transition from proliferation to differentiation in pre-B cells. EMBO Rep. 18, 1604–1617 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Das, S., Mukherjee, S. & Ali, N. Super enhancer-mediated transcription of miR146a-5p drives M2 polarization during Leishmania donovani infection. PLoS Pathog. 17, e1009343 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Dragomir, M. P. et al. anti-miR-93-5p therapy prolongs sepsis survival by restoring the peripheral immune response. J. Clin. Invest. 133, e158348 (2023). This study provides evidence of immune changes associated with anti-miRNA therapeutics in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Vasilescu, C. et al. Circulating miRNAs in sepsis — a network under attack: an in-silico prediction of the potential existence of miRNA sponges in sepsis. PLoS ONE 12, e0183334 (2017).

    PubMed  PubMed Central  Google Scholar 

  191. Tudor, S. et al. Cellular and Kaposi’s sarcoma-associated herpes virus microRNAs in sepsis and surgical trauma. Cell Death Dis. 5, e1559 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Vicente, D. et al. Viral micro-RNAs are detected in the early systemic response to injury and are associated with outcomes in polytrauma patients. Crit. Care Med. 50, 296–306 (2022).

    CAS  PubMed  Google Scholar 

  193. Iuliano, M. et al. Virus-Induced tumorigenesis and IFN system. Biology 10, 994 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Henzinger, H., Barth, D. A., Klec, C. & Pichler, M. Non-coding RNAs and SARS-related coronaviruses. Viruses 12, 1374 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Pawlica, P. et al. SARS-CoV-2 expresses a microRNA-like small RNA able to selectively repress host genes. Proc. Natl Acad. Sci. USA 118, e2116668118 (2021). This work discovers that the SARS-Cov-2 genome expresses a small ncRNA that has a regulatory effect on host genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Enguita, F. J. et al. The interplay between lncRNAs, RNA-binding proteins and viral genome during SARS-CoV-2 infection reveals strong connections with regulatory events involved in RNA metabolism and immune response. Theranostics 12, 3946–3962 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Aznaourova, M. et al. Single-cell RNA sequencing uncovers the nuclear decoy lincRNA PIRAT as a regulator of systemic monocyte immunity during COVID-19. Proc. Natl Acad. Sci. USA 119, e2120680119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. van Solingen, C. et al. Long noncoding RNA CHROMR regulates antiviral immunity in humans. Proc. Natl Acad. Sci. USA 119, e2210321119 (2022).

    PubMed  PubMed Central  Google Scholar 

  200. Agarwal, S. et al. The long non-coding RNA LUCAT1 is a negative feedback regulator of interferon responses in humans. Nat. Commun. 11, 6348 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  201. Yang, S. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV encode circular RNAs of spliceosome-independent origin. J. Med. Virol. 94, 3203–3222 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang, X. et al. Competing endogenous RNA network profiling reveals novel host dependency factors required for MERS-CoV propagation. Emerg. Microbes Infect. 9, 733–746 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Srinivasan, S. et al. Small RNA sequencing across diverse biofluids identifies optimal methods for exRNA isolation. Cell 177, 446–462 e416 (2019). This detailed paper presents extracellular RNA biomarker research comparing different types of biofluid.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Weber, J. A. et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733–1741 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Anfossi, S., Babayan, A., Pantel, K. & Calin, G. A. Clinical utility of circulating non-coding RNAs — an update. Nat. Rev. Clin. Oncol. 15, 541–563 (2018).

    PubMed  Google Scholar 

  206. Schwarzenbach, H., Hoon, D. S. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11, 426–437 (2011).

    CAS  PubMed  Google Scholar 

  207. Lu, D. & Thum, T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat. Rev. Cardiol. 16, 661–674 (2019).

    PubMed  Google Scholar 

  208. O’Connell, R. M., Rao, D. S., Chaudhuri, A. A. & Baltimore, D. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 10, 111–122 (2010).

    PubMed  Google Scholar 

  209. Trionfini, P., Benigni, A. & Remuzzi, G. microRNAs in kidney physiology and disease. Nat. Rev. Nephrol. 11, 23–33 (2015).

    CAS  PubMed  Google Scholar 

  210. Lempriere, S. Exosomal microRNA is promising biomarker in PD. Nat. Rev. Neurol. 18, 65 (2022).

    PubMed  Google Scholar 

  211. Ali, S. A., Peffers, M. J., Ormseth, M. J., Jurisica, I. & Kapoor, M. The non-coding RNA interactome in joint health and disease. Nat. Rev. Rheumatol. 17, 692–705 (2021).

    CAS  PubMed  Google Scholar 

  212. Kolenda, T. et al. Quantification of long non-coding RNAs using qRT-PCR: comparison of different cDNA synthesis methods and RNA stability. Arch. Med. Sci. 17, 1006–1015 (2021).

    CAS  PubMed  Google Scholar 

  213. Schlosser, K. et al. Assessment of circulating lncRNAs under physiologic and pathologic conditions in humans reveals potential limitations as biomarkers. Sci. Rep. 6, 36596 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  214. de Gonzalo-Calvo, D., Sopic, M., Devaux, Y. & EU-CardioRNA COST Action CA17129. Methodological considerations for circulating long noncoding RNA quantification. Trends Mol. Med. 28, 616–618 (2022).

    PubMed  Google Scholar 

  215. Fehlmann, T. et al. Common diseases alter the physiological age-related blood microRNA profile. Nat. Commun. 11, 5958 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  216. Mensa, E. et al. Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells. J. Extracell. Vesicles 9, 1725285 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Saito, M. et al. The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts. Clin. Cancer Res. 17, 1875–1882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Yan, L. X. et al. microRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14, 2348–2360 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Toiyama, Y. et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J. Natl Cancer Inst. 105, 849–859 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Schetter, A. J. et al. Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma. Clin. Cancer Res. 15, 5878–5887 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Ferracin, M. et al. MicroRNAs involvement in fludarabine refractory chronic lymphocytic leukemia. Mol. Cancer 9, 123 (2010).

    PubMed  PubMed Central  Google Scholar 

  222. Li, J. et al. Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-κB signaling. Oncogene 35, 5501–5514 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Sakimura, S. et al. The miR-506-induced epithelial–mesenchymal transition is involved in poor prognosis for patients with gastric cancer. Ann. Surg. Oncol. 22, S1436–S1443 (2015).

    PubMed  Google Scholar 

  224. Yang, D. et al. Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 23, 186–199 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Anandappa, G. et al. miR-31-3p expression and benefit from anti-EGFR inhibitors in metastatic colorectal cancer patients enrolled in the prospective phase II PROSPECT-C trial. Clin. Cancer Res. 25, 3830–3838 (2019).

    CAS  PubMed  Google Scholar 

  226. Laurent-Puig, P. et al. Validation of miR-31-3p expression to predict cetuximab efficacy when used as first-line treatment in RAS wild-type metastatic colorectal cancer. Clin. Cancer Res. 25, 134–141 (2019).

    CAS  PubMed  Google Scholar 

  227. El Fatimy, R., Subramanian, S., Uhlmann, E. J. & Krichevsky, A. M. Genome editing reveals glioblastoma addiction to m10b. Mol. Ther. 25, 368–378 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Teschendorff, A. E. et al. HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med. 7, 108 (2015).

    PubMed  PubMed Central  Google Scholar 

  229. Kogo, R. et al. Long noncoding RNA HOTAIR regulates Polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 71, 6320–6326 (2011).

    CAS  PubMed  Google Scholar 

  230. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  231. Li, X. et al. Long non-coding RNA HOTAIR, a driver of malignancy, predicts negative prognosis and exhibits oncogenic activity in oesophageal squamous cell carcinoma. Br. J. Cancer 109, 2266–2278 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Kim, K. et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32, 1616–1625 (2013).

    CAS  PubMed  Google Scholar 

  233. Gutschner, T. et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73, 1180–1189 (2013).

    CAS  PubMed  Google Scholar 

  234. Ling, H. et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 23, 1446–1461 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Ozawa, T. et al. CCAT1 and CCAT2 long noncoding RNAs, located within the 8q.24.21 ‘gene desert’, serve as important prognostic biomarkers in colorectal cancer. Ann. Oncol. 28, 1882–1888 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Tomlins, S. A. et al. Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. Eur. Urol. 70, 45–53 (2016).

    CAS  PubMed  Google Scholar 

  237. Lawrie, C. H. et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 141, 672–675 (2008). This work is one of the earliest to present evidence of the biomarker roles of miRNAs in liquid biopsies.

    PubMed  Google Scholar 

  238. Endzeliņš, E. et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer 17, 730 (2017).

    PubMed  PubMed Central  Google Scholar 

  239. Liu, H. N. et al. Serum microRNA signatures and metabolomics have high diagnostic value in gastric cancer. BMC Cancer 18, 415 (2018).

    PubMed  PubMed Central  Google Scholar 

  240. Miyoshi, J. et al. A microRNA-based liquid biopsy signature for the early detection of esophageal squamous cell carcinoma: a retrospective, prospective and multicenter study. Mol. Cancer 21, 44 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Dieckmann, K. P. et al. Serum levels of microRNA-371a-3p (M371 test) as a new biomarker of testicular germ cell tumors: results of a prospective multicentric study. J. Clin. Oncol. 37, 1412–1423 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Lembeck, A. L. et al. microRNAs as appropriate discriminators in non-specific αfFetoprotein (AFP) elevation in testicular germ cell tumor patients. Noncoding RNA 6, 2 (2020).

    PubMed  PubMed Central  Google Scholar 

  243. Nemeth, K. et al. Comprehensive analysis of circulating miRNAs in the plasma of patients with pituitary adenomas. J. Clin. Endocrinol. Metab. 104, 4151–4168 (2019).

    PubMed  Google Scholar 

  244. Marzi, M. J. et al. Optimization and standardization of circulating microRNA detection for clinical application: the miR-Test case. Clin. Chem. 62, 743–754 (2016).

    CAS  PubMed  Google Scholar 

  245. Montani, F. et al. miR-tTest: a blood test for lung cancer early detection. J. Natl Cancer Inst. 107, djv063 (2015).

    PubMed  Google Scholar 

  246. Pastorino, U. et al. Baseline computed tomography screening and blood microRNA predict lung cancer risk and define adequate intervals in the BioMILD trial. Ann. Oncol. 33, 395–405 (2022). This paper provides strong evidence of the roles of miRNAs as early cancer predictors.

    CAS  PubMed  Google Scholar 

  247. Alhasan, A. H. et al. Circulating microRNA signature for the diagnosis of very high-risk prostate cancer. Proc. Natl Acad. Sci. USA 113, 10655–10660 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  248. Casadei, L. et al. Exosome-derived miR-25-3p and miR-92a-3p stimulate liposarcoma progression. Cancer Res. 77, 3846–3856 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Kawakami, T., Okamoto, K., Ogawa, O. & Okada, Y. XIST unmethylated DNA fragments in male-derived plasma as a tumour marker for testicular cancer. Lancet 363, 40–42 (2004).

    CAS  PubMed  Google Scholar 

  250. Lobo, J. et al. XIST-promoter demethylation as tissue biomarker for testicular germ cell tumors and spermatogenesis quality. Cancers 11, 1385 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Tan, Z., Zhu, K., Yin, Y. & Luo, Z. Long non-coding RNA ANRIL is a potential indicator of disease progression and poor prognosis in acute myeloid leukemia. Mol. Med. Rep. 23, 112 (2021).

    CAS  PubMed  Google Scholar 

  252. Stępień, E. et al. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol. Sin. 39, 1085–1099 (2018).

    Google Scholar 

  253. Shah, R. V. et al. Associations of circulating extracellular RNAs with myocardial remodeling and heart failure. JAMA Cardiol. 3, 871–876 (2018).

    PubMed  PubMed Central  Google Scholar 

  254. Akat, K. M. et al. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc. Natl Acad. Sci. USA 111, 11151–11156 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  255. Šatrauskienė, A., Navickas, R., Laucevičius, A. & Huber, H. J. Identifying differential miR and gene consensus patterns in peripheral blood of patients with cardiovascular diseases from literature data. BMC Cardiovasc. Disord. 17, 173 (2017).

    PubMed  PubMed Central  Google Scholar 

  256. Karakas, M. et al. Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease — results from the large AtheroGene study. Eur. Heart J. 38, 516–523 (2017).

    CAS  PubMed  Google Scholar 

  257. Zhang, Y. et al. Reciprocal changes of circulating long non-coding RNAs ZFAS1 and CDR1AS predict acute myocardial infarction. Sci. Rep. 6, 22384 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  258. Gao, L. et al. Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell Physiol. Biochem. 44, 1497–1508 (2017).

    CAS  PubMed  Google Scholar 

  259. Wang, L. et al. Circular RNAs in cardiovascular diseases: regulation and therapeutic applications. Research 6, 0038 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  260. Vausort, M. et al. Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. J. Am. Coll. Cardiol. 68, 1247–1248 (2016).

    PubMed  Google Scholar 

  261. Salgado-Somoza, A., Zhang, L., Vausort, M. & Devaux, Y. The circular RNA MICRA for risk stratification after myocardial infarction. Int. J. Cardiol. Heart Vasc. 17, 33–36 (2017).

    PubMed  PubMed Central  Google Scholar 

  262. Wang, L. et al. Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis 286, 88–96 (2019).

    CAS  PubMed  Google Scholar 

  263. Sun, Y. et al. Circular RNA expression profiles in plasma from patients with heart failure related to platelet activity. Biomolecules 10, 187 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Han, J. et al. Circular RNA-expression profiling reveals a potential role of Hsa_circ_0097435 in heart failure via sponging multiple microRNAs. Front. Genet. 11, 212 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Schulte, C., Barwari, T., Joshi, A., Zeller, T. & Mayr, M. Noncoding RNAs versus protein biomarkers in cardiovascular disease. Trends Mol. Med. 26, 583–596 (2020).

    CAS  PubMed  Google Scholar 

  266. de Gonzalo-Calvo, D. et al. Circulating non-coding RNAs in biomarker-guided cardiovascular therapy: a novel tool for personalized medicine. Eur. Heart J. 40, 1643–1650 (2019).

    PubMed  Google Scholar 

  267. Denk, J. et al. Specific serum and CSF microRNA profiles distinguish sporadic behavioural variant of frontotemporal dementia compared with Alzheimer patients and cognitively healthy controls. PLoS ONE 13, e0197329 (2018).

    PubMed  PubMed Central  Google Scholar 

  268. Piscopo, P. et al. Circulating miR-127-3p as a potential biomarker for differential diagnosis in frontotemporal dementia. J. Alzheimer’s Dis. 65, 455–464 (2018).

    CAS  Google Scholar 

  269. Magen, I. et al. Circulating miR-181 is a prognostic biomarker for amyotrophic lateral sclerosis. Nat. Neurosci. 24, 1534–1541 (2021).

    CAS  PubMed  Google Scholar 

  270. Fenoglio, C. et al. lncRNAs expression profile in peripheral blood mononuclear cells from multiple sclerosis patients. J. Neuroimmunol. 324, 129–135 (2018).

    CAS  PubMed  Google Scholar 

  271. Ahlbrecht, J. et al. Deregulation of microRNA-181c in cerebrospinal fluid of patients with clinically isolated syndrome is associated with early conversion to relapsing–remitting multiple sclerosis. Mult. Scler. 22, 1202–1214 (2016).

    CAS  PubMed  Google Scholar 

  272. Vistbakka, J., Elovaara, I., Lehtimäki, T. & Hagman, S. Circulating microRNAs as biomarkers in progressive multiple sclerosis. Mult. Scler. 23, 403–412 (2017).

    CAS  PubMed  Google Scholar 

  273. Li, Y. et al. Profiling of differentially expressed circular RNAs in peripheral blood mononuclear cells from Alzheimer’s disease patients. Metab. Brain Dis. 35, 201–213 (2020).

    CAS  PubMed  Google Scholar 

  274. Zuo, L. et al. Circulating circular RNAs as biomarkers for the diagnosis and prediction of outcomes in acute ischemic stroke. Stroke 51, 319–323 (2020).

    CAS  PubMed  Google Scholar 

  275. Rupaimoole, R. & Slack, F. J. microRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug. Discov. 16, 203–222 (2017).

    CAS  PubMed  Google Scholar 

  276. Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug. Discov. 20, 629–651 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug. Discov. 17, 547–558 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Huang, C. K., Kafert-Kasting, S. & Thum, T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ. Res. 126, 663–678 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Gallant-Behm, C. L. et al. A microRNA-29 mimic (remlarsen) represses extracellular matrix expression and fibroplasia in the skin. J. Invest. Dermatol. 139, 1073–1081 (2019).

    CAS  PubMed  Google Scholar 

  280. Chioccioli, M. et al. A lung targeted miR-29 mimic as a therapy for pulmonary fibrosis. EBioMedicine 85, 104304 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Taubel, J. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 42, 178–188 (2021).

    CAS  PubMed  Google Scholar 

  282. Diepstraten, S. T. et al. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer 22, 45–64 (2022).

    CAS  PubMed  Google Scholar 

  283. Wierda, W. G. et al. Ibrutinib plus venetoclax for first-line treatment of chronic lymphocytic leukemia: primary analysis results from the minimal residual disease cohort of the randomized phase II CAPTIVATE study. J. Clin. Oncol. 39, 3853–3865 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Ghafouri-Fard, S. et al. A review on the role of mir-16-5p in the carcinogenesis. Cancer Cell Int. 22, 342 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. van Zandwijk, N. et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18, 1386–1396 (2017).

    PubMed  Google Scholar 

  286. Ma, F., Sun, P., Zhang, X., Hamblin, M. H. & Yin, K. J. Endothelium-targeted deletion of the miR-15a/16-1 cluster ameliorates blood–brain barrier dysfunction in ischemic stroke. Sci. Signal. 13, eaay5686 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Sun, P. et al. Endothelium-targeted deletion of microRNA-15a/16-1 promotes poststroke angiogenesis and improves long-term neurological recovery. Circ. Res. 126, 1040–1057 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Beck, C. et al. Trimannose-coupled antimiR-21 for macrophage-targeted inhalation treatment of acute inflammatory lung damage. Nat. Commun. 14, 4564 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  289. Monroig, P. D. C., Chen, L., Zhang, S. & Calin, G. A. Small molecule compounds targeting miRNAs for cancer therapy. Adv. Drug. Deliv. Rev. 81, 104–116 (2015).

    CAS  PubMed  Google Scholar 

  290. Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug. Discov. 21, 736–762 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Shao, Y. & Zhang, Q. C. Targeting RNA structures in diseases with small molecules. Essays Biochem. 64, 955–966 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Monroig-Bosque, P. D. C. et al. oncomiR-10b hijacks the small molecule inhibitor linifanib in human cancers. Sci. Rep. 8, 13106 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  293. Abulwerdi, F. A. et al. Selective small-molecule targeting of a triple helix encoded by the long noncoding RNA, MALAT1. ACS Chem. Biol. 14, 223–235 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Yang, H. & Rao, Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol. 19, 685–700 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Prinz, F. et al. microRNA mimics can distort physiological microRNA effects on immune checkpoints by triggering an antiviral interferon response. RNA Biol. 19, 1305–1315 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Hong, D. S. et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 122, 1630–1637 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Tolcher, A. W. et al. A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 73, 363–371 (2014).

    CAS  PubMed  Google Scholar 

  298. Beg, M. S. et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. N. Drugs 35, 180–188 (2017).

    CAS  Google Scholar 

  299. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    CAS  PubMed  Google Scholar 

  300. Postow, M. A., Callahan, M. K. & Wolchok, J. D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Lorenzi, L. et al. The RNA Atlas expands the catalog of human non-coding RNAs. Nat. Biotechnol. 39, 1453–1465 (2021). This work discusses an exhaustive atlas of ncRNAs in multiple human tissues and cell types.

    CAS  PubMed  Google Scholar 

  302. Hu, G., Lou, Z. & Gupta, M. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS ONE 9, e107016 (2014).

    PubMed  PubMed Central  ADS  Google Scholar 

  303. Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231–235 (2013).

    CAS  PubMed  ADS  Google Scholar 

  304. Zhu, L. et al. PTB-AS, a novel natural antisense transcript, promotes glioma progression by improving PTBP1 mRNA stability with SND1. Mol. Ther. 27, 1621–1637 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  305. Wilusz, J. E. Circle the wagons: circular RNAs control innate immunity. Cell 177, 797–799 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Maranini, B. et al. microRNAs and inflammatory immune response in SARS-CoV-2 infection: a narrative review. Life 12, 288 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  307. Kundu, M. & Basu, J. The role of microRNAs and long non-coding RNAs in the regulation of the immune response to Mycobacterium tuberculosis infection. Front. Immunol. 12, 687962 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Alwani, A., Andreasik, A., Szatanek, R., Siedlar, M. & Baj-Krzyworzeka, M. The role of miRNA in regulating the fate of monocytes in health and cancer. Biomolecules 12, 100 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  309. Huffaker, T. B. et al. Antitumor immunity is defective in T cell-specific microRNA-155-deficient mice and is rescued by immune checkpoint blockade. J. Biol. Chem. 292, 18530–18541 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  310. Ji, Y. et al. miR-155 augments CD8+ T-cell antitumor activity in lymphoreplete hosts by enhancing responsiveness to homeostatic γc cytokines. Proc. Natl Acad. Sci. USA 112, 476–481 (2015).

    CAS  PubMed  ADS  Google Scholar 

  311. Gracias, D. T. et al. The microRNA miR-155 controls CD8+ T cell responses by regulating interferon signaling. Nat. Immunol. 14, 593–602 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  312. O’Connell, R. M. et al. microRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607–619 (2010).

    PubMed  PubMed Central  Google Scholar 

  313. Okoye, I. S. et al. Transcriptomics identified a critical role for TH2 cell-intrinsic miR-155 in mediating allergy and antihelminth immunity. Proc. Natl Acad. Sci. USA 111, E3081–E3090 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  314. Lu, L. F. et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30, 80–91 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Martinez-Nunez, R. T., Louafi, F. & Sanchez-Elsner, T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor α1 (IL13Rα1). J. Biol. Chem. 286, 1786–1794 (2011).

    CAS  PubMed  Google Scholar 

  316. Cai, X. et al. Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155. J. Mol. Cell Biol. 4, 341–343 (2012).

    CAS  PubMed  Google Scholar 

  317. Challagundla, K. B. et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J. Natl Cancer Inst. 107, djv135 (2015).

    PubMed  PubMed Central  Google Scholar 

  318. Cheng, C. J. et al. microRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518, 107–110 (2015).

    CAS  PubMed  ADS  Google Scholar 

  319. Van Roosbroeck, K. et al. Combining anti-miR-155 with chemotherapy for the treatment of lung cancers. Clin. Cancer Res. 23, 2891–2904 (2017).

    PubMed  Google Scholar 

  320. Xu, W. D., Feng, S. Y. & Huang, A. F. Role of miR-155 in inflammatory autoimmune diseases: a comprehensive review. Inflamm. Res. 71, 1501–1517 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors dedicate this Review to Deborah Silverman and to Angelo Veronese for their passion for science and love for life, who will both be sorely missed! G.A.C. is a Felix L. Haas Endowed Professor in Basic Science. Work in G.A.C.’s laboratory is supported by National Cancer Institute (NCI) grants 1R01 CA182905-01 and 1R01CA222007-01A1, National Institute of General Medical Sciences (NIGMS) grant 1R01GM122775-01, DoD Idea Award W81XWH-21-1-0030, a Team DOD grant in Gastric Cancer W81XWH-21-1-0715, a Chronic Lymphocytic Leukaemia Moonshot Flagship project, a CLL Global Research Foundation 2019 grant, a CLL Global Research Foundation 2020 grant, a CLL Global Research Foundation 2022 grant, The G. Harold & Leila Y. Mathers Foundation, two grants from Torrey Coast Foundation and an Institutional Research Grant and Development Grant associated with Brain SPORE 2P50CA127001. The M.F. laboratory is supported by the Italian Association for Research on Cancer (AIRC) under the IG 2021-ID.25789 project.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Manuela Ferracin or George A. Calin.

Ethics declarations

Competing interests

G.A.C. is one of the scientific founders of Ithax Pharmaceuticals. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Howard Chang, who co-reviewed with Hyerim Yi; and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

FuncPEP: https://bioinformatics.mdanderson.org/Supplements/FuncPEP/database.html

GENCODE: https://www.gencodegenes.org/

LncRNADisease: http://www.rnanut.net/lncrnadisease

miRBase: https://www.mirbase.org/

NIH Early Detection Research Network: https://edrn.nci.nih.gov

NONCODE: http://www.noncode.org

SPENCER: http://spencer.renlab.org

The Human MicroRNA Disease Database: http://www.cuilab.cn/hmdd

Supplementary information

Glossary

Argonaute protein

(Ago protein). Interactor partner protein of small non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and small interfering RNAs (siRNAs). Ago proteins facilitate small ncRNA target binding and thereby their effector mechanisms. It was recently uncovered that miRNAs can interact with other, non-Ago proteins as well.

Ribosomal profiling

A deep sequencing-based method that reveals ribosome-associated mRNAs, thereby predicting regions subjected to translation.

Short open reading frames

(sORFs; also known as small ORFs). Putative protein-coding sites that are 100 nucleotides long, which were previously overlooked as non-relevant regions.

Small-molecule inhibitors

Compounds smaller than 500 Da developed to target any portion of a target molecule and cause its inhibition.

Small regulatory peptides

(sPEPs; also called micropeptides). Polypeptides that are encoded by short open reading frames (sORFs) and consist of fewer than 100–150 amino acids, sometimes translated from non-coding RNAs (ncRNAs).

Sponges

RNA molecules such as circular RNAs (circRNAs) that can bind and sequester RNAs or proteins and thereby inhibit their effects.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemeth, K., Bayraktar, R., Ferracin, M. et al. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 25, 211–232 (2024). https://doi.org/10.1038/s41576-023-00662-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00662-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing