[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunotherapy in colorectal cancer: rationale, challenges and potential

Abstract

Following initial successes in melanoma treatment, immunotherapy has rapidly become established as a major treatment modality for multiple types of solid cancers, including a subset of colorectal cancers (CRCs). Two programmed cell death 1 (PD1)-blocking antibodies, pembrolizumab and nivolumab, have shown efficacy in patients with metastatic CRC that is mismatch-repair-deficient and microsatellite instability-high (dMMR–MSI-H), and have been granted accelerated FDA approval. In contrast to most other treatments for metastatic cancer, immunotherapy achieves long-term durable remission in a subset of patients, highlighting the tremendous promise of immunotherapy in treating dMMR–MSI-H metastatic CRC. Here, we review the clinical development of immune checkpoint inhibition in CRC leading to regulatory approvals for the treatment of dMMR–MSI-H CRC. We focus on new advances in expanding the efficacy of immunotherapy to early-stage CRC and CRC that is mismatch-repair-proficient and has low microsatellite instability (pMMR–MSI-L) and discuss emerging approaches for targeting the immune microenvironment, which might complement immune checkpoint inhibition.

Key points

  • Colorectal cancer (CRC) can be categorized into tumours that are mismatch-repair-deficient or have high levels of microsatellite instability (dMMR–MSI-H; ~15%) and mismatch-repair-proficient or microsatellite instability-low tumours (pMMR–MSI-L; ~85%).

  • dMMR–MSI-H CRC is associated with a high tumour mutation burden and immune cell infiltration.

  • Immune checkpoint inhibitor (ICI) treatment, specifically with monoclonal antibodies targeting programmed cell death 1 (PD1) and cytotoxic T lymphocyte antigen 4 (CTLA4), results in improved survival in metastatic dMMR–MSI-H CRC, but pMMR–MSI-L CRC is largely unresponsive to current ICIs.

  • The FDA has granted accelerated approval to the anti-PD1 antibodies pembrolizumab and nivolumab and to the combination of nivolumab with the anti-CTLA4 antibody ipilimumab for treatment of refractory dMMR–MSI-H CRC.

  • Clinical evaluation of ICIs in first-line metastatic, adjuvant and neoadjuvant settings and in combination with other therapies and research into improved prognostic and predictive biomarkers of ICI response and improved activity in pMMR–MSI-L CRC are ongoing.

  • Beyond PD1 blockade, monospecific and bispecific antibodies, cellular therapies, vaccines and cytokines targeting other immune checkpoint molecules, macrophages and other components of innate immunity are under active investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targets of currently FDA-approved immune checkpoint inhibitors.
Fig. 2: The tumour microenvironment of dMMR–MSI-H and pMMR–MSI-L CRC.
Fig. 3: Targets of select immunomodulatory drugs in clinical trials for metastatic CRC.

Similar content being viewed by others

References

  1. Garborg, K. et al. Current status of screening for colorectal cancer. Ann. Oncol. 24, 1963–1972 (2013).

    CAS  PubMed  Google Scholar 

  2. Siegel, R., Desantis, C. & Jemal, A. Colorectal cancer statistics, 2014. CA Cancer J. Clin. 64, 104–117 (2014).

    PubMed  Google Scholar 

  3. Edwards, B. K. et al. Annual report to the nation on the status of cancer, 1975–2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 116, 544–573 (2010).

    PubMed  Google Scholar 

  4. Sargent, D. et al. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J. Clin. Oncol. 27, 872–877 (2009).

    PubMed  PubMed Central  Google Scholar 

  5. Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol. 30, 44–56 (2019).

    CAS  PubMed  Google Scholar 

  7. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    CAS  PubMed  Google Scholar 

  8. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pages, F. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353, 2654–2666 (2005).

    CAS  PubMed  Google Scholar 

  10. Galon, J., Fridman, W. H. & Pages, F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 67, 1883–1886 (2007).

    CAS  PubMed  Google Scholar 

  11. Khalil, D. N., Smith, E. L., Brentjens, R. J. & Wolchok, J. D. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13, 273–290 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  13. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    CAS  PubMed  Google Scholar 

  14. Townsend, S. E. & Allison, J. P. Tumor rejection after direct costimulation of CD8+T cells by B7-transfected melanoma cells. Science 259, 368–370 (1993).

    CAS  PubMed  Google Scholar 

  15. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    PubMed  Google Scholar 

  16. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    CAS  PubMed  Google Scholar 

  18. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    CAS  PubMed  Google Scholar 

  19. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    CAS  PubMed  Google Scholar 

  20. Schadendorf, D. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889–1894 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    PubMed  Google Scholar 

  23. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    CAS  PubMed  Google Scholar 

  28. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Google Scholar 

  29. Salipante, S. J., Scroggins, S. M., Hampel, H. L., Turner, E. H. & Pritchard, C. C. Microsatellite instability detection by next generation sequencing. Clin. Chem. 60, 1192–1199 (2014).

    CAS  PubMed  Google Scholar 

  30. Niu, B. et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics 30, 1015–1016 (2014).

    CAS  PubMed  Google Scholar 

  31. Middha, S. et al. Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data. JCO Precis. Oncol. 1, 1–17 (2017).

    Google Scholar 

  32. Hause, R. J., Pritchard, C. C., Shendure, J. & Salipante, S. J. Classification and characterization of microsatellite instability across 18 cancer types. Nat. Med. 22, 1342–1350 (2016).

    CAS  PubMed  Google Scholar 

  33. Giardiello, F. M. et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology 147, 502–526 (2014).

    PubMed  Google Scholar 

  34. Alexander, J. et al. Histopathological identification of colon cancer with microsatellite instability. Am. J. Pathol. 158, 527–535 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dolcetti, R. et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am. J. Pathol. 154, 1805–1813 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Smyrk, T. C., Watson, P., Kaul, K. & Lynch, H. T. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 91, 2417–2422 (2001).

    CAS  PubMed  Google Scholar 

  37. Young, J. et al. Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis. Am. J. Pathol. 159, 2107–2116 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Llosa, N. J. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5, 43–51 (2015).

    CAS  PubMed  Google Scholar 

  40. Graham, D. M. & Appelman, H. D. Crohn’s-like lymphoid reaction and colorectal carcinoma: a potential histologic prognosticator. Mod. Pathol. 3, 332–335 (1990).

    CAS  PubMed  Google Scholar 

  41. Jass, J. R. et al. Morphology of sporadic colorectal cancer with DNA replication errors. Gut 42, 673–679 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nagorsen, D. et al. Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T cell response against tumor-associated antigens and survival. J. Transl Med. 5, 62 (2007).

    PubMed  PubMed Central  Google Scholar 

  43. Boland, C. R. et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58, 5248–5257 (1998).

    CAS  PubMed  Google Scholar 

  44. Popat, S., Hubner, R. & Houlston, R. S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 23, 609–618 (2005).

    CAS  PubMed  Google Scholar 

  45. Venderbosch, S. et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res. 20, 5322–5330 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chung, K. Y. et al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J. Clin. Oncol. 28, 3485–3490 (2010).

    CAS  PubMed  Google Scholar 

  47. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lipson, E. J. et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin. Cancer Res. 19, 462–468 (2013).

    CAS  PubMed  Google Scholar 

  51. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Le, D. T. et al. Programmed death-1 blockade in mismatch repair deficient colorectal cancer. J. Clin. Oncol. 34, 103 (2016).

    Google Scholar 

  53. Overman, M. J. et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 18, 1182–1191 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Overman, M. J. et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol. 36, 773–779 (2018).

    CAS  PubMed  Google Scholar 

  55. Andre, T. L. et al. Nivolumab+ipilimumab combination in patients with DNA mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer (mCRC): first report of the full cohort from CheckMate-142. J. Clin. Oncol. 36 (Suppl.), 553 (2018).

    Google Scholar 

  56. Lenz, H.-J. J. et al. Durable clinical benefit with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line therapy in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC). Ann. Oncol. 29 (Suppl.), LBA18_PR (2018).

    Google Scholar 

  57. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02997228 (2019).

  58. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02563002 (2018).

  59. Liu, L. et al. The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin. Cancer Res. 21, 1639–1651 (2015).

    CAS  PubMed  Google Scholar 

  60. Ebert, P. J. R. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44, 609–621 (2016).

    CAS  PubMed  Google Scholar 

  61. Bendell, J. C. et al. Clinical activity and safety of cobimetinib (cobi) and atezolizumab in colorectal cancer (CRC). J. Clin. Oncol. 34 (Suppl.), 3502 (2016).

    Google Scholar 

  62. Bendell, J. C. B. et al. A phase 1b study of safety and clinical activity of atezolizumab (A) and cobimetinib (C) in patients (pts) with metastatic colorectal cancer (mCRC). J. Clin. Oncol. 36, 560 (2018).

    Google Scholar 

  63. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02788279 (2019).

  64. Bendell, J. et al. Efficacy and safety results from IMblaze370, a randomised Phase III study comparing atezolizumab+cobimetinib and atezolizumab monotherapy versus regorafenib in chemotherapy-refractory metastatic colorectal cancer. Ann. Oncol. 29, LBA–004 (2018).

    Google Scholar 

  65. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02060188 (2018).

  66. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02876224 (2019).

  67. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02324257 (2019).

  68. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02650713 (2019).

  69. Segal, N. H. S. et al. Phase-I studies of the novel carcinoembryonic antigen T cell bispecific (CEA-CD3 TCB) antibody as a single agent and in combination with atezolizumab. Ann. Oncol. 28 (Suppl. 5), 122–141 (2017).

    Google Scholar 

  70. Pfirschke, C. et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 44, 343–354 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hodi, F. S. et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol. Res. 2, 632–642 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hochster, H. S. B. et al. Efficacy and safety of atezolizumab (atezo) and bevacizumab (bev) in a phase Ib study of microsatellite instability (MSI)-high metastatic colorectal cancer (mCRC). J. Clin. Oncol. 35 (Suppl.), 673 (2017).

    Google Scholar 

  73. Bendell, J. C. et al. Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC). J. Clin. Oncol. 33, 704 (2015).

    Google Scholar 

  74. Wallin, J. et al. Clinical activity and immune correlates from a phase Ib study evaluating atezolizumab (anti-PDL1) in combination with FOLFOX and bevacizumab (anti-VEGF) in metastatic colorectal carcinoma. Cancer Res. 76, 2651 (2016).

    Google Scholar 

  75. Park, S. S. et al. PD-1 restrains radiotherapy-induced abscopal effect. Cancer Immunol. Res. 3, 610–619 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    CAS  PubMed  Google Scholar 

  77. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03122509 (2018).

  78. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, B. et al. Landscape of tumor-infiltrating T cell repertoire of human cancers. Nat. Genet. 48, 725–732 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Anagnostou, V. et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7, 264–276 (2017).

    CAS  PubMed  Google Scholar 

  86. Mlecnik, B. et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).

    CAS  PubMed  Google Scholar 

  87. Pages, F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).

    PubMed  Google Scholar 

  88. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yaeger, R. et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell 33, 125–136 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Palles, C. et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 45, 136–144 (2013).

    CAS  PubMed  Google Scholar 

  91. Elsayed, F. A. et al. Germline variants in POLE are associated with early onset mismatch repair deficient colorectal cancer. Eur. J. Hum. Genet. 23, 1080–1084 (2015).

    CAS  PubMed  Google Scholar 

  92. Jansen, A. M. et al. Combined mismatch repair and POLE/POLD1 defects explain unresolved suspected Lynch syndrome cancers. Eur. J. Hum. Genet. 24, 1089–1092 (2016).

    CAS  PubMed  Google Scholar 

  93. Domingo, E. et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol. Hepatol. 1, 207–216 (2016).

    PubMed  Google Scholar 

  94. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02912572 (2018).

  95. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02899793 (2018).

  96. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02658279 (2019).

  97. Hersom, M. & Jorgensen, J. T. Companion and complementary diagnostics-focus on PD-L1 expression assays for PD-1/PD-L1 checkpoint inhibitors in NSCLC. Ther. Drug Monit. 40, 9–16 (2017).

    Google Scholar 

  98. André, T. et al. Analysis of tumor PD-L1 expression and biomarkers in relation to clinical activity in patients (pts) with deficient DNA mismatch repair (dMMR)/high microsatellite instability (MSI-H) metastatic colorectal cancer (mCRC) treated with nivolumab (NIVO) + ipilimumab (IPI): CheckMate 142. Ann. Oncol. 28, 484PD (2017).

    Google Scholar 

  99. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Koelzer, V. H., Baker, K., Kassahn, D., Baumhoer, D. & Zlobec, I. Prognostic impact of beta-2-microglobulin expression in colorectal cancers stratified by mismatch repair status. J. Clin. Pathol. 65, 996–1002 (2012).

    PubMed  Google Scholar 

  101. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    CAS  PubMed  Google Scholar 

  102. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).

    CAS  PubMed  Google Scholar 

  103. Chifman, J., Pullikuth, A., Chou, J. W., Bedognetti, D. & Miller, L. D. Conservation of immune gene signatures in solid tumors and prognostic implications. BMC Cancer 16, 911 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Sinicrope, F. A. O. et al. Randomized trial of FOLFOX alone or combined with atezolizumab as adjuvant therapy for patients with stage III colon cancer and deficient DNA mismatch repair or microsatellite instability (ATOMIC, Alliance A021502). J. Clin. Oncol. 35, TPS3630 (2017).

    Google Scholar 

  105. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02912559 (2019).

  106. Grootscholten, C. et al. Neoadjuvant ipilimumab plus nivolumab in early stage colon cancer. Ann. Oncol. 29, LBA37_PR (2018).

    Google Scholar 

  107. Watson, P. et al. The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int. J. Cancer 123, 444–449 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Syngal, S. et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am. J. Gastroenterol. 110, 223–262; quiz 263 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Schwitalle, Y. et al. Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology 134, 988–997 (2008).

    CAS  PubMed  Google Scholar 

  110. Kloor, M. & von Knebel Doeberitz, M. The immune biology of microsatellite-unstable cancer. Trends Cancer 2, 121–133 (2016).

    PubMed  Google Scholar 

  111. Reuschenbach, M. et al. Serum antibodies against frameshift peptides in microsatellite unstable colorectal cancer patients with Lynch syndrome. Fam. Cancer 9, 173–179 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Doeberitz, M. v. K. et al. Frameshift peptide neoantigens as vaccine targets in microsatellite-unstable cancers. Cancer Immunol. Res. 4, A006 (2016).

    Google Scholar 

  113. Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    CAS  PubMed  Google Scholar 

  114. Grosso, J. F. et al. LAG-3 regulates CD8+T cell accumulation and effector function in murine self- and tumor-tolerance systems. J. Clin. Invest. 117, 3383–3392 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ngiow, S. F. et al. Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. Cancer Res. 71, 3540–3551 (2011).

    CAS  PubMed  Google Scholar 

  116. Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187–2194 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ward-Kavanagh, L. K., Lin, W. W., Sedy, J. R. & Ware, C. F. The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity 44, 1005–1019 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Croft, M., Benedict, C. A. & Ware, C. F. Clinical targeting of the TNF and TNFR superfamilies. Nat. Rev. Drug Discov. 12, 147–168 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Brenner, D., Blaser, H. & Mak, T. W. Regulation of tumour necrosis factor signalling: live or let die. Nat. Rev. Immunol. 15, 362–374 (2015).

    CAS  PubMed  Google Scholar 

  121. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Miliotou, A. N. & Papadopoulou, L. C. CAR T cell therapy: a new era in cancer immunotherapy. Curr. Pharm. Biotechnol. 19, 5–18 (2018).

    PubMed  Google Scholar 

  123. Yeku, O. O. & Brentjens, R. J. Armored CAR T cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T cell anti-tumour efficacy. Biochem. Soc. Trans. 44, 412–418 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Shum, T., Kruse, R. L. & Rooney, C. M. Strategies for enhancing adoptive T cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities. Expert Opin. Biol. Ther. 18, 653–664 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19, 620–626 (2011).

    CAS  PubMed  Google Scholar 

  126. Katz, S. C. et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T cell therapy for CEA+liver metastases. Clin. Cancer Res. 21, 3149–3159 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, C. et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA(+) metastatic colorectal cancers. Mol. Ther. 25, 1248–1258 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Tran, E. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B cell lymphoma and indolent B cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33, 540–549 (2015).

    CAS  PubMed  Google Scholar 

  131. Johnson, L. A. & June, C. H. Driving gene-engineered T cell immunotherapy of cancer. Cell Res. 27, 38–58 (2017).

    CAS  PubMed  Google Scholar 

  132. Newick, K., O’Brien, S., Moon, E. & Albelda, S. M. CAR T cell therapy for solid tumors. Annu. Rev. Med. 68, 139–152 (2017).

    CAS  PubMed  Google Scholar 

  133. Hoover, H. C. Jr. et al. Adjuvant active specific immunotherapy for human colorectal cancer: 6.5-year median follow-up of a phase III prospectively randomized trial. J. Clin. Oncol. 11, 390–399 (1993).

    PubMed  Google Scholar 

  134. Harris, J. E. et al. Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: Eastern Cooperative Oncology Group Study E5283. J. Clin. Oncol. 18, 148–157 (2000).

    CAS  PubMed  Google Scholar 

  135. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lin, H. et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320, 807–811 (2008).

    CAS  PubMed  Google Scholar 

  137. Otero, K. et al. Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and beta-catenin. Nat. Immunol. 10, 734–743 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ngambenjawong, C., Gustafson, H. H. & Pun, S. H. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Deliv. Rev. 114, 206–221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02777710 (2019).

  140. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71–78 (2004).

    CAS  PubMed  Google Scholar 

  141. Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Arlauckas, S. P. et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl Med. 9, eaal3604 (2017).

    PubMed  PubMed Central  Google Scholar 

  143. Ablasser, A. et al. cGAS produces a 2′;-5′;-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02675439 (2018).

  147. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03010176 (2019).

  148. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03172936 (2018).

  149. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    CAS  PubMed  Google Scholar 

  150. Freeman-Keller, M. et al. Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. Clin. Cancer Res. 22, 886–894 (2016).

    CAS  PubMed  Google Scholar 

  151. Lo, J. A., Fisher, D. E. & Flaherty, K. T. Prognostic significance of cutaneous adverse events associated with pembrolizumab therapy. JAMA Oncol. 1, 1340–1341 (2015).

    PubMed  PubMed Central  Google Scholar 

  152. Boland, P. M. & Ma, W. W. Immunotherapy for colorectal cancer. Cancers 9, 50 (2017).

    PubMed Central  Google Scholar 

Download references

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks T. André, J. Lee and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

K.G., Z.K.S., A.C., R.B.M. and N.H.S. researched data for the article. K.G., Z.K.S., A.C., J.S., N.H.S. and L.A.D. made substantial contributions to discussion of the article content. K.G., Z.K.S., A.C., R.B.M., J.S. and N.H.S. wrote the manuscript. K.G., Z.K.S., N.H.S. and L.A.D. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Karuna Ganesh.

Ethics declarations

Competing interests

R.B.M. is a speaker for Vindico and Medscape and a consultant for Roche. N.H.S. receives research funding from Roche/Genentech, Merck, Bristol-Myers Squibb, MedImmune/AstraZeneca and Incyte and is on the advisory board of Roche/Genentech, Merck, Bristol-Myers Squibb, MedImmune/AstraZeneca, Boehringer Ingelheim and Pfizer. L.A.D. is a founder and shareholder of PapGene and Personal Genome Diagnostics (PGDx) and a consultant for Merck, PGDx and Phoremost. PapGene and PGDx, as well as other companies, have licensed technologies from Johns Hopkins University on which L.A.D. is an inventor. These licences and relationships are associated with equity or royalty payments to L.A.D. L.A.D. is also a member of the board of directors of PGDx and Jounce Therapeutics. The terms of these arrangements are being managed by Johns Hopkins and Memorial Sloan Kettering in accordance with their conflict of interest policies. K.G., Z.K.S., A.C. and J.S. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov database: https://clinicaltrials.gov/ct2/home

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, K., Stadler, Z.K., Cercek, A. et al. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol 16, 361–375 (2019). https://doi.org/10.1038/s41575-019-0126-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0126-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer