[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization

Abstract

Clarifying how increased atmospheric CO2 concentration (eCO2) contributes to accelerated land carbon sequestration remains important since this process is the largest negative feedback in the coupled carbon–climate system. Here, we constrain the sensitivity of the terrestrial carbon sink to eCO2 over the temperate Northern Hemisphere for the past five decades, using 12 terrestrial ecosystem models and data from seven CO2 enrichment experiments. This constraint uses the heuristic finding that the northern temperate carbon sink sensitivity to eCO2 is linearly related to the site-scale sensitivity across the models. The emerging data-constrained eCO2 sensitivity is 0.64 ± 0.28 PgC yr−1 per hundred ppm of eCO2. Extrapolating worldwide, this northern temperate sensitivity projects the global terrestrial carbon sink to increase by 3.5 ± 1.9 PgC yr−1 for an increase in CO2 of 100 ppm. This value suggests that CO2 fertilization alone explains most of the observed increase in global land carbon sink since the 1960s. More CO2 enrichment experiments, particularly in boreal, arctic and tropical ecosystems, are required to explain further the responsible processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of eCO2 on the change in the global residual terrestrial sink during the past five decades.
Fig. 2: Emergent constraints on the sensitivity of the Northern Hemisphere temperate terrestrial carbon sink to eCO2.

Similar content being viewed by others

Data availability

Driver data of MsTMIP models are available from https://doi.org/10.3334/ORNLDAAC/1220. The outputs of MsTMIP models are available from https://doi.org/10.3334/ORNLDAAC/1225. Global Carbon Budget 2017 data (Global_Carbon_Budget_2017v1.3.xlsx) are available from https://doi.org/10.18160/GCP-2017. CRU climatology data (CRU CL v. 2.0) are available from https://crudata.uea.ac.uk/cru/data/hrg/.

Code availability

The code for fitting the two-box model, as given in equation (3), is shown in Supplementary Information.

References

  1. Field, C. B. & Raupach, M. R. The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World (Island Press, 2004).

  2. Le Quéré, C. et al. Global Carbon Budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).

    Article  Google Scholar 

  3. Friedlingstein, P. et al. On the contribution of CO2 fertilization to the missing biospheric sink. Glob. Biogeochem. Cycles 9, 541–556 (1995).

    Article  Google Scholar 

  4. Shevliakova, E. et al. Historical warming reduced due to enhanced land carbon uptake. Proc. Natl. Acad. Sci. USA 110, 16730–16735 (2013).

    Article  Google Scholar 

  5. Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 112, 436–441 (2015).

    Article  Google Scholar 

  6. Huntzinger, D. N. et al. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon–climate feedback predictions. Sci. Rep. 7, 4765 (2017).

    Article  Google Scholar 

  7. Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

    Article  Google Scholar 

  8. Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Article  Google Scholar 

  9. Ilyina, T. & Friedlingstein, P. WCRP Grand Challenge: Carbon feedbacks in the climate system. White paper (37th Session of the WCRP Joint Scientific Committee, 2016); https://www.wcrp-climate.org/component/content/article/872-carbon-feedbacks-overview?catid=139&Itemid=539

  10. Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).

    Article  Google Scholar 

  11. Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate free-air CO2 enrichment studies. New Phytol. 202, 803–822 (2014).

    Article  Google Scholar 

  12. Jastrow, J. D. et al. Elevated atmospheric carbon dioxide increases soil carbon. Glob. Change Biol. 11, 2057–2064 (2005).

    Article  Google Scholar 

  13. De Graaff, M. A., van Groenigen, K. J., Six, J., Hungate, B. & van Kessel, C. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob. Change Biol. 12, 2077–2091 (2006).

    Article  Google Scholar 

  14. Hickler, T. et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob. Change Biol. 14, 1531–1542 (2008).

    Article  Google Scholar 

  15. Finzi, A. C. et al. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc. Natl. Acad. Sci. USA 104, 14014–14019 (2007).

    Article  Google Scholar 

  16. Drake, J. E. et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol. Lett. 14, 349–357 (2011).

    Article  Google Scholar 

  17. Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

    Article  Google Scholar 

  18. Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

    Article  Google Scholar 

  19. Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).

    Article  Google Scholar 

  20. Mystakidis, S., Davin, E. L., Gruber, N. & Seneviratne, S. I. Constraining future terrestrial carbon cycle projections using observation-based water and carbon flux estimates. Glob. Change Biol. 22, 2198–2215 (2016).

    Article  Google Scholar 

  21. Zhao, C. et al. Plausible rice yield losses under future climate warming. Nat. Plants 3, 16202 (2016).

    Article  Google Scholar 

  22. Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    Article  Google Scholar 

  23. Huntzinger, D. N. et al. The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project - Part 1: overview and experimental design. Geosci. Model Dev. 6, 2121–2133 (2013).

    Article  Google Scholar 

  24. Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl. Acad. Sci. USA 107, 19368–19373 (2010).

    Article  Google Scholar 

  25. De Kauwe, M. G. et al. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol. 203, 883–899 (2014).

    Article  Google Scholar 

  26. Franks, P. J. et al. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol. 197, 1077–1094 (2013).

    Article  Google Scholar 

  27. Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).

    Article  Google Scholar 

  28. Bacastow, R. & Keeling, C. D. in Carbon and the Biosphere (eds Woodwell, G. M. & Pecan, E. V.) 86–135 (US Dep. of Comm., 1973).

  29. Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).

    Article  Google Scholar 

  30. McCarthy, H. R. et al. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol. 185, 514–528 (2010).

    Article  Google Scholar 

  31. Reich, P. B. & Hobbie, S. E. Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nat. Clim. Change 3, 278–282 (2013).

    Article  Google Scholar 

  32. Norby, R. J. et al. Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol. 209, 17–28 (2016).

    Article  Google Scholar 

  33. Drake, J. E. et al. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration. Glob. Change Biol. 22, 380–390 (2016).

    Article  Google Scholar 

  34. Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Change 5, 528–534 (2015).

    Article  Google Scholar 

  35. Huntzinger, D. N. et al. NACP MsTMIP: Global 0.5-deg Terrestrial Biosphere Model Outputs in Standard Format. v.1.0 (ORNL DAAC, 2016); https://doi.org/10.3334/ORNLDAAC/1225

  36. Wei, Y. et al. NACP MsTMIP: Global and North American Driver Data for Multi-model Intercomparison (ORNL DAAC, 2014); https://doi.org/10.3334/ORNLDAAC/1220

  37. Supplemental data of Global Carbon Budget 2017 v.1.0 (Global Carbon Project, 2017); https://doi.org/10.18160/gcp-2017

  38. Jung, M., Henkel, K., Herold, M. & Churkina, G. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens. Environ. 101, 534–553 (2006).

    Article  Google Scholar 

  39. Wei, Y. et al. The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project: part 2: environmental driver data. Geosci. Model Dev. 7, 2875–2893 (2014).

    Article  Google Scholar 

  40. Farquhar, G. D., Caemmerer, S. V. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    Article  Google Scholar 

  41. Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7, e38345 (2012).

    Article  Google Scholar 

  42. Togashi, H. F. et al. Thermal acclimation of leaf photosynthetic traits in an evergreen woodland, consistent with the coordination hypothesis. Biogeosciences 15, 3461–3474 (2018).

    Article  Google Scholar 

  43. Mark, N., David, L., Mike, H. & Ian, M. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

    Article  Google Scholar 

  44. Ito, A. et al. Decadal trends in the seasonal-cycle amplitude of terrestrial CO2 exchange resulting from the ensemble of terrestrial biosphere models. Tellus B Chem. Phys. Meteor. 68, 28968 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (Grant XDA20050101), the National Key R&D Program of China (2017YFA0604702), and the National Natural Science Foundation of China (41861134036, 41701089). The full list of acknowledgements is provided in the Supplementary Information.

Author information

Authors and Affiliations

Authors

Contributions

S.P., Y.L., T.G. and P.C. designed the study. Y.L. performed the analysis. Y.L. and S.P. drafted the paper. All authors contributed to the interpretation of the results and to the text.

Corresponding author

Correspondence to Shilong Piao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Description, Supplementary Figs. 1–25 and Tables 1–4, Supplementary References and full list of acknowledgements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Piao, S., Gasser, T. et al. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nat. Geosci. 12, 809–814 (2019). https://doi.org/10.1038/s41561-019-0436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0436-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing