[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges in speeding up solid-state battery development

Abstract

Recent worldwide efforts to establish solid-state batteries as a potentially safe and stable high-energy and high-rate electrochemical storage technology still face issues with long-term performance, specific power and economic viability. Here, we review key challenges that still involve the need for fast-conducting solid electrolytes to provide sufficient transport in composite cathodes. In addition, we show that high-performance anodes together with protection concepts are paramount to establish dense high-energy solid-state batteries and that lithium-based solid-state batteries as well as metal anodes may not be the ultimate solution. We further discuss that diversity in terms of materials, research teams and approaches is key to establish long-term solid-state batteries. About ten years after the first ground-breaking publication of lithium solid electrolytes with an ionic conductivity higher than that of liquid electrolytes, it is time to realistically address the remaining key challenges for full-scale commercialization, cell performance and implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generalized lithium SSB cell concept.
Fig. 2: Tortuosity effects in solid-state cathode composites.
Fig. 3: Classification of SEs based on lithium content.
Fig. 4: Critical issues of the lithium metal anode.
Fig. 5: Known interface-related issues in SSBs and potential solutions.

Similar content being viewed by others

References

  1. Betz, J. et al. Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9, 1803170 (2019).

    Article  Google Scholar 

  2. Solid-State Battery Roadmap 2035+ (Fraunhofer ISI, 2022).

  3. Randau, S. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020). A first benchmarking study that suggests quantitative research targets for solid-state battery development.

    Article  Google Scholar 

  4. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  5. Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y.-M. & Chen, Z. Review—practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164, A1731–A1744 (2017).

    Article  Google Scholar 

  6. Pasta, M. et al. Energy 2020 roadmap on solid-state batteries. J. Phys. Energy 2, 32008 (2020).

    Article  Google Scholar 

  7. Koerver, R. et al. Chemo-mechanical expansion of lithium electrode materials—on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018).

    Article  Google Scholar 

  8. Ihrig, M. et al. Study of LiCoO2/Li7La3Zr2O12:Ta interface degradation in all-solid-state lithium batteries. ACS Appl. Mater. Int. 14, 11288–11299 (2022).

    Article  Google Scholar 

  9. Ren, Y. et al. Oxide-based solid-state batteries: a perspective on composite cathode architecture. Adv. Energy Mater. https://doi.org/10.1002/aenm.202201939 (2023).

  10. Krauskopf, T., Richter, F. H., Zeier, W. G. & Janek, J. Physico-chemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020). A review on the properties and challenges of the lithium-metal anode in solid-state batteries.

    Article  Google Scholar 

  11. Gao, X. et al. Solid-state lithium battery cathodes operating at low pressures. Joule 6, 636–646 (2022). A study highlighting the need and possibility to operate solid-state composites at low pressures.

    Article  Google Scholar 

  12. Ohno, S., Rosenbach, C., Dewald, G. F., Janek, J. & Zeier, W. G. Linking solid electrolyte degradation to charge carrier transport in the thiophosphate-based composite cathode toward solid-state lithium–sulfur batteries. Adv. Funct. Mater. 31, 2010620 (2021).

    Article  Google Scholar 

  13. Minnmann, P., Quillman, L., Burkhardt, S., Richter, F. H. & Janek, J. Quantifying the impact of charge transport bottlenecks in composite cathodes of all-solid-state batteries. J. Electrochem. Soc. 168, 040537 (2021). This work highlights the challenges of ionic and electronic charge transport in composite electrodes and provides guidelines to characterize these.

    Article  Google Scholar 

  14. Bielefeld, A., Weber, D. A. & Janek, J. Modeling effective ionic conductivity and binder influence in composite cathodes for all-solid-state batteries. ACS Appl. Mater. Interfaces 12, 12821–12833 (2020).

    Article  Google Scholar 

  15. Lee, Y. G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020). Seminal study showing that zero lithium-excess solid-state batteries are possible with high energy densities.

    Article  Google Scholar 

  16. Cronau, M., Duchardt, M., Szabo, M. & Roling, B. Ionic conductivity versus particle size of ball-milled sulfide-based solid electrolytes: strategy towards optimized composite cathode performance in all-solid-state batteries. Batter. Supercaps 5, e202200041 (2022).

    Article  Google Scholar 

  17. Bielefeld, A., Weber, D. A., Rueß, R., Glavas, V. & Janek, J. Influence of lithium ion kinetics, particle morphology and voids on the electrochemical performance of composite cathodes for all-solid-state batteries. J. Electrochem. Soc. 169, 20539 (2022).

    Article  Google Scholar 

  18. Minnmann, P. et al. Designing cathodes and cathode active materials for solid-state batteries. Adv. Energy Mater. 12, 2201425 (2022).

    Article  Google Scholar 

  19. Nguyen, T. T. et al. The electrode tortuosity factor: why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead. npj Comput. Mater. 6, 123 (2020).

    Article  Google Scholar 

  20. Imholt, L. et al. Supramolecular self-assembly of methylated rotaxanes for solid polymer electrolyte application. ACS Macro Lett. 7, 881–885 (2018).

    Article  Google Scholar 

  21. Dahbi, M., Ghamouss, F., Tran-Van, F., Lemordant, D. & Anouti, M. Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. J. Power Sources 196, 9743–9750 (2011).

    Article  Google Scholar 

  22. Kato, Y. et al. All-solid-state batteries with thick electrode configurations. J. Phys. Chem. Lett. 9, 607–613 (2018). First study to highlight the need for faster solid electrolytes with conductivities over 10 mS cm–1 when high electrode loading is desired.

    Article  Google Scholar 

  23. Froboese, L., Sichel, J. F., Van Der, L. T. & Helmers, L. Effect of microstructure on the ionic conductivity of an all solid-state battery electrode. J. Electrochem. Soc. 166, 318–328 (2019).

    Article  Google Scholar 

  24. Bielefeld, A., Weber, D. A. & Janek, J. Microstructural modeling of composite cathodes for all-solid-state batteries. J. Phys. Chem. C 123, 1626–1634 (2019).

    Article  Google Scholar 

  25. Kraft, M. A. et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1–xGexS5I for all-solid-state batteries. J. Am. Chem. Soc. 140, 16330–16339 (2018).

    Article  Google Scholar 

  26. Zhou, L., Assoud, A., Zhang, Q., Wu, X. & Nazar, L. F. New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 141, 19002–19013 (2019).

    Article  Google Scholar 

  27. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  Google Scholar 

  28. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  Google Scholar 

  29. Riegger, L. M., Schlem, R., Sann, J., Zeier, W. G. & Janek, J. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries. Angew. Chem. Int. Ed. 60, 6718–6723 (2021).

    Article  Google Scholar 

  30. Wang, C. et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Sci. Adv. 7, eabh1896 (2022).

    Article  Google Scholar 

  31. Nair, J. R., Imholt, L., Brunklaus, G. & Winter, M. Lithium metal polymer electrolyte batteries: opportunities and challenges. Electrochem. Soc. Interface 28, 55–61 (2019).

    Article  Google Scholar 

  32. Weiss, M. et al. Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11, 2101126 (2021).

    Article  Google Scholar 

  33. Lewis, J. A., Cavallaro, K. A., Liu, Y. & McDowell, M. T. The promise of alloy anodes for solid-state batteries. Joule 6, 1418–1430 (2022).

    Article  Google Scholar 

  34. Tan, D. H. S. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021). Seminal study showing the usage of Si metal anodes to be potentially competitive to Li metal.

    Article  Google Scholar 

  35. Krauskopf, T. et al. The fast charge transfer kinetics of the lithium metal anode on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. Adv. Energy Mater. 10, 2000945 (2020).

    Article  Google Scholar 

  36. Liu, X. et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20, 1485–1490 (2021).

    Article  Google Scholar 

  37. Krauskopf, T. et al. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes. Joule 3, 2030–2049 (2019).

    Article  Google Scholar 

  38. Ning, Z. et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121–1129 (2021).

    Article  Google Scholar 

  39. Wang, M. J., Choudhury, R. & Sakamoto, J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule 3, 2165–2178 (2019).

    Article  Google Scholar 

  40. Otto, S. K. et al. In situ investigation of lithium metal–solid electrolyte anode interfaces with ToF-SIMS. Adv. Mater. Interfaces 9, 2102387 (2022).

    Article  Google Scholar 

  41. Lewis, J. A. et al. Role of areal capacity in determining short circuiting of sulfide-based solid-state batteries. ACS Appl. Mater. Int. 14, 4051–4060 (2022). Careful work highlighting the intrinsic challenges of using critical current densities as a metric.

    Article  Google Scholar 

  42. Fuchs, T. et al. Increasing the pressure-free stripping capacity of the lithium metal anode in solid-state-batteries by carbon nanotubes. Adv. Energy Mater. 12, 2201125 (2022).

    Article  Google Scholar 

  43. Kravchyk, K. V., Zhang, H., Okur, F. & Kovalenko, M. V. Li–garnet solid-state batteries with LLZO scaffolds. Acc. Mater. Res 3, 411–415 (2022).

    Article  Google Scholar 

  44. Bloi, L. M. et al. Mechanistic insights into the reversible lithium storage in an open porous carbon via metal cluster formation in all solid-state batteries. Carbon 188, 325–335 (2022).

    Article  Google Scholar 

  45. Schwietert, T. K. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020).

    Article  Google Scholar 

  46. Auvergniot, J. et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017).

    Article  Google Scholar 

  47. Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).

    Article  Google Scholar 

  48. Dewald, G. F. et al. Experimental assessment of the practical oxidative stability of lithium thiophosphate solid electrolytes. Chem. Mater. 31, 8328–8337 (2019).

    Article  Google Scholar 

  49. Culver, S. P., Koerver, R., Zeier, W. G. & Janek, J. On the functionality of coatings for cathode active materials in thiophosphate-based solid-state batteries. Adv. Energy Mater. 9, 1900626 (2019).

    Article  Google Scholar 

  50. Sun, N. et al. Surface-to-bulk synergistic modification of single crystal cathode enables stable cycling of sulfide-based all-solid-state batteries at 4.4 V. Adv. Energy Mater. 12, 2200682 (2022). This work shows the need for changing active material particle sizes for their use in solid-state batteries.

    Article  Google Scholar 

  51. Sendek, A. D. et al. Combining superionic conduction and favorable decomposition Products in the crystalline lithium−boron–sulfur system: a new mechanism for stabilizing solid Li-ion electrolytes. ACS Appl. Mater. Int. 12, 37957–37966 (2020).

    Article  Google Scholar 

  52. Zhao, C. et al. Solid-state sodium batteries. Adv. Energy Mater. 8, 1703012 (2018).

    Article  Google Scholar 

  53. Hayashi, A. et al. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat. Commun. 10, 5266 (2019).

    Article  Google Scholar 

  54. Fuchs, T., Culver, S. P., Till, P. & Zeier, W. G. Defect-mediated conductivity enhancements in Na3–xPn1–xWxS4 (Pn = P, Sb) using aliovalent substitutions. ACS Energy Lett. 5, 146–151 (2020).

    Article  Google Scholar 

  55. Wenzel, S. et al. Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium β-alumina for protected sodium metal anodes and sodium all-solid-state batteries. ACS Appl. Mater. Int. 8, 28216–28224 (2016).

    Article  Google Scholar 

  56. Zeier, W. G., Schlem, R., Banik, A., Eckardt, M. & Zobel, M. Na3–xEr1–xZrxCl6-A halide-based fast sodium-ion conductor with vacancy-driven ionic transport. ACS Appl. Energy Mater. 3, 10164–10173 (2020).

    Article  Google Scholar 

  57. Wu, E. A. et al. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries. Nat. Commun. 12, 1256 (2021).

    Article  Google Scholar 

  58. Duchêne, L. et al. A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. Chem. Commun. 53, 4195–4198 (2017).

    Article  Google Scholar 

  59. Duchêne, L. et al. A stable 3 V all-solid-state sodium-ion battery based on a closo-borate electrolyte. Energy Environ. Sci. 10, 2609–2615 (2017).

    Article  Google Scholar 

  60. Duchêne, L., Remhof, A., Hagemann, H. & Battaglia, C. Status and prospects of hydroborate electrolytes for all-solid-state batteries. Energy Storage Mater. 25, 782–794 (2020).

    Article  Google Scholar 

  61. Lee, H. J. et al. LiNi0.5Mn1.5O4 cathode microstructure for all-solid-state batteries. Nano Lett. 22, 7477–7483 (2022).

    Article  Google Scholar 

  62. Ohno, S. & Zeier, W. G. Toward practical solid-state lithium–sulfur batteries: challenges and perspectives. Acc. Mater. Res 2, 869–880 (2021). This perspective highlights the promising advances in Li–S-based solid-state batteries.

    Article  Google Scholar 

  63. Santhosha, A. L. et al. Macroscopic displacement reaction of copper sulfide in lithium solid-state batteries. Adv. Energy Mater. 10, 2002394 (2020).

    Article  Google Scholar 

  64. Dewald, G. F., Liaqat, Z., Lange, M. A., Tremel, W. & Zeier, W. G. Influence of iron sulfide nanoparticle sizes in solid-state batteries. Angew. Chem. Int. Ed. 60, 17952–17956 (2021).

    Article  Google Scholar 

  65. Xu, S. et al. A high capacity all solid‐state Li–sulfur battery enabled by conversion‐intercalation hybrid cathode architecture. Adv. Funct. Mater. 31, 2004239 (2021).

    Article  MathSciNet  Google Scholar 

  66. Bettenhausen, C. Solid Power wins $12.5 million for FeS2 cathodes Chem. Eng. News (1 October 2021).

  67. Tanibata, N., Deguchi, M., Hayashi, A. & Tatsumisago, M. All-solid-state Na/S batteries with a Na3PS4 electrolyte operating at room temperature. Chem. Mater. 29, 5232–5238 (2017).

    Article  Google Scholar 

  68. Wang, C. et al. Boosting the performance of lithium batteries with solid–liquid hybrid electrolytes: interfacial properties and effects of liquid electrolytes. Nano Energy 48, 35–43 (2018).

    Article  Google Scholar 

  69. Simon, F. J., Hanauer, M., Richter, F. H. & Janek, J. Interphase formation of PEO20:LiTFSI-Li6PS5Cl composite electrolytes with lithium metal. ACS Appl. Mater. Int. 12, 11713–11723 (2020).

    Article  Google Scholar 

  70. Li, Y. et al. Thin solid electrolyte layers enabled by nanoscopic polymer binding. ACS Energy Lett. 5, 955–961 (2020).

    Article  Google Scholar 

  71. Fuchs, T. et al. Working principle of an ionic liquid interlayer during pressureless lithium stripping on Li6.25Al0.25La3Zr2O12 (LLZO) garnet-type solid electrolyte. Batter. Supercaps 4, 1145–1155 (2021).

    Article  Google Scholar 

  72. Schnell, J. et al. All-solid-state lithium-ion and lithium metal batteries—paving the way to large-scale production. J. Power Sources 382, 160–175 (2018).

    Article  Google Scholar 

  73. Miura, A. et al. Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat. Rev. Chem. 3, 189–198 (2019).

    Article  Google Scholar 

  74. Ghidiu, M., Ruhl, J., Culver, S. P. & Zeier, W. G. Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective. J. Mater. Chem. A 7, 17735–17753 (2019).

    Article  Google Scholar 

  75. Li, X. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12, 2665–2671 (2019).

    Article  Google Scholar 

  76. Rosenbach, C. et al. Visualizing the chemical incompatibility of halide and sulfide-based electrolytes in solid-state batteries. Adv. Energy Mater. https://doi.org/10.1002/aenm.202203673 (2022).

  77. Jung, K. N., Shin, H. S., Park, M. S. & Lee, J. W. Solid-state lithium batteries: bipolar design, fabrication, and electrochemistry. ChemElectroChem 6, 3842–3859 (2019).

    Article  Google Scholar 

  78. Azhari, L., Bong, S., Ma, X. & Wang, Y. Recycling for all solid-state lithium-ion. Batter. Matter 3, 1845–1861 (2020).

    Article  Google Scholar 

  79. Duffner, F. et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134 (2021).

    Article  Google Scholar 

  80. Bates, A. M. et al. Are solid-state batteries safer than lithium-ion batteries? Joule 6, 742–755 (2022). First study to approach the question of device safety concerns in solid-state batteries.

    Article  Google Scholar 

  81. Kim, T. et al. Thermal runaway behavior of Li6PS5Cl solid electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in all-solid-state batteries. Chem. Mater. 34, 9159–9171 (2022).

    Article  Google Scholar 

  82. Ohno, S. et al. How certain are the reported ionic conductivities of thiophosphate-based solid electrolytes? An interlaboratory study. ACS Energy Lett. 5, 910–915 (2020).

    Article  Google Scholar 

  83. Kato, Y. et al. Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1–xMx)P2S12 (M = Si, Sn). J. Power Sources 271, 60–64 (2014).

    Article  Google Scholar 

  84. Hori, S. et al. Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2–δS12 (M = Si, Sn). Faraday Discuss. 176, 83–94 (2014).

    Article  Google Scholar 

  85. Sun, Y., Suzuki, K., Hori, S., Hirayama, M. & Kanno, R. Superionic conductors: Li10+δ[SnySi1–y]1+δP2–δS12 with a Li10GeP2S12-type structure in the Li3PS4–Li4SnS4–Li4SiS4 quasi-ternary system. Chem. Mater. 29, 5858–5864 (2017).

    Article  Google Scholar 

  86. Sun, Y. et al. Oxygen substitution effects in Li10GeP2S12 solid electrolyte. J. Power Sources 324, 798–803 (2016).

    Article  Google Scholar 

  87. Kwon, O. et al. Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2–δS12. J. Mater. Chem. A 3, 438–446 (2015).

    Article  Google Scholar 

  88. Krauskopf, T., Culver, S. P. & Zeier, W. G. Bottleneck of diffusion and inductive effects in Li10Ge1– xSnxP2S12. Chem. Mater. 30, 1791–1798 (2018).

    Article  Google Scholar 

  89. Bron, P. et al. Li10SnP2S12—an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).

    Article  Google Scholar 

  90. Iwasaki, R. et al. Weak anisotropic lithium-ion conductivity in single crystals of Li10GeP2S12. Chem. Mater. 31, 3694–3699 (2019).

    Article  Google Scholar 

  91. Suzuki, K. et al. Synthesis, structure, and electrochemical properties of crystalline Li–P–S–O solid electrolytes: novel lithium-conducting oxysulfides of Li10GeP2S12 family. Solid State Ion. 288, 229–234 (2016).

    Article  Google Scholar 

  92. Hori, S., Suzuki, K., Hirayama, M., Kato, Y. & Kanno, R. Lithium superionic conductor Li9.42Si1.02P2.1S9.96O2.04 with Li10GeP2S12 -type structure in the Li2S–P2S5–SiO2 pseudoternary system: synthesis, electrochemical properties, and structure–composition relationships. Front. Energy Res. 4, 1–9 (2016).

    Article  Google Scholar 

  93. Liang, J. et al. Li10Ge(P1–xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability. Chem. Mater. 32, 2664–2672 (2020).

    Article  Google Scholar 

  94. Hori, S. et al. Structure–property relationships in lithium superionic conductors having a Li10GeP2S12-type structure. Acta Crystallogr. B 71, 727–736 (2015).

    Article  Google Scholar 

  95. Inagaki, M. et al. Conduction mechanism of Li10GeP2S12-type lithium superionic conductors in a Li–Sn–Si–P–S system. Chem. Mater. 31, 3485–3490 (2019).

    Article  Google Scholar 

  96. Kuhn, A., Duppel, V. & Lotsch, B. V. Tetragonal Li10GeP2S12 and Li7GePS8-exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ. Sci. 6, 3548–3552 (2013).

    Article  Google Scholar 

  97. Kuhn, A. et al. A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys. Chem. Chem. Phys. 16, 14669–14674 (2014).

    Article  Google Scholar 

  98. Kim, K. H. & Martin, S. W. Structures and properties of oxygen-substituted Li10SiP2S12–xOx solid-state electrolytes. Chem. Mater. 31, 3984–3991 (2019).

    Article  Google Scholar 

  99. Kraft, M. A. et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 139, 10909–10918 (2017).

    Article  Google Scholar 

  100. Sakuda, A. et al. Mechanochemically prepared Li2S–P2S5–LiBH4 solid electrolytes with an argyrodite structure. ACS Omega 3, 5453–5458 (2018).

    Article  Google Scholar 

  101. Minafra, N., Culver, S. P., Krauskopf, T., Senyshyn, A. & Zeier, W. G. Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. J. Mater. Chem. A 6, 645–651 (2018).

    Article  Google Scholar 

  102. Mizuno, F., Hayashi, A., Tadanaga, K. & Tatsumisago, M. High lithium ion conducting glass–ceramics in the system Li2S–P2S5. Solid State Ion. 177, 2721–2725 (2006).

    Article  Google Scholar 

  103. Zeier, W. G., Zhou, S., Lopez-Bermudez, B., Page, K. & Melot, B. C. Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li6MLa2Ta2O12. ACS Appl. Mater. Interfaces 6, 10900–10907 (2014).

    Article  Google Scholar 

  104. Cussen, E. J., O’Callaghan, M. P., Powell, A. S., Titman, J. J. & Chen, G. Z. Switching on fast lithium ion conductivity in garnets: the structure and transport properties of Li3+xNd3Te2–xSbxO12. Chem. Mater. 20, 2360–xO2369 (2008).

    Article  Google Scholar 

  105. Wu, J. F. et al. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl. Mater. Interfaces 9, 1542–1552 (2017).

    Article  Google Scholar 

  106. Logéat, A. et al. From order to disorder: the structure of lithium-conducting garnets Li7–xLa3TaxZr2–xO12 (x = 0–2). Solid State Ion. 206, 33–38 (2012).

    Article  Google Scholar 

  107. Ohta, S., Kobayashi, T. & Asaoka, T. High lithium ionic conductivity in the garnet-type oxide Li7–xLa3(Zr2–x,Nbx)O12 (x = 0–2). J. Power Sources 196, 3342–3345 (2011).

    Article  Google Scholar 

  108. Rettenwander, D. et al. Synthesis, crystal chemistry, and electrochemical properties of Li7–2xLa3Zr2–xMoxO12 (x = 0.1–0.4): stabilization of the cubic garnet polymorph via substitution of Zr4+ by Mo6+. Inorg. Chem. 54, 10440–10449 (2015).

    Article  Google Scholar 

  109. Li, Y., Han, J. T., Wang, C. A., Xie, H. & Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012).

    Article  Google Scholar 

  110. Awaka, J., Kijima, N., Hayakawa, H. & Akimoto, J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J. Solid State Chem. 182, 2046–2052 (2009).

    Article  Google Scholar 

  111. Percival, J., Kendrick, E. & Slater, P. R. Synthesis and characterisation of the garnet-related Li ion conductor, Li5Nd3Sb2O12. Mater. Res. Bull. 43, 765–770 (2008).

    Article  Google Scholar 

  112. Zhao, G., Suzuki, K., Yonemura, M., Hirayama, M. & Kanno, R. Enhancing fast lithium ion conduction in Li4GeO4–Li3PO4 solid electrolytes. ACS Appl. Energy Mater. 2, 6608–6615 (2019).

    Article  Google Scholar 

  113. Deng, Y. et al. Enhancing the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect. ACS Appl. Mater. Interfaces 9, 7050–7058 (2017).

    Article  Google Scholar 

  114. Deng, Y. et al. Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4–Li3PO4 solid electrolytes. J. Am. Chem. Soc. 137, 9136–9145 (2015).

    Article  Google Scholar 

  115. Hong, H. Y. P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bull. 13, 117–124 (1978).

    Article  Google Scholar 

  116. Pérez-Estébanez, M., Isasi-Marín, J., Többens, D. M., Rivera-Calzada, A. & León, C. A systematic study of NASICON-type Li1+xMxTi2–x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy. Solid State Ion. 266, 1–8 (2014).

    Article  Google Scholar 

  117. Weiss, M., Weber, D. A., Senyshyn, A., Janek, J. & Zeier, W. G. Correlating transport and structural properties in Li1+xAlxGe2−x(PO4)3 (LAGP) prepared from aqueous solution. ACS Appl. Mater. Int. 10, 10939–10944 (2018).

    Article  Google Scholar 

  118. Schlem, R. et al. Mechanochemical synthesis: a tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors. Adv. Energy Mater. 10, 1903719 (2019).

    Article  Google Scholar 

  119. Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018).

    Article  Google Scholar 

  120. Park, K. H. et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 533–539 (2020).

    Article  Google Scholar 

  121. Imholt, L. et al. Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries. J. Power Sources 409, 148–158 (2019).

    Article  Google Scholar 

  122. Butzelaar, A. J. et al. The power of architecture-cage-shaped PEO and its application as a polymer electrolyte. Polym. Chem. 12, 4326–4331 (2021).

    Article  Google Scholar 

  123. Wu, N. et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew. Chem. Int. Ed. 59, 4131–4137 (2020).

    Article  Google Scholar 

  124. Wang, W., Yi, E., Fici, A. J., Laine, R. M. & Kieffer, J. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. J. Phys. Chem. C 121, 2563–2573 (2017).

    Article  Google Scholar 

  125. Chung, S. H. et al. Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J. Power Sources 97–98, 644–648 (2001).

    Article  Google Scholar 

  126. Ding, M. S. & Jow, T. R. Conductivity and viscosity of PC–DEC and PC–EC solutions of LiPF6. J. Electrochem. Soc. 150, A620 (2003).

    Article  Google Scholar 

  127. Kirillov, S. A., Gorobets, M. I., Tretyakov, D. O., Ataev, M. B. & Gafurov, M. M. Phase diagrams and conductivity of lithium salt systems in dimethyl sulfoxide, propylene carbonate and dimethyl carbonate. J. Mol. Liq. 205, 78–84 (2015).

    Article  Google Scholar 

  128. Nyman, A., Behm, M. & Lindbergh, G. Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6–EC–EMC electrolyte. Electrochim. Acta 53, 6356–6365 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support within the cluster of competence FESTBATT funded by Bundesministerium für Bildung und Forschung (BMBF; projects 03XP0431, 03XP0430A and 03XP0430F). We thank P. Till for support in data analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jürgen Janek or Wolfgang G. Zeier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Marm Dixit, Taro Hitosugi, Jennifer Rupp and Fan Wu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Fig. 3

Supplementary tables for Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janek, J., Zeier, W.G. Challenges in speeding up solid-state battery development. Nat Energy 8, 230–240 (2023). https://doi.org/10.1038/s41560-023-01208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01208-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing