[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sulfide regulation of cardiovascular function in health and disease

Abstract

Hydrogen sulfide (H2S) has emerged as a gaseous signalling molecule with crucial implications for cardiovascular health. H2S is involved in many biological functions, including interactions with nitric oxide, activation of molecular signalling cascades, post-translational modifications and redox regulation. Various preclinical and clinical studies have shown that H2S and its synthesizing enzymes — cystathionine γ-lyase, cystathionine β-synthase and 3-mercaptosulfotransferase — can protect against cardiovascular pathologies, including arrhythmias, atherosclerosis, heart failure, myocardial infarction and ischaemia–reperfusion injury. The bioavailability of H2S and its metabolites, such as hydropersulfides and polysulfides, is substantially reduced in cardiovascular disease and has been associated with single-nucleotide polymorphisms in H2S synthesis enzymes. In this Review, we highlight the role of H2S, its synthesizing enzymes and metabolites, their roles in the cardiovascular system, and their involvement in cardiovascular disease and associated pathologies. We also discuss the latest clinical findings from the field and outline areas for future study.

Key points

  • Hydrogen sulfide (H2S) has a crucial role in regulating cardiovascular function; reduced bioavailability is associated with cardiovascular pathologies, including arrhythmias, heart failure, ischaemic myocardial dysfunction and peripheral vascular disease.

  • H2S and its synthesizing enzymes, including cystathionine γ-lyase, can protect against atherosclerosis and cardiac ischaemia–reperfusion injury.

  • H2S regulates various pathophysiological functions via interaction with nitric oxide, activation of molecular signalling cascades, post-translational modification of proteins and control of redox-dependent responses.

  • Findings from clinical studies demonstrate that H2S and its metabolites, including hydropersulfides and polysulfides, have substantial therapeutic potential for various forms of cardiovascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sulfide metabolite formation and fate.
Fig. 2: Sulfide signalling and chemical reaction pathways.
Fig. 3: Sulfide regulation of cardiovascular responses involving CTH expression and function.

Similar content being viewed by others

References

  1. Industrial Safety and Hygiene News. Many oil & gas workers risk hydrogen sulfide overexposure. https://www.ishn.com/articles/109717-many-oil-gas-workers-risk-hydrogen-sulfide-overexposure (2018).

  2. Neubeck, A. & Freund, F. Sulfur chemistry may have paved the way for evolution of antioxidants. Astrobiology 20, 670–675 (2020).

    Article  CAS  Google Scholar 

  3. Olson, K. R. & Straub, K. D. The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology 31, 60–72 (2016).

    Article  CAS  Google Scholar 

  4. Kolluru, G. K., Shen, X., Bir, S. C. & Kevil, C. G. Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide 35, 5–20 (2013).

    Article  CAS  Google Scholar 

  5. Kolluru, G. K., Shen, X. & Kevil, C. G. A tale of two gases: NO and H2S, foes or friends for life? Redox Biol. 1, 313–318 (2013).

    Article  CAS  Google Scholar 

  6. Abe, K. & Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066–1071 (1996).

    Article  CAS  Google Scholar 

  7. Szabo, C. A timeline of hydrogen sulfide (H(2)S) research: from environmental toxin to biological mediator. Biochem. Pharmacol. 149, 5–19 (2018).

    Article  CAS  Google Scholar 

  8. Wu, D. et al. Role of hydrogen sulfide in ischemia-reperfusion Injury. Oxid. Med. Cell Longev. 2015, 186908 (2015).

    Article  Google Scholar 

  9. Liu, Y. H. et al. Hydrogen sulfide in the mammalian cardiovascular system. Antioxid. Redox Signal. 17, 141–185 (2012).

    Article  CAS  Google Scholar 

  10. LaPenna, K. B. et al. Hydrogen sulfide as a potential therapy for heart failure–past, present, and future. Antioxidants 10, 485 (2021).

    Article  CAS  Google Scholar 

  11. Pan, L.-L., Qin, M., Liu, X.-H. & Zhu, Y.-Z. The role of hydrogen sulfide on cardiovascular homeostasis: an overview with update on immunomodulation. Front. Pharmacol. 8, 686 (2017).

    Article  Google Scholar 

  12. Szabo, C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am. J. Physiol. Cell Physiol. 312, C3–C15 (2017).

    Article  Google Scholar 

  13. Kolluru, G. K. et al. Cystathionine γ-lyase regulates arteriogenesis through NO-dependent monocyte recruitment. Cardiovasc. Res. 107, 590–600 (2015).

    Article  Google Scholar 

  14. Bir, S. C. et al. Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible factor-1α and vascular endothelial growth factor-dependent angiogenesis. J. Am. Heart Assoc. 1, e004093 (2012).

    Article  Google Scholar 

  15. Kolluru, G. K., Shen, X. & Kevil, C. G. Reactive sulfur species: a new redox player in cardiovascular pathophysiology. Arterioscler. Thromb. Vasc. Biol. 40, 874–884 (2020).

    Article  CAS  Google Scholar 

  16. Shen, X., Kolluru, G. K., Yuan, S. & Kevil, C. G. Measurement of H2S in vivo and in vitro by the monobromobimane method. Methods Enzymol. 554, 31–45 (2015).

    Article  CAS  Google Scholar 

  17. Shen, X., Peter, E. A., Bir, S., Wang, R. & Kevil, C. G. Analytical measurement of discrete hydrogen sulfide pools in biological specimens. Free Radic. Biol. Med. 52, 2276–2283 (2012).

    Article  CAS  Google Scholar 

  18. Rajpal, S. et al. Total sulfane sulfur bioavailability reflects ethnic and gender disparities in cardiovascular disease. Redox Biol. 15, 480–489 (2018).

    Article  CAS  Google Scholar 

  19. Cuevasanta, E. et al. Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide. J. Biol. Chem. 290, 26866–26880 (2015).

    Article  CAS  Google Scholar 

  20. Dittmer, D. C. Hydrogen sulfide. Encyclopedia of Reagents for Organic Synthesis (Wiley, 2001) https://doi.org/10.1002/047084289X.rh049.

    Chapter  Google Scholar 

  21. Li, Q. & Lancaster, J. R. Jr. Chemical foundations of hydrogen sulfide biology. Nitric Oxide 35, 21–34 (2013).

    Article  Google Scholar 

  22. Fukuto, J. M. et al. Biological hydropersulfides and related polysulfides–a new concept and perspective in redox biology. FEBS Lett. 592, 2140–2152 (2018).

    Article  CAS  Google Scholar 

  23. Sawa, T., Motohashi, H., Ihara, H. & Akaike, T. Enzymatic regulation and biological functions of reactive cysteine persulfides and polysulfides. Biomolecules 10, 1245 (2020).

    Article  CAS  Google Scholar 

  24. Sun, H. J., Wu, Z. Y., Nie, X. W. & Bian, J. S. Role of hydrogen sulfide and polysulfides in neurological diseases: focus on protein S-persulfidation. Curr. Neuropharmacol. 19, 868–884 (2021).

    CAS  Google Scholar 

  25. Yang, J. et al. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6. Commun. Biol. 2, 194 (2019).

    Article  Google Scholar 

  26. Shibuya, N. et al. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat. Commun. 4, 1366 (2013).

    Article  Google Scholar 

  27. Banerjee, R. Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis. Curr. Opin. Chem. Biol. 37, 115–121 (2017).

    Article  CAS  Google Scholar 

  28. Yang, G. et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322, 587–590 (2008).

    Article  CAS  Google Scholar 

  29. Zhao, W., Zhang, J., Lu, Y. & Wang, R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J. 20, 6008–6016 (2001).

    Article  CAS  Google Scholar 

  30. Ida, T. et al. Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc. Natl Acad. Sci. USA 111, 7606–7611 (2014).

    Article  CAS  Google Scholar 

  31. Kimura, H. Physiological roles of hydrogen sulfide and polysulfides. Handb. Exp. Pharmacol. 230, 61–81 (2015).

    Article  CAS  Google Scholar 

  32. Toohey, J. I. Sulphane sulphur in biological systems: a possible regulatory role. Biochem. J. 264, 625–632 (1989).

    Article  CAS  Google Scholar 

  33. Akaike, T. et al. Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat. Commun. 8, 1177 (2017).

    Article  Google Scholar 

  34. Fujii, S., Sawa, T., Motohashi, H. & Akaike, T. Persulfide synthases that are functionally coupled with translation mediate sulfur respiration in mammalian cells. Br. J. Pharmacol. 176, 607–615 (2019).

    Article  CAS  Google Scholar 

  35. Kaneko, Y., Kimura, Y., Kimura, H. & Niki, I. l-Cysteine inhibits insulin release from the pancreatic β-cell: possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes 55, 1391–1397 (2006).

    Article  CAS  Google Scholar 

  36. Teng, H. et al. Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proc. Natl Acad. Sci. USA 110, 12679–12684 (2013).

    Article  CAS  Google Scholar 

  37. Yang, G. & Wang, R. H2S and blood vessels: an overview. Handb. Exp. Pharmacol. 230, 85–110 (2015).

    Article  CAS  Google Scholar 

  38. Fu, M. et al. Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc. Natl Acad. Sci. USA 109, 2943–2948 (2012).

    Article  CAS  Google Scholar 

  39. Wróbel, M., Włodek, L. & Srebro, Z. Sulfurtransferases activity and the level of low-molecular-weight thiols and sulfane sulfur compounds in cortex and brain stem of mouse. Neurobiology 4, 217–222 (1996).

    Google Scholar 

  40. Eto, K., Ogasawara, M., Umemura, K., Nagai, Y. & Kimura, H. Hydrogen sulfide is produced in response to neuronal excitation. J. Neurosci. 22, 3386–3391 (2002).

    Article  CAS  Google Scholar 

  41. Jiang, Z. et al. Role of hydrogen sulfide in early blood-brain barrier disruption following transient focal cerebral ischemia. PLoS ONE 10, e0117982 (2015).

    Article  Google Scholar 

  42. Cao, X. et al. A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid. Redox Signal. 31, 1–38 (2019).

    Article  CAS  Google Scholar 

  43. Huang, C. W. & Moore, P. K. H2S synthesizing enzymes: biochemistry and molecular aspects. Handb. Exp. Pharmacol. 230, 3–25 (2015).

    Article  CAS  Google Scholar 

  44. Roman, H. B. et al. The cysteine dioxgenase knockout mouse: altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS- production and evidence of pancreatic and lung toxicity. Antioxid. Redox Signal. 19, 1321–1336 (2013).

    Article  CAS  Google Scholar 

  45. Tiranti, V. et al. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat. Med. 15, 200–205 (2009).

    Article  CAS  Google Scholar 

  46. Donnarumma, E., Trivedi, R. K. & Lefer, D. J. Protective actions of H2S in acute myocardial infarction and heart failure. Compr. Physiol. 7, 583–602 (2017).

    Article  Google Scholar 

  47. Rose, P., Moore, P. K. & Zhu, Y. Z. H2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol. Life Sci. 74, 1391–1412 (2017).

    Article  CAS  Google Scholar 

  48. Gharahbaghian, L., Massoudian, B. & Dimassa, G. Methemoglobinemia and sulfhemoglobinemia in two pediatric patients after ingestion of hydroxylamine sulfate. West. J. Emerg. Med. 10, 197–201 (2009).

    Google Scholar 

  49. Kouroussis, E., Adhikari, B., Zivanovic, J. & Filipovic, M. R. Measurement of protein persulfidation: improved tag-switch method. Methods Mol. Biol. 2007, 37–50 (2019).

    Article  CAS  Google Scholar 

  50. Li, B., Kim, Y. L. & Lippert, A. R. Chemiluminescence measurement of reactive sulfur and nitrogen species. Antioxid. Redox Signal. 36, 337–353 (2022).

    Article  CAS  Google Scholar 

  51. Nagy, P., Doka, E., Ida, T. & Akaike, T. Measuring reactive sulfur species and thiol oxidation states: challenges and cautions in relation to alkylation-based protocols. Antioxid. Redox Signal. 33, 1174–1189 (2020).

    Article  CAS  Google Scholar 

  52. Takata, T. et al. Methods in sulfide and persulfide research. Nitric Oxide 116, 47–64 (2021).

    Article  CAS  Google Scholar 

  53. Shen, X., Chakraborty, S., Dugas, T. R. & Kevil, C. G. Hydrogen sulfide measurement using sulfide dibimane: critical evaluation with electrospray ion trap mass spectrometry. Nitric Oxide 41, 97–104 (2014).

    Article  CAS  Google Scholar 

  54. Kolluru, G. K., Shen, X. & Kevil, C. G. Detection of hydrogen sulfide in biological samples: current and future. Expert. Rev. Clin. Pharmacol. 4, 9–12 (2011).

    Article  CAS  Google Scholar 

  55. Nagy, P. et al. Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim. Biophys. Acta 1840, 876–891 (2014).

    Article  CAS  Google Scholar 

  56. Li, L., Hsu, A. & Moore, P. K. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation–a tale of three gases! Pharmacol. Ther. 123, 386–400 (2009).

    Article  CAS  Google Scholar 

  57. Li, L., Rose, P. & Moore, P. K. Hydrogen sulfide and cell signaling. Annu. Rev. Pharmacol. Toxicol. 51, 169–187 (2011).

    Article  CAS  Google Scholar 

  58. Szabo, C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov. 6, 917–935 (2007).

    Article  CAS  Google Scholar 

  59. Shao, M. et al. Protective effect of hydrogen sulphide against myocardial hypertrophy in mice. Oncotarget 8, 22344–22352 (2017).

    Article  Google Scholar 

  60. King, A. L. et al. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc. Natl Acad. Sci. USA 111, 3182–3187 (2014).

    Article  CAS  Google Scholar 

  61. Kondo, K. et al. H2S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 127, 1116–1127 (2013).

    Article  CAS  Google Scholar 

  62. Mani, S., Untereiner, A., Wu, L. & Wang, R. Hydrogen sulfide and the pathogenesis of atherosclerosis. Antioxid. Redox Signal. 20, 805–817 (2014).

    Article  CAS  Google Scholar 

  63. Lin, Y. et al. Hydrogen sulfide attenuates atherosclerosis in a partially ligated carotid artery mouse model via regulating angiotensin converting enzyme 2 expression. Front. Physiol. 8, 782 (2017).

    Article  Google Scholar 

  64. Zhang, H. et al. Hydrogen sulfide inhibits the development of atherosclerosis with suppressing CX3CR1 and CX3CL1 expression. PLoS ONE 7, e41147 (2012).

    Article  CAS  Google Scholar 

  65. Casin, K. M. & Calvert, J. W. Harnessing the benefits of endogenous hydrogen sulfide to reduce cardiovascular disease. Antioxidants 10, 383 (2021).

    Article  CAS  Google Scholar 

  66. Corvino, A. et al. Trends in H2S-donors chemistry and their effects in cardiovascular diseases. Antioxidants 10, 429 (2021).

    Article  CAS  Google Scholar 

  67. Wilkie, S. E., Borland, G., Carter, R. N., Morton, N. M. & Selman, C. Hydrogen sulfide in ageing, longevity and disease. Biochem. J. 478, 3485–3504 (2021).

    Article  CAS  Google Scholar 

  68. Elrod, J. W. et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc. Natl Acad. Sci. USA 104, 15560–15565 (2007).

    Article  CAS  Google Scholar 

  69. Hsu, C.-N. & Tain, Y.-L. Preventing developmental origins of cardiovascular disease: hydrogen sulfide as a potential target? Antioxidants 10, 247 (2021).

    Article  CAS  Google Scholar 

  70. Jiang, H. L., Wu, H. C., Li, Z. L., Geng, B. & Tang, C. S. Changes of the new gaseous transmitter H2S in patients with coronary heart disease [Chinese]. Di Yi Jun. Yi Da Xue Xue Bao 25, 951–954 (2005).

    CAS  Google Scholar 

  71. Polhemus, D. J., Calvert, J. W., Butler, J. & Lefer, D. J. The cardioprotective actions of hydrogen sulfide in acute myocardial infarction and heart failure. Scientifica 2014, 768607 (2014).

    Article  Google Scholar 

  72. Gorini, F., Bustaffa, E., Chatzianagnostou, K., Bianchi, F. & Vassalle, C. Hydrogen sulfide and cardiovascular disease: doubts, clues, and interpretation difficulties from studies in geothermal areas. Sci. Total. Environ. 743, 140818 (2020).

    Article  CAS  Google Scholar 

  73. Li, Z., Polhemus, D. J. & Lefer, D. J. Evolution of hydrogen sulfide therapeutics to treat cardiovascular disease. Circ. Res. 123, 590–600 (2018).

    Article  CAS  Google Scholar 

  74. Zhang, L. et al. Hydrogen sulfide (H2S)-releasing compounds: therapeutic potential in cardiovascular diseases. Front. Pharmacol. 9, 1066 (2018).

    Article  Google Scholar 

  75. Paul, B. D. & Snyder, S. H. H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem. Sci. 40, 687–700 (2015).

    Article  CAS  Google Scholar 

  76. Paul, B. D., Snyder, S. H. & Kashfi, K. Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol. 38, 101772 (2021).

    Article  CAS  Google Scholar 

  77. Bibli, S.-I. et al. Mapping the endothelial cell S-sulfhydrome highlights the crucial role of integrin sulfhydration in vascular function. Circulation 143, 935–948 (2021).

    Article  CAS  Google Scholar 

  78. Merz, T. et al. Cardiovascular disease and resuscitated septic shock lead to the downregulation of the H2S-producing enzyme cystathionine-γ-lyase in the porcine coronary artery. Intensive Care Med. Exp. 5, 17 (2017).

    Article  Google Scholar 

  79. Giannakopoulou, E. et al. Association study of the CTH 1364 G>T polymorphism with coronary artery disease in the Greek population. Drug Metab. Pers. Ther. https://doi.org/10.1515/dmpt-2018-0033 (2019).

    Article  Google Scholar 

  80. Ghaderi, S. et al. Role of glycogen synthase kinase following myocardial infarction and ischemia–reperfusion. Apoptosis 22, 887–897 (2017).

    Article  CAS  Google Scholar 

  81. Dhalla, N. S., Elmoselhi, A. B., Hata, T. & Makino, N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc. Res. 47, 446–456 (2000).

    Article  CAS  Google Scholar 

  82. Yellon, D. M. & Hausenloy, D. J. Myocardial reperfusion Injury. N. Engl. J. Med. 357, 1121–1135 (2007).

    Article  CAS  Google Scholar 

  83. Liu, J., Wang, H. & Li, J. Inflammation and inflammatory cells in myocardial infarction and reperfusion injury: a double-edged sword. Clin. Med. Insights Cardiol. 10, 79–84 (2016).

    Article  CAS  Google Scholar 

  84. Swirski, F. K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166 (2013).

    Article  CAS  Google Scholar 

  85. Calvert, J. W. et al. Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation 122, 11–19 (2010).

    Article  Google Scholar 

  86. Polhemus, D. J. et al. Hydrogen sulfide attenuates cardiac dysfunction after heart failure via induction of angiogenesis. Circulation Heart Fail. 6, 1077–1086 (2013).

    Article  CAS  Google Scholar 

  87. Osipov, R. M. et al. Effect of hydrogen sulfide in a porcine model of myocardial ischemia-reperfusion: comparison of different administration regimens and characterization of the cellular mechanisms of protection. J. Cardiovasc. Pharmacol. 54, 287–297 (2009).

    Article  CAS  Google Scholar 

  88. Shymans’ka, T. V., Hoshovs’ka Iu, V., Semenikhina, O. M. & Sahach, V. F. Effect of hydrogen sulfide on isolated rat heart reaction under volume load and ischemia-reperfusion [Ukranian]. Fiziol. Zh . 58, 57–66 (2012).

    Article  Google Scholar 

  89. Ji, Y. et al. Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia-reperfusion injury. Eur. J. Pharmacol. 587, 1–7 (2008).

    Article  CAS  Google Scholar 

  90. Luan, H. F. et al. Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway. Braz. J. Med. Biol. Res. 45, 898–905 (2012).

    Article  CAS  Google Scholar 

  91. Xia, H. et al. Endothelial cell cystathionine γ-lyase expression level modulates exercise capacity, vascular function, and myocardial ischemia reperfusion injury. J. Am. Heart Assoc. 9, e017544 (2020).

    Article  CAS  Google Scholar 

  92. Zhang, P. et al. Role of hydrogen sulfide in myocardial ischemia-reperfusion injury. J. Cardiovasc. Pharmacol. 77, 130–141 (2021).

    Article  CAS  Google Scholar 

  93. Huang, C. et al. Cardioprotective effects of a novel hydrogen sulfide agent-controlled release formulation of S-propargyl-cysteine on heart failure rats and molecular mechanisms. PLoS ONE 8, e69205 (2013).

    Article  CAS  Google Scholar 

  94. Shen, Y., Shen, Z., Luo, S., Guo, W. & Zhu, Y. Z. The cardioprotective effects of hydrogen sulfide in heart diseases: from molecular mechanisms to therapeutic potential. Oxid. Med. Cell. Longev. 2015, 925167 (2015).

    Article  Google Scholar 

  95. Cheng, Z. & Kishore, R. Potential role of hydrogen sulfide in diabetes-impaired angiogenesis and ischemic tissue repair. Redox Biol. 37, 101704 (2020).

    Article  CAS  Google Scholar 

  96. Wang, Y. Z. et al. The potential of hydrogen sulfide donors in treating cardiovascular diseases. Int. J. Mol. Sci. 22, 2194 (2021).

    Article  Google Scholar 

  97. Ling, K. et al. H(2)S attenuates oxidative stress via Nrf2/NF-κB signaling to regulate restenosis after percutaneous transluminal angioplasty. Exp. Biol. Med. 246, 226–239 (2021).

    Article  CAS  Google Scholar 

  98. Abramochkin, D. V., Moiseenko, L. S. & Kuzmin, V. S. The effect of hydrogen sulfide on electrical activity of rat atrial myocardium. Bull. Exp. Biol. Med. 147, 683–686 (2009).

    Article  CAS  Google Scholar 

  99. Papapetropoulos, A. et al. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc. Natl Acad. Sci. USA 106, 21972–21977 (2009).

    Article  CAS  Google Scholar 

  100. Sivarajah, A., McDonald, M. C. & Thiemermann, C. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock 26, 154–161 (2006).

    Article  CAS  Google Scholar 

  101. Sun, Y. G. et al. Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc. Res. 79, 632–641 (2008).

    Article  CAS  Google Scholar 

  102. Polhemus, D. J. et al. A novel hydrogen sulfide prodrug, SG1002, promotes hydrogen sulfide and nitric oxide bioavailability in heart failure patients. Cardiovasc. Ther. 33, 216–226 (2015).

    Article  CAS  Google Scholar 

  103. Drazner, M. H. The progression of hypertensive heart disease. Circulation 123, 327–334 (2011).

    Article  Google Scholar 

  104. Lu, F. et al. Exogenous hydrogen sulfide prevents cardiomyocyte apoptosis from cardiac hypertrophy induced by isoproterenol. Mol. Cell. Biochem. 381, 41–50 (2013).

    Article  CAS  Google Scholar 

  105. Ellmers, L. J. et al. Hydrogen sulfide treatment improves post-infarct remodeling and long-term cardiac function in CSE knockout and wild-type mice. Int. J. Mol. Sci. 21, 4284 (2020).

    Article  CAS  Google Scholar 

  106. Peleli, M. et al. Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. Biochem. Pharmacol. 176, 113833 (2020).

    Article  CAS  Google Scholar 

  107. Deanfield, J. E., Halcox, J. P. & Rabelink, T. J. Endothelial function and dysfunction: testing and clinical relevance. Circulation 115, 1285–1295 (2007).

    Article  Google Scholar 

  108. Rajendran, P. et al. The vascular endothelium and human diseases. Int. J. Biol. Sci. 9, 1057–1069 (2013).

    Article  CAS  Google Scholar 

  109. Matsuzawa, Y. & Lerman, A. Endothelial dysfunction and coronary artery disease: assessment, prognosis, and treatment. Coron. Artery Dis. 25, 713–724 (2014).

    Article  Google Scholar 

  110. Peter, E. A. et al. Plasma free H2S levels are elevated in patients with cardiovascular disease. J. Am. Heart Assoc. 2, e000387 (2013).

    Article  Google Scholar 

  111. Pardue, S. et al. Hydrogen sulfide stimulates xanthine oxidoreductase conversion to nitrite reductase and formation of NO. Redox Biol. 34, 101447 (2020).

    Article  CAS  Google Scholar 

  112. Polhemus, D. J. & Lefer, D. J. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ. Res. 114, 730–737 (2014).

    Article  CAS  Google Scholar 

  113. Bucci, M. et al. cGMP-dependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation. PLoS ONE 7, e53319 (2012).

    Article  CAS  Google Scholar 

  114. Avanzato, D. et al. Role of calcium channels in the protective effect of hydrogen sulfide in rat cardiomyoblasts. Cell Physiol. Biochem. 33, 1205–1214 (2014).

    Article  CAS  Google Scholar 

  115. Elies, J. et al. Hydrogen sulfide inhibits Cav3.2 T-type Ca2+ channels. FASEB J. 28, 5376–5387 (2014).

    Article  CAS  Google Scholar 

  116. Sun, Y., Tang, C. S., Jin, H. F. & Du, J. B. The vasorelaxing effect of hydrogen sulfide on isolated rat aortic rings versus pulmonary artery rings. Acta Pharmacol. Sin. 32, 456–464 (2011).

    Article  CAS  Google Scholar 

  117. Xiong, Y. et al. ZYZ-803, a novel hydrogen sulfide-nitric oxide conjugated donor, promotes angiogenesis via cross-talk between STAT3 and CaMKII. Acta Pharmacol. Sin. 41, 218–228 (2020).

    Article  CAS  Google Scholar 

  118. Materazzi, S. et al. Vasodilator activity of hydrogen sulfide (H2S) in human mesenteric arteries. Microvasc. Res. 109, 38–44 (2017).

    Article  CAS  Google Scholar 

  119. Caprnda, M. et al. H2S causes contraction and relaxation of major arteries of the rabbit. Biomed. Pharmacother. 89, 56–60 (2017).

    Article  CAS  Google Scholar 

  120. Altaany, Z., Ju, Y., Yang, G. & Wang, R. The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci. Signal. 7, ra87 (2014).

    Article  Google Scholar 

  121. Greiner, R. et al. Polysulfides link H2S to protein thiol oxidation. Antioxid. Redox Signal. 19, 1749–1765 (2013).

    Article  CAS  Google Scholar 

  122. Nishida, M. et al. Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat. Chem. Biol. 8, 714–724 (2012).

    Article  CAS  Google Scholar 

  123. Stubbert, D. et al. Protein kinase G Iα oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide. Hypertension 64, 1344–1351 (2014).

    Article  CAS  Google Scholar 

  124. Sun, Y. et al. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget 8, 31888–31900 (2017).

    Article  Google Scholar 

  125. Coletta, C. et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl Acad. Sci. USA 109, 9161–9166 (2012).

    Article  CAS  Google Scholar 

  126. Citi, V. et al. Role of hydrogen sulfide in endothelial dysfunction: pathophysiology and therapeutic approaches. J. Adv. Res. 27, 99–113 (2021).

    Article  CAS  Google Scholar 

  127. Tang, G. et al. H2S is an endothelium-derived hyperpolarizing factor. Antioxid. Redox Signal. 19, 1634–1646 (2013).

    Article  CAS  Google Scholar 

  128. Suzuki, K. et al. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proc. Natl Acad. Sci. USA 108, 13829–13834 (2011).

    Article  CAS  Google Scholar 

  129. Wang, Z.-J., Wu, J., Guo, W. & Zhu, Y.-Z. Atherosclerosis and the hydrogen sulfide signaling pathway–therapeutic approaches to disease prevention. Cell. Physiol. Biochem. 42, 859–875 (2017).

    Article  CAS  Google Scholar 

  130. Barton, M. & Meyer, M. R. HuR-ry up. Circulation 139, 115–118 (2019).

    Article  Google Scholar 

  131. Wang, Y. et al. Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 29, 173–179 (2009).

    Article  CAS  Google Scholar 

  132. Ford, A., Al-Magableh, M., Gaspari, T. A. & Hart, J. L. Chronic NaHS treatment is vasoprotective in high-fat-fed ApoE(-/-) mice. Int. J. Vasc. Med. 2013, 915983 (2013).

    Google Scholar 

  133. Lei, Y. P., Chen, H. W., Sheen, L. Y. & Lii, C. K. Diallyl disulfide and diallyl trisulfide suppress oxidized LDL-induced vascular cell adhesion molecule and E-selectin expression through protein kinase A- and B-dependent signaling pathways. J. Nutr. 138, 996–1003 (2008).

    Article  CAS  Google Scholar 

  134. Lei, Y. P., Liu, C. T., Sheen, L. Y., Chen, H. W. & Lii, C. K. Diallyl disulfide and diallyl trisulfide protect endothelial nitric oxide synthase against damage by oxidized low-density lipoprotein. Mol. Nutr. Food Res. 54 (Suppl 1), S42–S52 (2010).

    Article  CAS  Google Scholar 

  135. Yang, Q. & He, G.-W. Imbalance of homocysteine and H(2)S: significance, mechanisms, and therapeutic promise in vascular injury. Oxid. Med. Cell. Longev. 2019, 7629673 (2019).

    Article  Google Scholar 

  136. Ganguly, P. & Alam, S. F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 14, 6 (2015).

    Article  Google Scholar 

  137. Tinelli, C., Di Pino, A., Ficulle, E., Marcelli, S. & Feligioni, M. Hyperhomocysteinemia as a risk factor and potential nutraceutical target for certain pathologies. Front. Nutr. 6, 49 (2019).

    Article  Google Scholar 

  138. Sen, U., Mishra, P. K., Tyagi, N. & Tyagi, S. C. Homocysteine to hydrogen sulfide or hypertension. Cell Biochem. Biophys. 57, 49–58 (2010).

    Article  CAS  Google Scholar 

  139. Steed, M. M. & Tyagi, S. C. Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid. Redox Signal. 15, 1927–1943 (2011).

    Article  CAS  Google Scholar 

  140. Tian, D. et al. Endogenous hydrogen sulfide improves vascular remodeling through PPARδ/SOCS3 signaling. J. Adv. Res. 27, 115–125 (2021).

    Article  CAS  Google Scholar 

  141. Li, Y., Kinzenbaw, D. A., Modrick, M. L., Pewe, L. L. & Faraci, F. M. Context-dependent effects of SOCS3 in angiotensin II-induced vascular dysfunction and hypertension in mice: mechanisms and role of bone marrow-derived cells. Am. J. Physiol. Heart Circ. Physiol. 311, H146–H156 (2016).

    Article  Google Scholar 

  142. Wilson, H. M. SOCS proteins in macrophage polarization and function. Front. Immunol. 5, 357 (2014).

    Article  Google Scholar 

  143. Cai, W.-J. et al. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc. Res. 76, 29–40 (2007).

    Article  CAS  Google Scholar 

  144. Wang, M. J. et al. The hydrogen sulfide donor NaHS promotes angiogenesis in a rat model of hind limb ischemia. Antioxid. Redox Signal. 12, 1065–1077 (2010).

    Article  CAS  Google Scholar 

  145. Ouma, G. O., Zafrir, B., Mohler, E. R. 3rd & Flugelman, M. Y. Therapeutic angiogenesis in critical limb ischemia. Angiology 64, 466–480 (2013).

    Article  Google Scholar 

  146. Annex, B. H. & Cooke, J. P. New directions in therapeutic angiogenesis and arteriogenesis in peripheral arterial disease. Circulation Res. 128, 1944–1957 (2021).

    Article  CAS  Google Scholar 

  147. Rajendran, S., Shen, X., Glawe, J., Kolluru, G. K. & Kevil, C. G. Nitric oxide and hydrogen sulfide regulation of ischemic vascular growth and remodeling. Compr. Physiol. 9, 1213–1247 (2019).

    Article  Google Scholar 

  148. Hoefer, I. E. Something is rotten in the state of angiogenesis–H2S as gaseous stimulator of angiogenesis. Cardiovasc. Res. 76, 1–2 (2007).

    Article  CAS  Google Scholar 

  149. Chiu, J. J. & Chien, S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91, 327–387 (2011).

    Article  Google Scholar 

  150. Shyy, Y. J., Hsieh, H. J., Usami, S. & Chien, S. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc. Natl Acad. Sci. USA 91, 4678–4682 (1994).

    Article  CAS  Google Scholar 

  151. Rao, R. M., Yang, L., Garcia-Cardena, G. & Luscinskas, F. W. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ. Res. 101, 234–247 (2007).

    Article  CAS  Google Scholar 

  152. Yuan, S. et al. Cystathionine γ-lyase modulates flow-dependent vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 38, 2126–2136 (2018).

    Article  CAS  Google Scholar 

  153. Bibli, S. I. et al. Cystathionine γ-lyase sulfhydrates the RNA binding protein human antigen R to preserve endothelial cell function and delay atherogenesis. Circulation 139, 101–114 (2019).

    Article  CAS  Google Scholar 

  154. Bibli, S.-I. et al. Shear stress regulates cystathionine γ lyase expression to preserve endothelial redox balance and reduce membrane lipid peroxidation. Redox Biol. 28, 101379 (2020).

    Article  CAS  Google Scholar 

  155. Tsioufis C., Mantzouranis E., Kalos T., Konstantinidis D. & Tousoulis D. in Coronary Artery Disease Ch. 1.4 (ed. Tousoulis, D.) 43–66 (Academic Press, 2018).

  156. Sukriti, S., Tauseef, M., Yazbeck, P. & Mehta, D. Mechanisms regulating endothelial permeability. Pulm. Circ. 4, 535–551 (2014).

    Article  Google Scholar 

  157. Yuan, S. & Kevil, C. G. Nitric oxide and hydrogen sulfide regulation of ischemic vascular remodeling. Microcirculation 23, 134–145 (2016).

    Article  CAS  Google Scholar 

  158. Lv, B. et al. Hydrogen sulfide and vascular regulation–an update. J. Adv. Res. 27, 85–97 (2021).

    Article  CAS  Google Scholar 

  159. Claesson-Welsh, L., Dejana, E. & McDonald, D. M. Permeability of the endothelial barrier: identifying and reconciling controversies. Trends Mol. Med. 27, 314–331 (2021).

    Article  CAS  Google Scholar 

  160. Geng, Y. et al. Hydrogen sulfide inhalation decreases early blood–brain barrier permeability and brain edema induced by cardiac arrest and resuscitation. J. Cereb. Blood Flow. Metab. 35, 494–500 (2015).

    Article  CAS  Google Scholar 

  161. Behera, J., Kelly, K. E. & Tyagi, N. Hydrogen sulfide prevents ethanol-induced ZO-1 CpG promoter hypermethylation-dependent vascular permeability via miR-218/DNMT3a axis. J. Cell Physiol. 236, 6852–6867 (2021).

    Article  CAS  Google Scholar 

  162. Cui, Y. et al. Hydrogen sulfide ameliorates early brain injury following subarachnoid hemorrhage in rats. Mol. Neurobiol. 53, 3646–3657 (2016).

    Article  CAS  Google Scholar 

  163. Wang, T. et al. Hydrogen sulfide attenuates particulate matter-induced human lung endothelial barrier disruption via combined reactive oxygen species scavenging and Akt activation. Am. J. Respir. Cell Mol. Biol. 47, 491–496 (2012).

    Article  CAS  Google Scholar 

  164. Yuan, S. et al. Hydrogen sulfide metabolism regulates endothelial solute barrier function. Redox Biol. 9, 157–166 (2016).

    Article  CAS  Google Scholar 

  165. Suzuki, Y., Nagai, N. & Umemura, K. A review of the mechanisms of blood–brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia. Front. Cell. Neurosci. 10, 2 (2016).

    Article  Google Scholar 

  166. Kadry, H., Noorani, B. & Cucullo, L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17, 69 (2020).

    Article  Google Scholar 

  167. Dai, L. et al. Hydrogen sulfide inhibited L-type calcium channels (CaV1.2) via up-regulation of the channel sulfhydration in vascular smooth muscle cells. Eur. J. Pharmacol. 858, 172455 (2019).

    Article  CAS  Google Scholar 

  168. Zhang, Q., Chen, J., Qin, Y., Wang, J. & Zhou, L. Mutations in voltage-gated L-type calcium channel: implications in cardiac arrhythmia. Channels 12, 201–218 (2018).

    Article  Google Scholar 

  169. Munaron, L., Avanzato, D., Moccia, F. & Mancardi, D. Hydrogen sulfide as a regulator of calcium channels. Cell Calcium 53, 77–84 (2013).

    Article  CAS  Google Scholar 

  170. Swaminathan, P. D. et al. Oxidized CaMKII causes cardiac sinus node dysfunction in mice. J. Clin. Invest 121, 3277–3288 (2011).

    Article  CAS  Google Scholar 

  171. Purohit, A. et al. Oxidized Ca(2+)/calmodulin-dependent protein kinase II triggers atrial fibrillation. Circulation 128, 1748–1757 (2013).

    Article  CAS  Google Scholar 

  172. Swaminathan, P. D. & Anderson, M. E. CaMKII inhibition: breaking the cycle of electrical storm? Circulation 123, 2183–2186 (2011).

    Article  Google Scholar 

  173. Wu, D. et al. Amelioration of mitochondrial dysfunction in heart failure through S-sulfhydration of Ca(2+)/calmodulin-dependent protein kinase II. Redox Biol. 19, 250–262 (2018).

    Article  CAS  Google Scholar 

  174. Zhong, G. Z. et al. Hydrogen sulfide opens the KATP channel on rat atrial and ventricular myocytes. Cardiology 115, 120–126 (2010).

    Article  CAS  Google Scholar 

  175. Kang, M., Hashimoto, A., Gade, A. & Akbarali, H. I. Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the KATP channel complex. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G532–G539 (2015).

    Article  CAS  Google Scholar 

  176. Lu, G. et al. H2S inhibits angiotensin II-induced atrial Kv1.5 upregulation by attenuating Nox4-mediated ROS generation during atrial fibrillation. Biochem. Biophys. Res. Commun. 483, 534–540 (2017).

    Article  CAS  Google Scholar 

  177. Zhang, Y. et al. Hydrogen sulfide suppresses transforming growth factor-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts. Sci. China Life Sci. 58, 1126–1134 (2015).

    Article  CAS  Google Scholar 

  178. Krul, S. P. et al. Atrial fibrosis and conduction slowing in the left atrial appendage of patients undergoing thoracoscopic surgical pulmonary vein isolation for atrial fibrillation. Circ. Arrhythm. Electrophysiol. 8, 288–295 (2015).

    Article  Google Scholar 

  179. Xue, X. et al. Exogenous hydrogen sulfide reduces atrial remodeling and atrial fibrillation induced by diabetes mellitus via activation of the PI3K/Akt/eNOS pathway. Mol. Med. Rep. 22, 1759–1766 (2020).

    Article  CAS  Google Scholar 

  180. Watts, M. et al. Decreased bioavailability of hydrogen sulfide links vascular endothelium and atrial remodeling in atrial fibrillation. Redox Biol. 38, 101817 (2021).

    Article  CAS  Google Scholar 

  181. Sun, X. et al. A long-term and slow-releasing hydrogen sulfide donor protects against myocardial ischemia/reperfusion injury. Sci. Rep. 7, 3541 (2017).

    Article  Google Scholar 

  182. Bilska-Wilkosz, A. et al. Lipoic acid as a possible pharmacological source of hydrogen sulfide/sulfane sulfur. Molecules 22, 388 (2017).

    Article  Google Scholar 

  183. Dudek, M. & Meng, Q. J. Running on time: the role of circadian clocks in the musculoskeletal system. Biochem. J. 463, 1–8 (2014).

    Article  CAS  Google Scholar 

  184. Dudek, M. et al. Alpha lipoic acid protects the heart against myocardial post ischemia-reperfusion arrhythmias via KATP channel activation in isolated rat hearts. Pharmacol. Rep. 66, 499–504 (2014).

    Article  CAS  Google Scholar 

  185. Sun, Y. G., Wang, X. Y., Chen, X., Shen, C. X. & Li, Y. G. Hydrogen sulfide improves cardiomyocytes electrical remodeling post ischemia/reperfusion injury in rats. Int. J. Clin. Exp. Pathol. 8, 474–481 (2015).

    Google Scholar 

  186. Whiteman, M., Karwi, Q. G., Wood, M. E. & Baxter, G. F. Mitochondria-targeted hydrogen sulfide (H2S), but not untargeted H2S, reverses ventricular arrhythmia at reperfusion [abstract 176]. Free Radic. Biol. Med. 112, 124–125 (2017).

    Article  Google Scholar 

  187. Ertugrul, I. A. et al. Donor heart preservation with hydrogen sulfide: a systematic review and meta-analysis. Int. J. Mol. Sci. 22, 5737 (2021).

    Article  CAS  Google Scholar 

  188. Myszkowska, J., Derevenkov, I., Makarov, S. V., Spiekerkoetter, U. & Hannibal, L. Biosynthesis, quantification and genetic diseases of the smallest signaling thiol metabolite: hydrogen sulfide. Antioxidants 10, 1065 (2021).

    Article  CAS  Google Scholar 

  189. Zaorska, E., Tomasova, L., Koszelewski, D., Ostaszewski, R. & Ufnal, M. Hydrogen sulfide in pharmacotherapy, beyond the hydrogen sulfide-donors. Biomolecules 10, 323 (2020).

    Article  CAS  Google Scholar 

  190. Chen, L. et al. Imbalance of endogenous homocysteine and hydrogen sulfide metabolic pathway in essential hypertensive children. Chin. Med. J. 120, 389–393 (2007).

    Article  CAS  Google Scholar 

  191. Sun, N. L., Xi, Y., Yang, S. N., Ma, Z. & Tang, C. S. Plasma hydrogen sulfide and homocysteine levels in hypertensive patients with different blood pressure levels and complications [Chinese]. Zhonghua Xin Xue Guan Bing. Za Zhi 35, 1145–81148 (2007).

    CAS  Google Scholar 

  192. Bradley, J. M., Organ, C. L. & Lefer, D. J. Garlic-derived organic polysulfides and myocardial protection. J. Nutr. 146, 403s–409s (2016).

    Article  CAS  Google Scholar 

  193. Szabo, C. & Papapetropoulos, A. International union of basic and clinical pharmacology. CII: pharmacological modulation of H(2)S levels: H(2)S donors and H(2)S biosynthesis inhibitors. Pharmacol. Rev. 69, 497–564 (2017).

    Article  CAS  Google Scholar 

  194. D’Huart, E. et al. Physico-chemical stability of sodium thiosulfate infusion solutions in polyolefin bags at room temperature over a period of 24 hours. Pharm. Technol. Hospital Pharm. 3, 135–142 (2018).

    Article  Google Scholar 

  195. Kannan, S., Boovarahan, S. R., Rengaraju, J., Prem, P. & Kurian, G. A. Attenuation of cardiac ischemia-reperfusion injury by sodium thiosulfate is partially dependent on the effect of cystathione beta synthase in the myocardium. Cell Biochem. Biophys. 77, 261–272 (2019).

    Article  CAS  Google Scholar 

  196. Nguyen, I. T. N. et al. Cardiac protection by oral sodium thiosulfate in a rat model of L-NNA-induced heart disease. Front. Pharmacol. 12, 650968 (2021).

    Article  CAS  Google Scholar 

  197. Sen, U. et al. Cardioprotective role of sodium thiosulfate on chronic heart failure by modulating endogenous H2S generation. Pharmacology 82, 201–213 (2008).

    Article  CAS  Google Scholar 

  198. Snijder, P. M. et al. Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates angiotensin II-induced hypertensive heart disease in rats. Br. J. Pharmacol. 172, 1494–1504 (2015).

    Article  CAS  Google Scholar 

  199. Szczesny, B. et al. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 41, 120–130 (2014).

    Article  CAS  Google Scholar 

  200. Zhu, C. et al. Supplementing preservation solution with mitochondria-targeted H2S donor AP39 protects cardiac grafts from prolonged cold ischemia-reperfusion injury in heart transplantation. Am. J. Transpl. 19, 3139–3148 (2019).

    Article  CAS  Google Scholar 

  201. Wallace, J. L., Caliendo, G., Santagada, V., Cirino, G. & Fiorucci, S. Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology 132, 261–271 (2007).

    Article  CAS  Google Scholar 

  202. Chakraborty, P. K. et al. Cystathionine β-synthase regulates mitochondrial morphogenesis in ovarian cancer. FASEB J. 32, 4145–4157 (2018).

    Article  CAS  Google Scholar 

  203. Chen, L. et al. Mitochondrial fusion protein Mfn2 and its role in heart failure. Front. Mol. Biosci. 8, 681237 (2021).

    Article  CAS  Google Scholar 

  204. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02278276 (2015).

  205. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02899364 (2021).

  206. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03410537 (2018).

  207. Sun, Q. et al. Taurine supplementation lowers blood pressure and improves vascular function in prehypertension: randomized, double-blind, placebo-controlled study. Hypertension 67, 541–549 (2016).

    Article  CAS  Google Scholar 

  208. Kip, P. et al. Insights from a short-term protein-calorie restriction exploratory trial in elective carotid endarterectomy patients. Vasc. Endovasc. Surg. 53, 470–476 (2019).

    Article  Google Scholar 

  209. Bordia, A., Verma, S. K. & Srivastava, K. C. Effect of garlic (Allium sativum) on blood lipids, blood sugar, fibrinogen and fibrinolytic activity in patients with coronary artery disease. Prostaglandins Leukot. Essent. Fat. Acids 58, 257–263 (1998).

    Article  CAS  Google Scholar 

  210. Zhang, X. H. et al. A randomized trial of the effects of garlic oil upon coronary heart disease risk factors in trained male runners. Blood Coagul. Fibrinolysis 12, 67–74 (2001).

    Article  CAS  Google Scholar 

  211. Cheng, W. L. et al. Clinical study on effect of Garlicin in stabilizing the carotid artery atherosclerotic plaque in patients with primary hypertension and coronary artery disease. Chin. J. Integr. Med. 12, 166–170 (2006).

    Article  CAS  Google Scholar 

  212. Jeyaraj, S., Shivaji, G., Jeyaraj, S. D. & Vengatesan, A. Effect of combined supplementation of fish oil with garlic pearls on the serum lipid profile in hypercholesterolemic subjects. Indian Heart J. 57, 327–331 (2005).

    Google Scholar 

  213. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03829605 (2019).

  214. Fischer E. in Untersuchungen aus Verschiedenen Gebieten (ed. Bergmann, M.) 117–119 (Springer, 1924).

  215. D’Alessandro, A. et al. AltitudeOmics: red blood cell metabolic adaptation to high altitude hypoxia. J. Proteome Res. 15, 3883–3895 (2016).

    Article  Google Scholar 

  216. Revsbech, I. G. et al. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation. Free Radic. Biol. Med. 73, 349–357 (2014).

    Article  CAS  Google Scholar 

  217. Shen, X. et al. Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic. Biol. Med. 60, 195–200 (2013).

    Article  CAS  Google Scholar 

  218. Doeller, J. E. et al. Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal. Biochem. 341, 40–51 (2005).

    Article  CAS  Google Scholar 

  219. Koenitzer, J. R. et al. Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. Am. J. Physiol. Heart Circ. Physiol. 292, H1953–H1960 (2007).

    Article  CAS  Google Scholar 

  220. Whitfield, N. L., Kreimier, E. L., Verdial, F. C., Skovgaard, N. & Olson, K. R. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1930–R1937 (2008).

    Article  CAS  Google Scholar 

  221. Furne, J., Saeed, A. & Levitt, M. D. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1479–R1485 (2008).

    Article  CAS  Google Scholar 

  222. Levitt, M. D., Abdel-Rehim, M. S. & Furne, J. Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid. Redox Signal. 15, 373–378 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by an LSUHSC-S CCDS COVID-19 Research Award and CoBRE Pilot Grant Award to G.K.K; an LSUHSC-S CCDS COVID-19 Research Award and CoBRE Project Grant Award to P.D.; and an Institutional Development Award (IDeA) from the National Institutes of General Medical Sciences of the NIH under grant number GM121307 and HL149264 from the National Heart, Lung, and Blood Institute of the NIH to C.G.K.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article. G.K.K., R.E.S., P.D. and C.G.K. wrote the manuscript. G.K.K., R.E.S., X.S. and C.G.K. reviewed and edited the article before submission.

Corresponding author

Correspondence to Christopher G. Kevil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolluru, G.K., Shackelford, R.E., Shen, X. et al. Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol 20, 109–125 (2023). https://doi.org/10.1038/s41569-022-00741-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-022-00741-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing