Abstract
The promised industrial applications of quantum computers often rest on their anticipated ability to perform accurate, efficient quantum chemical calculations. Computational drug discovery relies on accurate predictions of how candidate drugs interact with their targets in a cellular environment involving several thousands of atoms at finite temperatures. Although quantum computers are still far from being used as daily tools in the pharmaceutical industry, here we explore the challenges and opportunities of applying quantum computers to drug design. We discuss where these could transform industrial research and identify the substantial further developments needed to reach this goal.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
£169.00 per year
only £14.08 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical r&d efficiency. Nat. Rev. Drug Discov. 11, 191–200 (2012).
Allen, B. K. et al. Design of a systemic small molecule clinical STING agonist using physics-based simulations and artificial intelligence. Preprint at https://www.biorxiv.org/content/10.1101/2022.05.23.493001v4 (2022).
Palermo, G. & De Vivo, M. in Computational Chemistry for Drug Discovery 1–15 (Springer, 2014); https://doi.org/10.1007/978-94-007-6178-0_100975-1
Shukla, R. & Tripathi, T. in Molecular Dynamics Simulation in Drug Discovery: Opportunities and Challenges 295–316 (Springer, 2021); https://doi.org/10.1007/978-981-15-8936-2_12
Irle, S., Vuong, V. Q., Elayyan, M. H., Talipov, M. R. & Abel, S. M. in Protein Molecular Dynamics Simulations with Approximate QM: What Can We Learn? 149–161 (Springer, 2020); https://doi.org/10.1007/978-1-0716-0282-9_10
Heifetz, A. Quantum Mechanics in Drug Discovery. Methods in Molecular Biology (Springer, 2020); https://books.google.ch/books?id=yYgeygEACAAJ
Maltarollo, V. G., Gertrudes, J. C., Oliveira, P. R. & Honorio, K. M. Applying machine learning techniques for ADME-Tox prediction: a review. Expert Opin. Drug Metab. Toxicol. 11, 259–271 (2015).
Jayatunga, M. K., Xie, W., Ruder, L., Schulze, U. & Meier, C. AI in small-molecule drug discovery: a coming wave? Nat. Rev. Drug Discov. 21, 175–176 (2022).
Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).
Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019).
Bauer, B., Bravyi, S., Motta, M. & Chan, G. K.-L. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 120, 12685–12717 (2020).
Liu, H. et al. Prospects of quantum computing for molecular sciences. Mater. Theory 6, 11 (2022).
Baiardi, A., Christandl, M. & Reiher, M. Quantum computing for molecular biology. ChemBioChem 24, e202300120 (2023).
Blunt, N. S. et al. Perspective on the current state-of-the-art of quantum computing for drug discovery applications. J. Chem. Theory Comput. 18, 7001–7023 (2022).
Lee, S. et al. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun. 14, 1952 (2023).
Khedkar, A. & Roemelt, M. Modern multireference methods and their application in transition metal chemistry. Phys. Chem. Chem. Phys. 23, 17097–17112 (2021).
Pernal, K. Electron correlation from the adiabatic connection for multireference wave functions. Phys. Rev. Lett. 120, 013001 (2018).
Bofill, J. M. & Pulay, P. The unrestricted natural orbital–complete active space (UNO–CAS) method: an inexpensive alternative to the complete active space–self-consistent-field (CAS–SCF) method. J. Chem. Phys. 90, 3637–3646 (1989).
Li, Z., Li, J., Dattani, N. S., Umrigar, C. J. & Chan, G. K.-L. The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations. J. Chem. Phys. 150, 024302 (2019).
Goings, J. J. et al. Reliably assessing the electronic structure of cytochrome p450 on today’s classical computers and tomorrow’s quantum computers. Proc. Natl Acad. Sci. USA 119, e2203533119 (2022).
Lee, J. & Head-Gordon, M. Distinguishing artificial and essential symmetry breaking in a single determinant: approach and application to the C60, C36 and C20 fullerenes. Phys. Chem. Chem. Phys. 21, 4763–4778 (2019).
Cheng, L., Gauss, J., Ruscic, B., Armentrout, P. B. & Stanton, J. F. Bond dissociation energies for diatomic molecules containing 3d transition metals: benchmark scalar-relativistic coupled-cluster calculations for 20 molecules. J. Chem. Theory Comput. 13, 1044–1056 (2017).
Degroote, M., Henderson, T. M., Zhao, J., Dukelsky, J. & Scuseria, G. E. Polynomial similarity transformation theory: a smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian. Phys. Rev. B 93, 125124 (2016).
Rissler, J., Noack, R. M. & White, S. R. Measuring orbital interaction using quantum information theory. Chem. Phys. 323, 519–531 (2006).
Stein, C. J. & Reiher, M. Automated selection of active orbital spaces. J. Chem. Theory Comput. 12, 1760–1771 (2016).
Stein, C. J. & Reiher, M. Measuring multi-configurational character by orbital entanglement. Mol. Phys. 115, 2110–2119 (2017).
Ding, L. et al. Concept of orbital entanglement and correlation in quantum chemistry. J. Chem. Theory Comput. 17, 79–95 (2021).
Cao, Y., Romero, J. & Aspuru-Guzik, A. Potential of quantum computing for drug discovery. IBM J. Res. Dev. 62, 6:1–6:20 (2018).
Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293 (2015).
Wiebe, N. Key questions for the quantum machine learner to ask themselves. New J. Phys. 22, 091001 (2020).
Tang, E. Dequantizing algorithms to understand quantum advantage in machine learning. Nat. Rev. Phys. 4, 692–693 (2022).
Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).
McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C. & Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 92, 015003 (2020).
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).
Quek, Y., França, D. S., Khatri, S., Meyer, J. J. & Eisert, J. Exponentially tighter bounds on limitations of quantum error mitigation. Preprint at https://arxiv.org/abs/2210.11505 (2022).
Takagi, R., Endo, S., Minagawa, S. & Gu, M. Fundamental limits of quantum error mitigation. npj Quantum Inf. 8, 114 (2022).
Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017).
Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).
Lee, J. et al. Even more efficient quantum computations of chemistry through tensor hypercontraction. PRX Quantum 2, 030305 (2021).
Ge, Y., Tura, J. & Cirac, J. I. Faster ground state preparation and high-precision ground energy estimation with fewer qubits. J. Math. Phys. 60, 022202 (2019).
Lin, L. & Tong, Y. Near-optimal ground state preparation. Quantum 4, 372 (2020).
Steudtner, M. et al. Fault-tolerant quantum computation of molecular observables. Quantum 7, 1164 (2023).
O’Brien, T. E. et al. Efficient quantum computation of molecular forces and other energy gradients. Phys. Rev. Res. 4, 043210 (2022).
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
Vigliar, C. et al. Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).
Poulin, D., Kitaev, A., Steiger, D. S., Hastings, M. B. & Troyer, M. Quantum algorithm for spectral measurement with a lower gate count. Phys. Rev. Lett. 121, 010501 (2018).
Wecker, D. et al. Solving strongly correlated electron models on a quantum computer. Phys. Rev. A 92, 062318 (2015).
Kenakin, T. P. in Pharmacology in Drug Discovery and Development 2nd edn (ed. Kenakin, T. P.) Ch. 1, 1–20 (Academic, 2017); https://www.sciencedirect.com/science/article/pii/B9780128037522000016
Polishchuk, P. G., Madzhidov, T. I. & Varnek, A. Estimation of the size of drug-like chemical space based on GDB-17 data. J. Comput. Aided Mol. Des. 27, 675–679 (2013).
Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).
Cournia, Z., Allen, B. & Sherman, W. Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J. Chem. Inf. Model. 57, 2911–2937 (2017).
Jiménez-Luna, J., Grisoni, F., Weskamp, N. & Schneider, G. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opin. Drug Discov. 16, 949–959 (2021).
Tinberg, C. E. et al. Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501, 212–216 (2013).
King, E., Aitchison, E., Li, H. & Luo, R. Recent developments in free energy calculations for drug discovery. Front. Mol. Biosci. 8 10.3389/fmolb.2021.712085 (2021).
Kaynak, B. T. et al. Sampling of protein conformational space using hybrid simulations: a critical assessment of recent methods. Front. Mol. Biosci. 9, 832847 (2022).
Song, L. F. & Merz Jr, K. M. Evolution of alchemical free energy methods in drug discovery. J. Chem. Inf. Model. 60, 5308–5318 (2020).
Karplus, M. & McCammon, J. A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9, 646–652 (2002).
Amaro, R. E. & Mulholland, A. J. Multiscale methods in drug design bridge chemical and biological complexity in the search for cures. Nat. Rev. Chem. 2, 0148 (2018).
von Burg, V. et al. Quantum computing enhanced computational catalysis. Phys. Rev. Res. 3, 033055 (2021).
Taylor, C. J. et al. A brief introduction to chemical reaction optimization. Chem. Rev. 123, 3089–3126 (2023).
Xin, D. et al. Development of a 13C NMR chemical shift prediction procedure using B3LYP/cc-pVDZ and empirically derived systematic error correction terms: A computational small molecule structure elucidation method. J. Org. Chem. 82, 5135–5145 (2017).
Joyce, L. A. et al. Beyond optical rotation: what’s left is not always right in total synthesis. Chem. Sci. 9, 415–424 (2017).
Merten, C., Golub, T. P. & Kreienborg, N. M. Absolute configurations of synthetic molecular scaffolds from vibrational CD spectroscopy. J. Org. Chem. 84, 8797–8814 (2019).
O’Brien, T. E. et al. Quantum computation of molecular structure using data from challenging-to-classically-simulate nuclear magnetic resonance experiments. PRX Quantum 3, 030345 (2022).
Gao, P., Zhang, J., Peng, Q., Zhang, J. & Glezakou, V.-A. General protocol for the accurate prediction of molecular 13C/1H NMR chemical shifts via machine learning augmented DFT. J. Chem. Inf. Model. 60, 3746–3754 (2020).
Smith, B. R., Eastman, C. M. & Njardarson, J. T. Beyond C, H, O and N! analysis of the elemental composition of US FDA approved drug architectures. J. Med. Chem. 57, 9764–9773 (2014).
Phillips, M. A. & Pombeiro, J. A. Transition metal-based prodrugs for anticancer drug delivery. Curr. Med. Chem. 26, 7476–7519 (2019).
Lee, Y.-C., Brell, C. G. & Flammia, S. T. Topological quantum error correction in the Kitaev honeycomb model. J. Stat. Mech. Theory Exp. 2017, 083106 (2017).
Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).
Berry, D. W., Gidney, C., Motta, M., McClean, J. R. & Babbush, R. Qubitization of arbitrary basis quantum chemistry leveraging sparsity and low rank factorization. Quantum 3, 208 (2019).
Gilyén, A., Su, Y., Charikar, M., Low, G. H. & Wiebe, N. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing 193–204 ACM (2019). https://dl.acm.org/doi/10.1145/3313276.3316366
Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).
Tubman, N. M. et al. Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices. Preprint at https://arxiv.org/pdf/1809.05523.pdf (2018).
Mitarai, K., Toyoizumi, K. & Mizukami, W. Perturbation theory with quantum signal processing. Quantum 7, 1000 (2023).
Barcza, G., Legeza, O., Marti, K. H. & Reiher, M. Quantum-information analysis of electronic states of different molecular structures. Phys. Rev. A 83, 012508 (2011).
Haghshenas, R., Gray, J., Potter, A. C. & Chan, G. K.-L. Variational power of quantum circuit tensor networks. Phys. Rev. X 12, 011047 (2022).
Gilyén, A., Arunachalam, S. & Wiebe, N. in Optimizing Quantum Optimization Algorithms via Faster Quantum Gradient Computation 1425–1444 (Society for Industrial and Applied Mathematics, 2019); https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.87
Babbush, R. et al. Quantum simulation of exact electron dynamics can be more efficient than classical mean-field methods. Nat. Commun. 14, 4058 (2023).
Simon, S. et al. Improved precision scaling for simulating coupled quantum-classical dynamics. Preprint at https://arxiv.org/abs/2307.13033 (2023).
Somma, R. D., Batista, C. D. & Ortiz, G. Quantum approach to classical statistical mechanics. Phys. Rev. Lett. 99, 030603 (2007).
Babbush, R., Berry, D. W., Kothari, R., Somma, R. D. & Wiebe, N. Exponential quantum speedup in simulating coupled classical oscillators. Phys. Rev. X 13, 041041 (2023).
Jin, S., Liu, N. & Yu, Y. Time complexity analysis of quantum algorithms via linear representations for nonlinear ordinary and partial differential equations. J. Comput. Phys. 487, 112149 (2023).
Waldron, T. T., Schrift, G. L. & Murphy, K. P. The salt-dependence of a protein-ligand interaction: ion-protein binding energetics. J. Mol. Biol. 346, 895–905 (2005).
Petukh, M., Stefl, S. & Alexov, E. The role of protonation states in ligand-receptor recognition and binding. Curr. Pharm. Des. 19, 4182–4190 (2013).
Aleksić, S., Seeliger, D. & Brown, J. B. ADMET predictability at Boehringer Ingelheim: state-of-the-art, and do bigger datasets or algorithms make a difference? Mol. Inform. 41, 2100113 (2022).
Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).
McClean, J. R. et al. What the foundations of quantum computer science teach us about chemistry. J. Chem. Phys. 155, 150901 (2021).
Hastings, M. B., Wecker, D., Bauer, B. & Troyer, M. Improving quantum algorithms for quantum chemistry. Quantum Info. Comput. 15, 1–21 (2015).
Low, G. H. & Chuang, I. L. Hamiltonian simulation by qubitization. Quantum 3, 163 (2019).
Litinski, D. & Nickerson, N. Active volume: an architecture for efficient fault-tolerant quantum computers with limited non-local connections. Preprint at https://arxiv.org/pdf/2211.15465.pdf (2022).
Chen, E. H. et al. Calibrated decoders for experimental quantum error correction. Phys. Rev. Lett. 128, 110504 (2022).
Bravyi, S. et al. High-threshold and low-overhead fault-tolerant quantum memory. Preprint at https://arxiv.org/pdf/2308.07915.pdf (2023).
Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).
Acharya, R. et al. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).
Sehnal, D. et al. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 49, W431–W437 (2021).
Gibney, E. Hello quantum world! Google publishes landmark quantum supremacy claim. Nature 574, 461–462 (2019).
Bonagura, C. et al. High-resolution crystal structure of compound I intermediate of cytochrome c peroxidase (CcP). Biochemistry 42, 5600–5608 (2003).
Acknowledgements
We thank D. McConnell, A. Renner, C. Ehrendorfer, L. Pautasso, M. Möller and A. Pflanzer for comments on the various iterations of this Perspective. The molecules reported are visualized in Mol*96. We also thank F. Levi and R. Brierley for help in shaping the content and scope of this Perspective.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
R.B. (Google), R.M.P. (QC Ware) and N.C.R. (Google) have partial ownership in terms of stock or options in their respective companies. R.S., M.D., N.M., M.S. and C.U.-U. are employees of Boehringer Ingelheim, a research-driven global pharmaceutical company.
Peer review
Peer review information
Nature Physics thanks Andreas Goetz and the other, anonymous, reviewer for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Santagati, R., Aspuru-Guzik, A., Babbush, R. et al. Drug design on quantum computers. Nat. Phys. 20, 549–557 (2024). https://doi.org/10.1038/s41567-024-02411-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-024-02411-5