[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Layer-dependent evolution of electronic structures and correlations in rhombohedral multilayer graphene

Abstract

The recent discovery of superconductivity and magnetism in trilayer rhombohedral graphene (RG) establishes an ideal, untwisted platform to study strong correlation electronic phenomena. However, the correlated effects in multilayer RG have received limited attention, and, particularly, the evolution of the correlations with increasing layer number remains an unresolved question. Here we show the observation of layer-dependent electronic structures and correlations—under surprising liquid nitrogen temperature—in RG multilayers from 3 to 9 layers by using scanning tunnelling microscopy and spectroscopy. We explicitly determine layer-enhanced low-energy flat bands and interlayer coupling strengths. The former directly demonstrates the further flattening of low-energy bands in thicker RG, and the latter indicates the presence of varying interlayer interactions in RG multilayers. Moreover, we find significant splittings of the flat bands, ranging from ~50 meV to 80 meV, at 77 K when they are partially filled, indicating the emergence of interaction-induced strongly correlated states. Particularly, the strength of the correlated states is notably enhanced in thicker RG and reaches its maximum in the six-layer, validating directly theoretical predictions and establishing abundant new candidates for strongly correlated systems. Our results provide valuable insights into the layer dependence of the electronic properties in RG and demonstrate it as a suitable system for investigating robust and highly accessible correlated phases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topography and spectroscopy of rhombohedral multilayer graphene.
Fig. 2: Band structure evolution of rhombohedral multilayer graphene.
Fig. 3: Doping dependence of the flat-band LDOS peak.
Fig. 4: Layer dependence of electronic correlations.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information. Any other relevant data are available from the corresponding authors upon reasonable request.

Code availability

The code used for the modelling in this work is available from the corresponding authors upon reasonable request.

References

  1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  PubMed  Google Scholar 

  2. Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    CAS  PubMed  Google Scholar 

  3. Hao, Z. et al. Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    CAS  PubMed  Google Scholar 

  4. Tong, L.-H. et al. Spectroscopic visualization of flat bands in magic-angle twisted monolayer–bilayer graphene: coexistence of localization and delocalization. Phys. Rev. Lett. 128, 126401 (2022).

    CAS  PubMed  Google Scholar 

  5. Bistritzer, R. & MacDonald, A. H. Moire bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  PubMed  Google Scholar 

  7. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    CAS  PubMed  Google Scholar 

  8. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    CAS  PubMed  Google Scholar 

  9. Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020).

    CAS  PubMed  Google Scholar 

  10. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    CAS  PubMed  Google Scholar 

  11. Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).

    CAS  PubMed  Google Scholar 

  12. Xu, S. et al. Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nat. Phys. 17, 619–626 (2021).

    CAS  Google Scholar 

  13. Chen, S. et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    CAS  Google Scholar 

  14. Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    CAS  PubMed  Google Scholar 

  15. Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    CAS  Google Scholar 

  16. Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    CAS  PubMed  Google Scholar 

  17. Yang, J. et al. Spectroscopy signatures of electron correlations in a trilayer graphene/hBN moiré superlattice. Science 375, 6586 (2022).

    Google Scholar 

  18. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    CAS  PubMed  Google Scholar 

  19. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS  PubMed  Google Scholar 

  20. Olsen, R., van Gelderen, R. & Smith, C. M. Ferromagnetism in ABC-stacked trilayer graphene. Phys. Rev. B 87, 115414 (2013).

    Google Scholar 

  21. Kopnin, N. B., Ijäs, M., Harju, A. & Heikkilä, T. T. High-temperature surface superconductivity in rhombohedral graphite. Phys. Rev. B 87, 140503(R) (2013).

    Google Scholar 

  22. Wang, H., Gao, J.-H. & Zhang, F.-C. Flat band electrons and interactions in rhombohedral trilayer graphene. Phys. Rev. B 87, 155116 (2013).

    Google Scholar 

  23. Pierucci, D. et al. Evidence for flat bands near the Fermi level in epitaxial rhombohedral multilayer graphene. ACS Nano 9, 5432–5439 (2015).

    CAS  PubMed  Google Scholar 

  24. Henck, H. et al. Flat electronic bands in long sequences of rhombohedral-stacked graphene. Phys. Rev. B 97, 245421 (2018).

    CAS  Google Scholar 

  25. Zhang, F., Sahu, B., Min, H. & MacDonald, A. H. Band structure of ABC-stacked graphene trilayers. Phys. Rev. B 82, 035409 (2010).

    Google Scholar 

  26. Muten, J. H., Copeland, A. J. & McCann, E. Exchange interaction, disorder, and stacking faults in rhombohedral graphene multilayers. Phys. Rev. B 104, 035404 (2021).

    CAS  Google Scholar 

  27. Pamuk, B., Baima, J., Mauri, F. & Calandra, M. Magnetic gap opening in rhombohedral-stacked multilayer graphene from first principles. Phys. Rev. B 95, 075422 (2017).

    Google Scholar 

  28. Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    CAS  PubMed  Google Scholar 

  29. Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    CAS  PubMed  Google Scholar 

  30. Hagymási, I. et al. Observation of competing, correlated ground states in the flat band of rhombohedral graphite. Sci. Adv. 8, eabo6879 (2022).

    PubMed  PubMed Central  Google Scholar 

  31. Kerelsky, A. et al. Moiréless correlations in ABCA graphene. Proc. Natl Acad. Sci. USA 118, e2017366118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, Y. et al. Gate-tunable magnetism and giant magnetoresistance in suspended rhombohedral-stacked few-layer graphene. Nano Lett. 22, 5094–5099 (2022).

    CAS  PubMed  Google Scholar 

  33. Liu, K. et al. Spontaneous broken-symmetry insulator and metals in tetralayer rhombohedral graphene. Nat. Nanotechnol. 19, 188–195 (2023).

    PubMed  Google Scholar 

  34. Han, T. et al. Correlated insulator and Chern insulators in pentalayer rhombohedral-stacked graphene. Nat. Nanotechnol. 19, 181–187 (2023).

    PubMed  Google Scholar 

  35. Yin, L.-J. et al. High-magnetic-field tunneling spectra of ABC-stacked trilayer graphene on graphite. Phys. Rev. Lett. 122, 146802 (2019).

    CAS  PubMed  Google Scholar 

  36. Yin, L.-J. et al. Observation of chirality transition of quasiparticles at stacking solitons in trilayer graphene. Phys. Rev. B 95, 081402(R) (2017).

    Google Scholar 

  37. Xu, R. et al. Direct probing of the stacking order and electronic spectrum of rhombohedral trilayer graphene with scanning tunneling microscopy. Phys. Rev. B 91, 035410 (2015).

    Google Scholar 

  38. Yin, L.-J. et al. Imaging of nearly flat band induced atomic-scale negative differential conductivity in ABC-stacked trilayer graphene. Phys. Rev. B 102, 241403(R) (2020).

    Google Scholar 

  39. Yin, L.-J. et al. Imaging Friedel oscillations in rhombohedral trilayer graphene. Phys. Rev. B 107, L041404 (2023).

    CAS  Google Scholar 

  40. Slizovskiy, S., McCann, E., Koshino, M. & Fal’ko, V. I. Films of rhombohedral graphite as two-dimensional topological semimetals. Commun. Phys. 2, 164 (2019).

    CAS  Google Scholar 

  41. McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).

    PubMed  Google Scholar 

  42. Sun, D. et al. Spectroscopic measurement of interlayer screening in multilayer epitaxial graphene. Phys. Rev. Lett. 104, 136802 (2010).

    PubMed  Google Scholar 

  43. Ohta, T. et al. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 98, 206802 (2007).

    PubMed  Google Scholar 

  44. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    CAS  PubMed  Google Scholar 

  45. Ghahari, F. et al. An on/off Berry phase switch in circular graphene resonators. Science 356, 845–849 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, J., Jiang, Y.-P., Ma, X.-C. & Xue, Q.-K. Berry-phase switch in electrostatically confined topological surface states. Phys. Rev. Lett. 128, 126402 (2022).

    CAS  PubMed  Google Scholar 

  47. Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    CAS  PubMed  Google Scholar 

  48. Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    CAS  PubMed  Google Scholar 

  49. Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    CAS  PubMed  Google Scholar 

  50. Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019).

    CAS  Google Scholar 

  51. Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    CAS  PubMed  Google Scholar 

  52. Lee, Y. et al. Competition between spontaneous symmetry breaking and single-particle gaps in trilayer graphene. Nat. Commun. 5, 5656 (2014).

    CAS  PubMed  Google Scholar 

  53. Myhro, K. et al. Large tunable intrinsic gap in rhombohedral-stacked tetralayer graphene at half filling. 2D Mater. 5, 045013 (2018).

    CAS  Google Scholar 

  54. Huang, C. et al. Spin and orbital metallic magnetism in rhombohedral trilayer graphene. Phys. Rev. B 107, L121405 (2023).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers 12174095 (L.-J.Y.), 12174096 (Z.Q.), 62101185 (Y.T.), 12204164 (Li Zhang), 12304217 (S.Z.), 11904076 (W.-X.W.), 12474166 (L.-J.Y.), 12425405 (L.H.), 12404198 (Y.-N.R.) and 51972106 (Lijie Zhang)), the Natural Science Foundation of Hunan Province, China (grant number 2021JJ20026 (L.-J.Y.)), and the Strategic Priority Research Program of Chinese Academy of Sciences (grant number XDB30000000 (Z.Q.)). L.-J.Y. also acknowledges support from the Science and Technology Innovation Program of Hunan Province, China (grant number 2021RC3037), and the Natural Science Foundation of Chongqing, China (cstc2021jcyj-msxmX0381). We acknowledge the financial support from the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and Y.-Y.Z. fabricated the samples with the help of W.-Y.L., R.-J.Z. and S.-M.X. Y.Z., Y.-Y.Z. and L.-H.T. conducted the electrode fabrications and AFM characterizations with the help of Y.T., Y.W., X.Z., X.L., Y.H. and L.L. Y.Z., Y.-Y.Z. and L.-J.Y. performed the STM experiments and analysed the data. T.C., Q.T., C.Z., Y.-N.R., Li Zhang, Lijie Zhang and L.H. assisted with STM measurements. S.Z. performed the mean-field calculations. H.C. performed the tight-binding calculations. W.-X.W., Z.Q. and L.-J.Y. supervised the experiments. L.-J.Y. designed the project. Y.Z., Y.-Y.Z., S.Z. and L.-J.Y. wrote the paper with inputs from all the other authors.

Corresponding authors

Correspondence to Wen-Xiao Wang, Zhihui Qin or Long-Jing Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Peter Nemes-Incze and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Sections 1–7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhou, YY., Zhang, S. et al. Layer-dependent evolution of electronic structures and correlations in rhombohedral multilayer graphene. Nat. Nanotechnol. 20, 222–228 (2025). https://doi.org/10.1038/s41565-024-01822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-024-01822-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing