Abstract
The search for life on exoplanets is motivated by the universal ways in which life could modify its planetary environment. Atmospheric gases such as oxygen and methane are promising candidates for such environmental modification due to the evolutionary benefits their production would confer. However, confirming that these gases are produced by life, rather than by geochemical or astrophysical processes, will require a thorough understanding of planetary context, including the expected counterfactual atmospheric evolution for lifeless planets. Here, we evaluate current understanding of planetary context for several candidate biosignatures and their upcoming observability. We review the contextual framework for oxygen and describe how conjectured abiotic oxygen scenarios may be testable. In contrast to oxygen, current understanding of how planetary context controls non-biological methane (CH4) production is limited, even though CH4 biosignatures in anoxic atmospheres may be readily detectable with the James Webb Space Telescope. We assess environmental context for CH4 biosignatures and conclude that abundant atmospheric CH4 coexisting with CO2, and CO:CH4 ≪ 1 is suggestive of biological production, although precise thresholds are dependent on stellar context and sparsely characterized abiotic CH4 scenarios. A planetary context framework is also considered for alternative or agnostic biosignatures. Whatever the distribution of life in the Universe, observations of terrestrial exoplanets in coming decades will provide a quantitative understanding of the atmospheric evolution of lifeless worlds. This knowledge will inform future instrument requirements to either corroborate the presence of life elsewhere or confirm its apparent absence.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
£99.00 per year
only £8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data outputs from Supplementary Video 1 are available at https://doi.org/10.5281/zenodo.5719456.
Code availability
The Python code for our atmosphere evolution model is open source and available at https://doi.org/10.5281/zenodo.4539040.
References
Pathways to Discovery in Astronomy and Astrophysics for the 2020s (The National Academies Press, 2021).
Quanz, S. P. et al. Exoplanet science with a space-based mid-infrared nulling interferometer. Proc. SPIE https://doi.org/10.1117/12.2312051 (2018).
Baross, J. et al. The Limits of Organic Life in Planetary Systems (National Research Council of the National Academies, 2007).
Schrödinger, E. What is Life? The Physical Aspect of the Living Cell (Cambridge Univ. Press, 1944).
Moberg, C. Schrödinger’s What is Life?—the 75th anniversary of a book that inspired biology. Angew. Chem. Int. Ed. 132, 2570–2573 (2020).
Benner, S. A. Detecting Darwinism from molecules in the Enceladus plumes, Jupiter’s moons, and other planetary water lagoons. Astrobiology 17, 840–851 (2017).
Hoehler, T. M., Amend, J. P. & Shock, E. L. A ‘follow the energy’ approach for astrobiology. Astrobiology 7, 819–823 (2007).
Olson, S. L. et al. Atmospheric seasonality as an exoplanet biosignature. Astrophys. J. Lett. 858, L14 (2018).
Schwieterman, E. W. et al. Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18, 663–708 (2018).
Lovelock, J. E. A physical basis for life detection experiments. Nature 207, 568–570 (1965).
Owen, T. in Strategies for the Search for Life in the Universe (ed. Papagiannis, M.D.) 177–185 (Springer, 1980).
Meadows, V. S. et al. Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18, 630–662 (2018).
Gao, P., Hu, R., Robinson, T. D., Li, C. & Yung, Y. L. Stabilization of CO2 atmospheres on exoplanets around M dwarf stars. Astrophys. J. 806, 249–261 (2015).
Tian, F., France, K., Linsky, J. L., Mauas, P. J. & Vieytes, M. C. High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets. Earth Planet. Sci. Lett. 385, 22–27 (2014).
Harman, C., Schwieterman, E., Schottelkotte, J. C. & Kasting, J. Abiotic O2 levels on planets around F, G, K, and M stars: possible false positives for life? Astrophys. J. 812, 137 (2015).
Domagal-Goldman, S. D., Segura, A., Claire, M. W., Robinson, T. D. & Meadows, V. S. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth. Astrophys. J. 792, 90 (2014).
Harman, C. et al. Abiotic O2 levels on planets around F, G, K, and M stars: effects of lightning-produced catalysts in eliminating oxygen false positives. Astrophys. J. 866, 56 (2018).
Hu, R., Peterson, L. & Wolf, E. T. O2-and CO-rich atmospheres for potentially habitable environments on TRAPPIST-1 planets. Astrophys. J. 888, 122 (2020).
Grenfell, J. L. et al. Limitation of atmospheric composition by combustion–explosion in exoplanetary atmospheres. Astrophys. J. 861, 38 (2018).
Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15, 119–143 (2015).
Schaefer, L., Wordsworth, R. D., Berta-Thompson, Z. & Sasselov, D. Predictions of the atmospheric composition of GJ 1132b. Astrophys. J. 829, 63 (2016).
Wordsworth, R., Schaefer, L. & Fischer, R. Redox evolution via gravitational differentiation on low-mass planets: implications for abiotic oxygen, water loss, and habitability. Astron. J. 155, 195 (2018).
Barth, P. et al. Magma ocean evolution of the TRAPPIST-1 planets. Astrobiology 21, 1325–1349 (2021).
Wordsworth, R. & Pierrehumbert, R. Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys. J. Lett. 785, L20 (2014).
Kleinböhl, A., Willacy, K., Friedson, A. J., Chen, P. & Swain, M. R. Buildup of abiotic oxygen and ozone in moist atmospheres of temperate terrestrial exoplanets and its impact on the spectral fingerprint in transit observations. Astrophys. J. 862, 92 (2018).
Krissansen-Totton, J., Fortney, J. J., Nimmo, F. & Wogan, N. Oxygen false positives on habitable zone planets around sun-like stars. AGU Adv. 2, e2020AV000294 (2021).
Noack, L. et al. Water-rich planets: how habitable is a water layer deeper than on Earth? Icarus 277, 215–236 (2016).
Kite, E. S. & Ford, E. B. Habitability of exoplanet waterworlds. Astrophys. J. 864, 75 (2018).
Cowan, N. B. & Abbot, D. S. Water cycling between ocean and mantle: super-Earths need not be waterworlds. Astrophys. J. 781, 27 (2014).
Lustig-Yaeger, J. et al. Detecting ocean glint on exoplanets using multiphase mapping. Astron. J. 156, 301 (2018).
Fujii, Y. et al. Colors of a second Earth: estimating the fractional areas of ocean, land, and vegetation of Earth-like exoplanets. Astrophys. J. 715, 866 (2010).
Cowan, N. B. et al. Alien maps of an ocean-bearing world. Astrophys. J. 700, 915 (2009).
Fauchez, T. J. et al. Sensitive probing of exoplanetary oxygen via mid-infrared collisional absorption. Nat. Astron. 4, 372–376 (2020).
Krissansen-Totton, J., Garland, R., Irwin, P. & Catling, D. C. Detectability of biosignatures in anoxic atmospheres with the James Webb Space Telescope: a TRAPPIST-1e case study. Astron. J. 156, 114 (2018).
Lustig-Yaeger, J., Meadows, V. S. & Lincowski, A. P. The detectability and characterization of the TRAPPIST-1 exoplanet atmospheres with JWST. Astron. J. 158, 27 (2019).
Wunderlich, F. et al. Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs. Astron. Astrophys. 624, A49 (2019).
Rodler, F. & López-Morales, M. Feasibility studies for the detection of O2 in an Earth-like exoplanet. Astrophys. J. 781, 54 (2014).
Snellen, I., de Kok, R., Le Poole, R., Brogi, M. & Birkby, J. Finding extraterrestrial life using ground-based high-dispersion spectroscopy. Astrophys. J. 764, 182 (2013).
Leung, M., Meadows, V. S. & Lustig-Yaeger, J. High-resolution spectral discriminants of ocean loss for M-dwarf terrestrial exoplanets. Astron. J. 160, 11 (2020).
Lincowski, A. P. et al. Evolved climates and observational discriminants for the TRAPPIST-1 planetary system. Astrophys. J. 867, 76 (2018).
Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017).
Gillon, M. et al. The TRAPPIST-1 JWST Community Initiative. Preprint at https://arxiv.org/abs/2002.04798 (2020).
Donahue, T., Hoffman, J., Hodges, R. & Watson, A. Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982).
Kiefer, W. S. et al. Venus, Earth’s divergent twin?: Testing evolutionary models for Venus with the DAVINCI+ mission. In European Planetary Science Congress 2020 EPSC2020-2534 (EPS, 2020).
Smrekar, S. et al. VERITAS (Venus Emissivity, Radio Science, InSAR, Topography And Spectroscopy): A proposed discovery mission. In European Planetary Science Congress 2020 EPSC2020-447 (EPS, 2020).
Widemann, T., Titov, D., Wilson, C., & Ghail, R. EnVision: Europe’s proposed mission to Venus. In 43rd COSPAR Scientific Assembly (COSPAR, 2021).
Lehmer, O. R., Catling, D. C., Parenteau, M. N. & Hoehler, T. M. The productivity of oxygenic photosynthesis around cool, M dwarf stars. Astrophys. J. 859, 171 (2018).
Schindler, T. L. & Kasting, J. F. Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases. Icarus 145, 262–271 (2000).
Des Marais, D. J. et al. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2, 153–181 (2002).
Kasting, J. F. Methane and climate during the Precambrian era. Precamb. Res. 137, 119–129 (2005).
Guzmán-Marmolejo, A., Segura, A. & Escobar-Briones, E. Abiotic production of methane in terrestrial planets. Astrobiology 13, 550–559 (2013).
Arney, G., Domagal-Goldman, S. D. & Meadows, V. S. Organic haze as a biosignature in anoxic Earth-like atmospheres. Astrobiology 18, 311–329 (2018).
Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).
Wolfe, J. M. & Fournier, G. P. Horizontal gene transfer constrains the timing of methanogen evolution. Nat. Ecol. Evol. 2, 897–903 (2018).
Sauterey, B. et al. Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate. Nat. Commun. 11, 2705 (2020).
Kharecha, P., Kasting, J. & Siefert, J. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005).
Schwieterman, E. W. et al. Rethinking CO antibiosignatures in the search for life beyond the Solar System. Astrophys. J. 874, 9 (2019).
Krissansen-Totton, J., Olson, S. & Catling, D. C. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 4, eaao5747 (2018).
Wogan, N., Krissansen-Totton, J. & Catling, D. C. Abundant atmospheric methane from volcanism on terrestrial planets is unlikely and strengthens the case for methane as a biosignature. Planet. Sci. J. 1, 58 (2020).
Zahnle, K. J., Lupu, R., Catling, D. C. & Wogan, N. Creation and evolution of impact-generated reduced atmospheres of early Earth. Planet. Sci. J. 1, 11 (2020).
Keir, R. A note on the fluxes of abiogenic methane and hydrogen from mid-ocean ridges. Geophys. Res. Lett. 37, L24609 (2010).
Cannat, M., Fontaine, F. & Escartin, J. in Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges 241–264 (American Geophysical Union, 2010).
Vitale Brovarone, A. et al. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps. Nat. Commun. 8, 14134 (2017).
Tobie, G., Gautier, D. & Hersant, F. Titan’s bulk composition constrained by Cassini-Huygens: implication for internal outgassing. Astrophys. J. 752, 125 (2012).
Thompson, M. A., Krissansen-Totton, J., Wogan, N. & Fortney, J. J. The case and context for atmospheric methane as an exoplanet biosignature. Proc. Natl Acad. Sci. USA (in the press).
Etiope, G. & Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 51, 276–299 (2013).
Sholes, S. F., Krissansen-Totton, J. & Catling, D. C. A maximum subsurface biomass on Mars from untapped free energy: CO and H2 as potential antibiosignatures. Astrobiology 19, 655–668 (2019).
Zahnle, K., Freedman, R. S. & Catling, D. C. Is there methane on Mars? Icarus 212, 493–503 (2011).
Mikal-Evans, T. Detecting the proposed CH4–CO2 biosignature pair with the James Webb Space Telescope: TRAPPIST-1e and the effect of cloud/haze. Mon. Not. R. Astron. Soc. 510, 980–991 (2022).
Swain, M. R. et al. Detection of an atmosphere on a rocky exoplanet. Astron. J. 161, 213 (2021).
Mugnai, L. V. et al. ARES.* V. No evidence for molecular absorption in the HST WFC3 spectrum of GJ 1132 b. Astron. J. 161, 284 (2021).
Libby-Roberts, J. E. et al. The featureless HST/WFC3 transmission spectrum of the rocky exoplanet GJ 1132b: no evidence for a cloud-free primordial atmosphere and constraints on starspot contamination. Preprint at https://arxiv.org/abs/2105.10487 (2021).
Komacek, T. D., Fauchez, T. J., Wolf, E. T. & Abbot, D. S. Clouds will likely prevent the detection of water vapor in JWST transmission spectra of terrestrial exoplanets. Astrophys. J. Lett. 888, L20 (2020).
Fauchez, T. J. et al. Impact of clouds and hazes on the simulated JWST transmission spectra of habitable zone planets in the TRAPPIST-1 system. Astrophys. J. 887, 194 (2019).
Kiang, N. Y., Siefert, J. & Blankenship, R. E. Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7, 222–251 (2007).
Seager, S., Turner, E. L., Schafer, J. & Ford, E. B. Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5, 372–390 (2005).
Sagan, C., Thompson, W. R., Carlson, R., Gurnett, D. & Hord, C. A search for life on Earth from the Galileo spacecraft. Nature 365, 715–721 (1993).
Marshall, S. M. et al. Identifying molecules as biosignatures with assembly theory and mass spectrometry. Nat. Commun. 12, 3033 (2021).
Walker, S. I. et al. Exoplanet biosignatures: future directions. Astrobiology 18, 779–824 (2018).
Bartlett, S. et al. Assessing planetary complexity and potential agnostic biosignatures using epsilon machines. Nat. Astron. https://doi.org/10.1038/s41550-021-01559-x (2022).
Capone, D. G., Popa, R., Flood, B. & Nealson, K. H. Follow the nitrogen. Science 312, 708–709 (2006).
Airapetian, V., Glocer, A., Gronoff, G., Hebrard, E. & Danchi, W. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat. Geosci. 9, 452–455 (2016).
Samarkin, V. A. et al. Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat. Geosci. 3, 341–344 (2010).
Keene, W. C. et al. Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive chlorine emissions inventory. J. Geophys. Res. Atmos. 104, 8429–8440 (1999).
Aarnes, I., Fristad, K., Planke, S. & Svensen, H. The impact of host‐rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2011GC003636 (2011).
Frische, M., Garofalo, K., Hansteen, T. H. & Borchers, R. Fluxes and origin of halogenated organic trace gases from Momotombo volcano (Nicaragua). Geochem. Geophys. Geosyst. https://doi.org/10.1029/2005GC001162 (2006).
Sousa-Silva, C. et al. Phosphine as a biosignature gas in exoplanet atmospheres. Astrobiology 20, 235–268 (2020).
Zhan, Z. et al. Assessment of isoprene as a possible biosignature gas in exoplanets with anoxic atmospheres. Astrobiology https://doi.org/10.1089/ast.2019.2146 (2021).
Pilcher, C. B. Biosignatures of early Earths. Astrobiology 3, 471–486 (2003).
Lombardo, N. A. et al. Detection of propadiene on Titan. Astrophys. J. Lett. 881, L33 (2019).
Gialluca, M. T., Robinson, T. D., Rugheimer, S. & Wunderlich, F. Characterizing atmospheres of transiting Earth-like exoplanets orbiting M dwarfs with James Webb Space Telescope. Publ. Astron. Soc. Pac. 133, 054401 (2021).
Seager, S., Bains, W. & Hu, R. Biosignature gases in H2-dominated atmospheres on rocky exoplanets. Astrophys. J. 777, 95 (2013).
Wunderlich, F. et al. Detectability of biosignatures on LHS 1140 b. Astron. Astrophys. 647, A48 (2021).
Stevenson, D. J. Life-sustaining planets in interstellar space? Nature 400, 32 (1999).
Pierrehumbert, R. & Gaidos, E. Hydrogen greenhouse planets beyond the habitable zone. Astrophys. J. Lett. 734, L13 (2011).
Walker, J. C., Hays, P. & Kasting, J. F. A negative feedback mechanism for the long‐term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).
Lehmer, O. R., Catling, D. C. & Krissansen-Totton, J. Carbonate-silicate cycle predictions of Earth-like planetary climates and testing the habitable zone concept. Nat. Commun. 11, 6153 (2020).
Abbot, D. S. A proposal for climate stability on H2-greenhouse planets. Astrophys. J. Lett. 815, L3 (2015).
Seager, S. & Bains, W. The search for signs of life on exoplanets at the interface of chemistry and planetary science. Sci. Adv. 1, e1500047 (2015).
Krissansen-Totton, J., Bergsman, D. S. & Catling, D. C. On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16, 39–67 (2016).
Wogan, N. F. & Catling, D. C. When is chemical disequilibrium in Earth-like planetary atmospheres a biosignature versus an anti-biosignature? Disequilibria from dead to living worlds. Astrophys. J. 892, 127 (2020).
Reinhard, C. T., Olson, S. L., Schwieterman, E. W. & Lyons, T. W. False negatives for remote life detection on ocean-bearing planets: lessons from the early Earth. Astrobiology 17, 287–297 (2017).
Lyons, T. W., Diamond, C. W., Planavsky, N. J., Reinhard, C. T. & Li, C. Oxygenation, life, and the planetary system during Earth’s middle history: an overview. Astrobiology 21, 906–923 (2021).
Olson, S. L., Reinhard, C. T. & Lyons, T. W. Limited role for methane in the mid-Proterozoic greenhouse. Proc. Natl Acad. Sci. USA 113, 11447–11452 (2016).
Seager, S., Bains, W. & Petkowski, J. Toward a list of molecules as potential biosignature gases for the search for life on exoplanets and applications to terrestrial biochemistry. Astrobiology 16, 465–485 (2016).
Estrada, E. Returnability as a criterion of disequilibrium in atmospheric reactions networks. J. Math. Chem. 50, 1363–1372 (2012).
Fisher, T., Kim, H., Millsaps, C., Line, M. & Walker, S. I. Inferring exoplanet disequilibria with multivariate information in atmospheric reaction networks. Preprint at https://arxiv.org/abs/2104.09776 (2021).
Fischer, D. et al. The LUVOIR Mission Concept Study Final Report (NASA, 2019).
Gaudi, B. S. et al. The Habitable Exoplanet Observatory (HabEx) mission concept study final report. Preprint at https://arxiv.org/abs/2001.06683 (2020).
Labeyrie, A. Lunar optical interferometry and hypertelescope for direct imaging at high resolution. Phil. Trans. R. Soc. A 379, 20190570 (2021).
Turyshev, S. G. et al. Recognizing the value of the solar gravitational lens for direct multipixel imaging and spectroscopy of an exoplanet. Preprint at https://arxiv.org/abs/1803.04319 (2018).
Labeyrie, A. Snapshots of alien worlds–the future of interferometry. Science 285, 1864–1865 (1999).
Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).
Kadoya, S., Krissansen‐Totton, J. & Catling, D. C. Probable cold and alkaline surface environment of the Hadean Earth caused by impact ejecta weathering. Geochem. Geophys. Geosyst. 21, e2019GC008734 (2020).
Acknowledgements
J.K.-T. is a NASA Hubble Fellow and was supported by the NASA Sagan Fellowship and through NASA Hubble Fellowship grant number HF2-51437 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. for NASA under contract number NAS5-26555. We acknowledge use of the lux supercomputer at UC Santa Cruz, funded by NSF MRI grant number AST 1828315.
Author information
Authors and Affiliations
Contributions
J.K.-T. designed and directed the study, M.T. contributed the CH4 biosignature analysis, M.L.G. performed the O2 false positive calculations and J.J.F. supervised the study. All authors contributed to drafting and editing the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Timothy Lyons and the other, anonymous, reviewer(s) for their contribution to the peer review of this work
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Video 1
Video version of Fig. 2. Time evolution of atmospheric oxygen (left), carbon dioxide (middle) and water vapour (right) as a function of planet–star separation for a sample of simulated, lifeless planets. The colour scale shows the mean surface temperature, and the black dashed line shows the runaway greenhouse limit for an Earth-like albedo, which evolves with stellar luminosity (a G star is assumed). Squares denote non-zero surface liquid water inventories whereas circles show model runs with uninhabitable surface conditions. The simulated planet population has a wide range of initial volatile inventories and parameter values that govern atmosphere–interior exchange of volatiles. Models such as this can be used to predict trends in non-biological oxygen accumulation alongside their contextual clues. The grey shaded regions denote numerical limits; lower abundances may be realized but fluxes cut off here for numerical efficiency.
Rights and permissions
About this article
Cite this article
Krissansen-Totton, J., Thompson, M., Galloway, M.L. et al. Understanding planetary context to enable life detection on exoplanets and test the Copernican principle. Nat Astron 6, 189–198 (2022). https://doi.org/10.1038/s41550-021-01579-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-021-01579-7