[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Understanding planetary context to enable life detection on exoplanets and test the Copernican principle

Abstract

The search for life on exoplanets is motivated by the universal ways in which life could modify its planetary environment. Atmospheric gases such as oxygen and methane are promising candidates for such environmental modification due to the evolutionary benefits their production would confer. However, confirming that these gases are produced by life, rather than by geochemical or astrophysical processes, will require a thorough understanding of planetary context, including the expected counterfactual atmospheric evolution for lifeless planets. Here, we evaluate current understanding of planetary context for several candidate biosignatures and their upcoming observability. We review the contextual framework for oxygen and describe how conjectured abiotic oxygen scenarios may be testable. In contrast to oxygen, current understanding of how planetary context controls non-biological methane (CH4) production is limited, even though CH4 biosignatures in anoxic atmospheres may be readily detectable with the James Webb Space Telescope. We assess environmental context for CH4 biosignatures and conclude that abundant atmospheric CH4 coexisting with CO2, and CO:CH4 1 is suggestive of biological production, although precise thresholds are dependent on stellar context and sparsely characterized abiotic CH4 scenarios. A planetary context framework is also considered for alternative or agnostic biosignatures. Whatever the distribution of life in the Universe, observations of terrestrial exoplanets in coming decades will provide a quantitative understanding of the atmospheric evolution of lifeless worlds. This knowledge will inform future instrument requirements to either corroborate the presence of life elsewhere or confirm its apparent absence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Initial volatile inventories may influence the likelihood of non-biological O2 accumulation.
Fig. 2: Time evolution of atmospheric O2, CO2 and H2O vapour as a function of planet–star separation for a sample of simulated lifeless planets.
Fig. 3: Bulk composition of Earth’s atmosphere through time.
Fig. 4: Planetary context for CH4 biosignatures and their non-biological false positives.
Fig. 5: Detectability of biogenic CH4 with JWST.

Similar content being viewed by others

Data availability

The data outputs from Supplementary Video 1 are available at https://doi.org/10.5281/zenodo.5719456.

Code availability

The Python code for our atmosphere evolution model is open source and available at https://doi.org/10.5281/zenodo.4539040.

References

  1. Pathways to Discovery in Astronomy and Astrophysics for the 2020s (The National Academies Press, 2021).

  2. Quanz, S. P. et al. Exoplanet science with a space-based mid-infrared nulling interferometer. Proc. SPIE https://doi.org/10.1117/12.2312051 (2018).

  3. Baross, J. et al. The Limits of Organic Life in Planetary Systems (National Research Council of the National Academies, 2007).

  4. Schrödinger, E. What is Life? The Physical Aspect of the Living Cell (Cambridge Univ. Press, 1944).

  5. Moberg, C. Schrödinger’s What is Life?—the 75th anniversary of a book that inspired biology. Angew. Chem. Int. Ed. 132, 2570–2573 (2020).

    Article  ADS  Google Scholar 

  6. Benner, S. A. Detecting Darwinism from molecules in the Enceladus plumes, Jupiter’s moons, and other planetary water lagoons. Astrobiology 17, 840–851 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  7. Hoehler, T. M., Amend, J. P. & Shock, E. L. A ‘follow the energy’ approach for astrobiology. Astrobiology 7, 819–823 (2007).

    Article  ADS  Google Scholar 

  8. Olson, S. L. et al. Atmospheric seasonality as an exoplanet biosignature. Astrophys. J. Lett. 858, L14 (2018).

    Article  ADS  Google Scholar 

  9. Schwieterman, E. W. et al. Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18, 663–708 (2018).

    Article  ADS  Google Scholar 

  10. Lovelock, J. E. A physical basis for life detection experiments. Nature 207, 568–570 (1965).

    Article  ADS  Google Scholar 

  11. Owen, T. in Strategies for the Search for Life in the Universe (ed. Papagiannis, M.D.) 177–185 (Springer, 1980).

  12. Meadows, V. S. et al. Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18, 630–662 (2018).

    Article  ADS  Google Scholar 

  13. Gao, P., Hu, R., Robinson, T. D., Li, C. & Yung, Y. L. Stabilization of CO2 atmospheres on exoplanets around M dwarf stars. Astrophys. J. 806, 249–261 (2015).

    Article  ADS  Google Scholar 

  14. Tian, F., France, K., Linsky, J. L., Mauas, P. J. & Vieytes, M. C. High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets. Earth Planet. Sci. Lett. 385, 22–27 (2014).

    Article  ADS  Google Scholar 

  15. Harman, C., Schwieterman, E., Schottelkotte, J. C. & Kasting, J. Abiotic O2 levels on planets around F, G, K, and M stars: possible false positives for life? Astrophys. J. 812, 137 (2015).

    Article  ADS  Google Scholar 

  16. Domagal-Goldman, S. D., Segura, A., Claire, M. W., Robinson, T. D. & Meadows, V. S. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth. Astrophys. J. 792, 90 (2014).

    Article  ADS  Google Scholar 

  17. Harman, C. et al. Abiotic O2 levels on planets around F, G, K, and M stars: effects of lightning-produced catalysts in eliminating oxygen false positives. Astrophys. J. 866, 56 (2018).

    Article  ADS  Google Scholar 

  18. Hu, R., Peterson, L. & Wolf, E. T. O2-and CO-rich atmospheres for potentially habitable environments on TRAPPIST-1 planets. Astrophys. J. 888, 122 (2020).

    Article  ADS  Google Scholar 

  19. Grenfell, J. L. et al. Limitation of atmospheric composition by combustion–explosion in exoplanetary atmospheres. Astrophys. J. 861, 38 (2018).

    Article  ADS  Google Scholar 

  20. Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15, 119–143 (2015).

    Article  ADS  Google Scholar 

  21. Schaefer, L., Wordsworth, R. D., Berta-Thompson, Z. & Sasselov, D. Predictions of the atmospheric composition of GJ 1132b. Astrophys. J. 829, 63 (2016).

    Article  ADS  Google Scholar 

  22. Wordsworth, R., Schaefer, L. & Fischer, R. Redox evolution via gravitational differentiation on low-mass planets: implications for abiotic oxygen, water loss, and habitability. Astron. J. 155, 195 (2018).

    Article  ADS  Google Scholar 

  23. Barth, P. et al. Magma ocean evolution of the TRAPPIST-1 planets. Astrobiology 21, 1325–1349 (2021).

    Article  ADS  Google Scholar 

  24. Wordsworth, R. & Pierrehumbert, R. Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys. J. Lett. 785, L20 (2014).

    Article  ADS  Google Scholar 

  25. Kleinböhl, A., Willacy, K., Friedson, A. J., Chen, P. & Swain, M. R. Buildup of abiotic oxygen and ozone in moist atmospheres of temperate terrestrial exoplanets and its impact on the spectral fingerprint in transit observations. Astrophys. J. 862, 92 (2018).

    Article  ADS  Google Scholar 

  26. Krissansen-Totton, J., Fortney, J. J., Nimmo, F. & Wogan, N. Oxygen false positives on habitable zone planets around sun-like stars. AGU Adv. 2, e2020AV000294 (2021).

  27. Noack, L. et al. Water-rich planets: how habitable is a water layer deeper than on Earth? Icarus 277, 215–236 (2016).

    Article  ADS  Google Scholar 

  28. Kite, E. S. & Ford, E. B. Habitability of exoplanet waterworlds. Astrophys. J. 864, 75 (2018).

    Article  ADS  Google Scholar 

  29. Cowan, N. B. & Abbot, D. S. Water cycling between ocean and mantle: super-Earths need not be waterworlds. Astrophys. J. 781, 27 (2014).

    Article  ADS  Google Scholar 

  30. Lustig-Yaeger, J. et al. Detecting ocean glint on exoplanets using multiphase mapping. Astron. J. 156, 301 (2018).

    Article  ADS  Google Scholar 

  31. Fujii, Y. et al. Colors of a second Earth: estimating the fractional areas of ocean, land, and vegetation of Earth-like exoplanets. Astrophys. J. 715, 866 (2010).

    Article  ADS  Google Scholar 

  32. Cowan, N. B. et al. Alien maps of an ocean-bearing world. Astrophys. J. 700, 915 (2009).

    Article  ADS  Google Scholar 

  33. Fauchez, T. J. et al. Sensitive probing of exoplanetary oxygen via mid-infrared collisional absorption. Nat. Astron. 4, 372–376 (2020).

    Article  ADS  Google Scholar 

  34. Krissansen-Totton, J., Garland, R., Irwin, P. & Catling, D. C. Detectability of biosignatures in anoxic atmospheres with the James Webb Space Telescope: a TRAPPIST-1e case study. Astron. J. 156, 114 (2018).

    Article  ADS  Google Scholar 

  35. Lustig-Yaeger, J., Meadows, V. S. & Lincowski, A. P. The detectability and characterization of the TRAPPIST-1 exoplanet atmospheres with JWST. Astron. J. 158, 27 (2019).

    Article  ADS  Google Scholar 

  36. Wunderlich, F. et al. Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs. Astron. Astrophys. 624, A49 (2019).

    Article  Google Scholar 

  37. Rodler, F. & López-Morales, M. Feasibility studies for the detection of O2 in an Earth-like exoplanet. Astrophys. J. 781, 54 (2014).

    Article  ADS  Google Scholar 

  38. Snellen, I., de Kok, R., Le Poole, R., Brogi, M. & Birkby, J. Finding extraterrestrial life using ground-based high-dispersion spectroscopy. Astrophys. J. 764, 182 (2013).

    Article  ADS  Google Scholar 

  39. Leung, M., Meadows, V. S. & Lustig-Yaeger, J. High-resolution spectral discriminants of ocean loss for M-dwarf terrestrial exoplanets. Astron. J. 160, 11 (2020).

    Article  ADS  Google Scholar 

  40. Lincowski, A. P. et al. Evolved climates and observational discriminants for the TRAPPIST-1 planetary system. Astrophys. J. 867, 76 (2018).

    Article  ADS  Google Scholar 

  41. Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017).

    Article  ADS  Google Scholar 

  42. Gillon, M. et al. The TRAPPIST-1 JWST Community Initiative. Preprint at https://arxiv.org/abs/2002.04798 (2020).

  43. Donahue, T., Hoffman, J., Hodges, R. & Watson, A. Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982).

    Article  ADS  Google Scholar 

  44. Kiefer, W. S. et al. Venus, Earth’s divergent twin?: Testing evolutionary models for Venus with the DAVINCI+ mission. In European Planetary Science Congress 2020 EPSC2020-2534 (EPS, 2020).

  45. Smrekar, S. et al. VERITAS (Venus Emissivity, Radio Science, InSAR, Topography And Spectroscopy): A proposed discovery mission. In European Planetary Science Congress 2020 EPSC2020-447 (EPS, 2020).

  46. Widemann, T., Titov, D., Wilson, C., & Ghail, R. EnVision: Europe’s proposed mission to Venus. In 43rd COSPAR Scientific Assembly (COSPAR, 2021).

  47. Lehmer, O. R., Catling, D. C., Parenteau, M. N. & Hoehler, T. M. The productivity of oxygenic photosynthesis around cool, M dwarf stars. Astrophys. J. 859, 171 (2018).

    Article  ADS  Google Scholar 

  48. Schindler, T. L. & Kasting, J. F. Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases. Icarus 145, 262–271 (2000).

    Article  ADS  Google Scholar 

  49. Des Marais, D. J. et al. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2, 153–181 (2002).

    Article  ADS  Google Scholar 

  50. Kasting, J. F. Methane and climate during the Precambrian era. Precamb. Res. 137, 119–129 (2005).

    Article  ADS  Google Scholar 

  51. Guzmán-Marmolejo, A., Segura, A. & Escobar-Briones, E. Abiotic production of methane in terrestrial planets. Astrobiology 13, 550–559 (2013).

    Article  ADS  Google Scholar 

  52. Arney, G., Domagal-Goldman, S. D. & Meadows, V. S. Organic haze as a biosignature in anoxic Earth-like atmospheres. Astrobiology 18, 311–329 (2018).

    Article  ADS  Google Scholar 

  53. Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    Article  Google Scholar 

  54. Wolfe, J. M. & Fournier, G. P. Horizontal gene transfer constrains the timing of methanogen evolution. Nat. Ecol. Evol. 2, 897–903 (2018).

    Article  Google Scholar 

  55. Sauterey, B. et al. Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate. Nat. Commun. 11, 2705 (2020).

    Article  ADS  Google Scholar 

  56. Kharecha, P., Kasting, J. & Siefert, J. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005).

    Article  Google Scholar 

  57. Schwieterman, E. W. et al. Rethinking CO antibiosignatures in the search for life beyond the Solar System. Astrophys. J. 874, 9 (2019).

    Article  ADS  Google Scholar 

  58. Krissansen-Totton, J., Olson, S. & Catling, D. C. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 4, eaao5747 (2018).

    Article  ADS  Google Scholar 

  59. Wogan, N., Krissansen-Totton, J. & Catling, D. C. Abundant atmospheric methane from volcanism on terrestrial planets is unlikely and strengthens the case for methane as a biosignature. Planet. Sci. J. 1, 58 (2020).

    Article  Google Scholar 

  60. Zahnle, K. J., Lupu, R., Catling, D. C. & Wogan, N. Creation and evolution of impact-generated reduced atmospheres of early Earth. Planet. Sci. J. 1, 11 (2020).

    Article  Google Scholar 

  61. Keir, R. A note on the fluxes of abiogenic methane and hydrogen from mid-ocean ridges. Geophys. Res. Lett. 37, L24609 (2010).

    Article  ADS  Google Scholar 

  62. Cannat, M., Fontaine, F. & Escartin, J. in Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges 241–264 (American Geophysical Union, 2010).

  63. Vitale Brovarone, A. et al. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps. Nat. Commun. 8, 14134 (2017).

    Article  ADS  Google Scholar 

  64. Tobie, G., Gautier, D. & Hersant, F. Titan’s bulk composition constrained by Cassini-Huygens: implication for internal outgassing. Astrophys. J. 752, 125 (2012).

    Article  ADS  Google Scholar 

  65. Thompson, M. A., Krissansen-Totton, J., Wogan, N. & Fortney, J. J. The case and context for atmospheric methane as an exoplanet biosignature. Proc. Natl Acad. Sci. USA (in the press).

  66. Etiope, G. & Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 51, 276–299 (2013).

    Article  ADS  Google Scholar 

  67. Sholes, S. F., Krissansen-Totton, J. & Catling, D. C. A maximum subsurface biomass on Mars from untapped free energy: CO and H2 as potential antibiosignatures. Astrobiology 19, 655–668 (2019).

    Article  ADS  Google Scholar 

  68. Zahnle, K., Freedman, R. S. & Catling, D. C. Is there methane on Mars? Icarus 212, 493–503 (2011).

    Article  ADS  Google Scholar 

  69. Mikal-Evans, T. Detecting the proposed CH4–CO2 biosignature pair with the James Webb Space Telescope: TRAPPIST-1e and the effect of cloud/haze. Mon. Not. R. Astron. Soc. 510, 980–991 (2022).

    Article  ADS  Google Scholar 

  70. Swain, M. R. et al. Detection of an atmosphere on a rocky exoplanet. Astron. J. 161, 213 (2021).

    Article  ADS  Google Scholar 

  71. Mugnai, L. V. et al. ARES.* V. No evidence for molecular absorption in the HST WFC3 spectrum of GJ 1132 b. Astron. J. 161, 284 (2021).

    Article  ADS  Google Scholar 

  72. Libby-Roberts, J. E. et al. The featureless HST/WFC3 transmission spectrum of the rocky exoplanet GJ 1132b: no evidence for a cloud-free primordial atmosphere and constraints on starspot contamination. Preprint at https://arxiv.org/abs/2105.10487 (2021).

  73. Komacek, T. D., Fauchez, T. J., Wolf, E. T. & Abbot, D. S. Clouds will likely prevent the detection of water vapor in JWST transmission spectra of terrestrial exoplanets. Astrophys. J. Lett. 888, L20 (2020).

    Article  ADS  Google Scholar 

  74. Fauchez, T. J. et al. Impact of clouds and hazes on the simulated JWST transmission spectra of habitable zone planets in the TRAPPIST-1 system. Astrophys. J. 887, 194 (2019).

    Article  ADS  Google Scholar 

  75. Kiang, N. Y., Siefert, J. & Blankenship, R. E. Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7, 222–251 (2007).

    Article  ADS  Google Scholar 

  76. Seager, S., Turner, E. L., Schafer, J. & Ford, E. B. Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5, 372–390 (2005).

    Article  ADS  Google Scholar 

  77. Sagan, C., Thompson, W. R., Carlson, R., Gurnett, D. & Hord, C. A search for life on Earth from the Galileo spacecraft. Nature 365, 715–721 (1993).

    Article  ADS  Google Scholar 

  78. Marshall, S. M. et al. Identifying molecules as biosignatures with assembly theory and mass spectrometry. Nat. Commun. 12, 3033 (2021).

    Article  ADS  Google Scholar 

  79. Walker, S. I. et al. Exoplanet biosignatures: future directions. Astrobiology 18, 779–824 (2018).

    Article  ADS  Google Scholar 

  80. Bartlett, S. et al. Assessing planetary complexity and potential agnostic biosignatures using epsilon machines. Nat. Astron. https://doi.org/10.1038/s41550-021-01559-x (2022).

  81. Capone, D. G., Popa, R., Flood, B. & Nealson, K. H. Follow the nitrogen. Science 312, 708–709 (2006).

    Article  Google Scholar 

  82. Airapetian, V., Glocer, A., Gronoff, G., Hebrard, E. & Danchi, W. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat. Geosci. 9, 452–455 (2016).

    Article  ADS  Google Scholar 

  83. Samarkin, V. A. et al. Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat. Geosci. 3, 341–344 (2010).

    Article  ADS  Google Scholar 

  84. Keene, W. C. et al. Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive chlorine emissions inventory. J. Geophys. Res. Atmos. 104, 8429–8440 (1999).

    Article  ADS  Google Scholar 

  85. Aarnes, I., Fristad, K., Planke, S. & Svensen, H. The impact of host‐rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2011GC003636 (2011).

  86. Frische, M., Garofalo, K., Hansteen, T. H. & Borchers, R. Fluxes and origin of halogenated organic trace gases from Momotombo volcano (Nicaragua). Geochem. Geophys. Geosyst. https://doi.org/10.1029/2005GC001162 (2006).

  87. Sousa-Silva, C. et al. Phosphine as a biosignature gas in exoplanet atmospheres. Astrobiology 20, 235–268 (2020).

    Article  ADS  Google Scholar 

  88. Zhan, Z. et al. Assessment of isoprene as a possible biosignature gas in exoplanets with anoxic atmospheres. Astrobiology https://doi.org/10.1089/ast.2019.2146 (2021).

  89. Pilcher, C. B. Biosignatures of early Earths. Astrobiology 3, 471–486 (2003).

    Article  ADS  Google Scholar 

  90. Lombardo, N. A. et al. Detection of propadiene on Titan. Astrophys. J. Lett. 881, L33 (2019).

    Article  ADS  Google Scholar 

  91. Gialluca, M. T., Robinson, T. D., Rugheimer, S. & Wunderlich, F. Characterizing atmospheres of transiting Earth-like exoplanets orbiting M dwarfs with James Webb Space Telescope. Publ. Astron. Soc. Pac. 133, 054401 (2021).

    Article  ADS  Google Scholar 

  92. Seager, S., Bains, W. & Hu, R. Biosignature gases in H2-dominated atmospheres on rocky exoplanets. Astrophys. J. 777, 95 (2013).

    Article  ADS  Google Scholar 

  93. Wunderlich, F. et al. Detectability of biosignatures on LHS 1140 b. Astron. Astrophys. 647, A48 (2021).

    Article  Google Scholar 

  94. Stevenson, D. J. Life-sustaining planets in interstellar space? Nature 400, 32 (1999).

    Article  ADS  Google Scholar 

  95. Pierrehumbert, R. & Gaidos, E. Hydrogen greenhouse planets beyond the habitable zone. Astrophys. J. Lett. 734, L13 (2011).

    Article  ADS  Google Scholar 

  96. Walker, J. C., Hays, P. & Kasting, J. F. A negative feedback mechanism for the long‐term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).

    Article  ADS  Google Scholar 

  97. Lehmer, O. R., Catling, D. C. & Krissansen-Totton, J. Carbonate-silicate cycle predictions of Earth-like planetary climates and testing the habitable zone concept. Nat. Commun. 11, 6153 (2020).

    Article  ADS  Google Scholar 

  98. Abbot, D. S. A proposal for climate stability on H2-greenhouse planets. Astrophys. J. Lett. 815, L3 (2015).

    Article  ADS  Google Scholar 

  99. Seager, S. & Bains, W. The search for signs of life on exoplanets at the interface of chemistry and planetary science. Sci. Adv. 1, e1500047 (2015).

    Article  ADS  Google Scholar 

  100. Krissansen-Totton, J., Bergsman, D. S. & Catling, D. C. On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16, 39–67 (2016).

    Article  ADS  Google Scholar 

  101. Wogan, N. F. & Catling, D. C. When is chemical disequilibrium in Earth-like planetary atmospheres a biosignature versus an anti-biosignature? Disequilibria from dead to living worlds. Astrophys. J. 892, 127 (2020).

    Article  ADS  Google Scholar 

  102. Reinhard, C. T., Olson, S. L., Schwieterman, E. W. & Lyons, T. W. False negatives for remote life detection on ocean-bearing planets: lessons from the early Earth. Astrobiology 17, 287–297 (2017).

    Article  ADS  Google Scholar 

  103. Lyons, T. W., Diamond, C. W., Planavsky, N. J., Reinhard, C. T. & Li, C. Oxygenation, life, and the planetary system during Earth’s middle history: an overview. Astrobiology 21, 906–923 (2021).

    Article  ADS  Google Scholar 

  104. Olson, S. L., Reinhard, C. T. & Lyons, T. W. Limited role for methane in the mid-Proterozoic greenhouse. Proc. Natl Acad. Sci. USA 113, 11447–11452 (2016).

    Article  ADS  Google Scholar 

  105. Seager, S., Bains, W. & Petkowski, J. Toward a list of molecules as potential biosignature gases for the search for life on exoplanets and applications to terrestrial biochemistry. Astrobiology 16, 465–485 (2016).

    Article  ADS  Google Scholar 

  106. Estrada, E. Returnability as a criterion of disequilibrium in atmospheric reactions networks. J. Math. Chem. 50, 1363–1372 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  107. Fisher, T., Kim, H., Millsaps, C., Line, M. & Walker, S. I. Inferring exoplanet disequilibria with multivariate information in atmospheric reaction networks. Preprint at https://arxiv.org/abs/2104.09776 (2021).

  108. Fischer, D. et al. The LUVOIR Mission Concept Study Final Report (NASA, 2019).

  109. Gaudi, B. S. et al. The Habitable Exoplanet Observatory (HabEx) mission concept study final report. Preprint at https://arxiv.org/abs/2001.06683 (2020).

  110. Labeyrie, A. Lunar optical interferometry and hypertelescope for direct imaging at high resolution. Phil. Trans. R. Soc. A 379, 20190570 (2021).

    Article  ADS  Google Scholar 

  111. Turyshev, S. G. et al. Recognizing the value of the solar gravitational lens for direct multipixel imaging and spectroscopy of an exoplanet. Preprint at https://arxiv.org/abs/1803.04319 (2018).

  112. Labeyrie, A. Snapshots of alien worlds–the future of interferometry. Science 285, 1864–1865 (1999).

    Article  Google Scholar 

  113. Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    Article  ADS  Google Scholar 

  114. Kadoya, S., Krissansen‐Totton, J. & Catling, D. C. Probable cold and alkaline surface environment of the Hadean Earth caused by impact ejecta weathering. Geochem. Geophys. Geosyst. 21, e2019GC008734 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.K.-T. is a NASA Hubble Fellow and was supported by the NASA Sagan Fellowship and through NASA Hubble Fellowship grant number HF2-51437 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. for NASA under contract number NAS5-26555. We acknowledge use of the lux supercomputer at UC Santa Cruz, funded by NSF MRI grant number AST 1828315.

Author information

Authors and Affiliations

Authors

Contributions

J.K.-T. designed and directed the study, M.T. contributed the CH4 biosignature analysis, M.L.G. performed the O2 false positive calculations and J.J.F. supervised the study. All authors contributed to drafting and editing the manuscript.

Corresponding author

Correspondence to Joshua Krissansen-Totton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Timothy Lyons and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Video 1

Video version of Fig. 2. Time evolution of atmospheric oxygen (left), carbon dioxide (middle) and water vapour (right) as a function of planet–star separation for a sample of simulated, lifeless planets. The colour scale shows the mean surface temperature, and the black dashed line shows the runaway greenhouse limit for an Earth-like albedo, which evolves with stellar luminosity (a G star is assumed). Squares denote non-zero surface liquid water inventories whereas circles show model runs with uninhabitable surface conditions. The simulated planet population has a wide range of initial volatile inventories and parameter values that govern atmosphere–interior exchange of volatiles. Models such as this can be used to predict trends in non-biological oxygen accumulation alongside their contextual clues. The grey shaded regions denote numerical limits; lower abundances may be realized but fluxes cut off here for numerical efficiency.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krissansen-Totton, J., Thompson, M., Galloway, M.L. et al. Understanding planetary context to enable life detection on exoplanets and test the Copernican principle. Nat Astron 6, 189–198 (2022). https://doi.org/10.1038/s41550-021-01579-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01579-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing