[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests

An Author Correction to this article was published on 13 September 2024

This article has been updated

Abstract

Tropical forests vary in composition, structure and function such that not all forests have similar ecological value. This variability is caused by natural and anthropogenic disturbance regimes, which influence the ability of forests to support biodiversity, store carbon, mediate water yield and facilitate human well-being. While international environmental agreements mandate protecting and restoring forests, only forest extent is typically considered, while forest quality is ignored. Consequently, the locations and loss rates of forests of high ecological value are unknown and coordinated strategies for conserving these forests remain undeveloped. Here, we map locations high in forest structural integrity as a measure of ecological quality on the basis of recently developed fine-resolution maps of three-dimensional forest structure, integrated with human pressure across the global moist tropics. Our analyses reveal that tall forests with closed canopies and low human pressure typical of natural conditions comprise half of the global humid or moist tropical forest estate, largely limited to the Amazon and Congo basins. Most of these forests have no formal protection and, given recent rates of loss, are at substantial risk. With the rapid disappearance of these ‘best of the last’ forests at stake, we provide a policy-driven framework for their conservation and restoration, and recommend locations to maintain protections, add new protections, mitigate deleterious human impacts and restore forest structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of forest types across the TSMBF biome.
Fig. 2: Geographic distribution of forest types, protection status,and deforestation rates across the study area.
Fig. 3: Landscapes showing the distribution of three types of forest and locations of past forest lost during two time periods.
Fig. 4: Recommended framework for conservation of tropical forests.

Similar content being viewed by others

Data availability

Full details of the forest structural condition and forest structural integrity maps are available in ref. 22. Input and output datasets can be accessed via FigShare: SCI dataset: https://doi.org/10.6084/m9.figshare.11608182.v2 and FSII dataset: https://doi.org/10.6084/m9.figshare.11604588.v1.

Code availability

The Google Earth Engine code is available at: https://code.earthengine.google.com/625bede18e265d81f6184b27129fecf8.

Change history

References

  1. Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).

    Article  Google Scholar 

  2. Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    Article  PubMed  Google Scholar 

  3. COP 11 Decision X/2. Strategic Plan for Biodiversity 2011–2020 (Convention on Biological Diversity, 2010).

  4. Transforming Our World: The 2030 Agenda For Sustainable Development A/RES/70/1 Resolution adopted by the United Nations General Assembly (United Nations, 2015).

  5. Adoption of the Paris Agreement. Proposal by the President Draft Decision -/CP.21 (UNFCCC, 2015).

  6. Parks Canada Guide to Management Planning (Parks Canada Agency, 2008).

  7. Parrish, J. D., Braun, D. P. & Unnasch, R. S. Are we conserving what we say we are? Measuring ecological integrity within protected areas. BioScience 53, 851–860 (2003).

    Article  Google Scholar 

  8. Anderson, J. E. A conceptual framework for evaluating and quantifying naturalness. Conserv. Biol. 5, 347–352 (1991).

    Article  Google Scholar 

  9. Tierney, G. L., Faber-Langendoen, D., Mitchell, B. R., Shriver, W. G. & Gibbs, J. P. Monitoring and evaluating the ecological integrity of forest ecosystems. Front. Ecol. Environ. 7, 308–316 (2009).

    Article  Google Scholar 

  10. Kricher, J. Tropical Ecology (Princeton Univ. Press, 2011).

  11. Lindenmayer, D. B. & Franklin, J. F. Conserving Forest Biodiversity: A Comprehensive Multiscaled Approach (Island Press, 2002).

  12. Rozendaal, D. M. A. et al. Biodiversity recovery of neotropical secondary forests. Sci. Adv. 5, eaau3114 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cortés-Gómez, A. M., Castro-Herrera, F. & Urbina-Cardona, J. N. Small changes in vegetation structure create great changes in amphibian ensembles in the Colombian Pacific rainforest. Trop. Conserv. Sci. 6, 749–769 (2013).

    Article  Google Scholar 

  14. Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015).

    Article  Google Scholar 

  16. Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. BioScience 54, 547–560 (2004).

    Article  Google Scholar 

  17. Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359, eaam8328 (2018).

    Article  PubMed  Google Scholar 

  18. Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E. & Carrasco, L. R. Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nat. Commun. 9, 4052 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lindenmayer, D. B., Laurance, W. F. & Franklin, J. F. Global decline in large old trees. Science 338, 1305–1306 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Hansen, A. et al. Global humid tropics forest structural condition and forest structural integrity maps. Sci. Data 6, 232 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. The World Database on Protected Areas (WDPA) (IUCN and UNEP-WCMC, 2019).

  27. Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinction risk. Nat. Commun. 9, 4621 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Armenteras, D., Espelta, J. M., Rodríguez, N. & Retana, J. Deforestation dynamics and drivers in different forest types in Latin America: three decades of studies (1980–2010). Glob. Environ. Change 46, 139–147 (2017).

    Article  Google Scholar 

  29. Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Golden Kroner, R. E. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. USA 116, 23209–23215 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. DeFries, R., Karanth, K. K. & Pareeth, S. Interactions between protected areas and their surroundings in human-dominated tropical landscapes. Biol. Conserv. 143, 2870–2880 (2010).

    Article  Google Scholar 

  36. Polak, T. et al. Efficient expansion of global protected areas requires simultaneous planning for species and ecosystems. R. Soc. Open Sci. 2, 150107 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Garnett, S. T. et al. A spatial overview of the global importance of indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).

    Article  Google Scholar 

  38. Jonas, H. D., Barbuto, V., Jonas, H. C., Kothari, A. & Nelson, F. New steps of change: looking beyond protected areas to consider other effective area-based conservation measures. Parks 20, 111–127 (2014).

    Article  Google Scholar 

  39. Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chazdon, R. L. et al. Rates of change in tree communities of secondary neotropical forests following major disturbances. Philos. Trans. R. Soc. Lond. B 362, 273–289 (2007).

    Article  Google Scholar 

  41. Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Venter, O. et al. Harnessing carbon payments to protect biodiversity. Science 326, 1368–1369 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R. Soc. B 375, 20190126 (2020).

    Article  CAS  Google Scholar 

  45. Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Olson, D. M. & Dinerstein, E. The Global 200: priority ecoregions for global conservation. Ann. Missouri Bot. Gard. 89, 199–224 (2002).

    Article  Google Scholar 

  47. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE 14, e0213368 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article  Google Scholar 

  50. Šavrič, B., Patterson, T. & Jenny, B. The Equal Earth map projection. Int. J. Geogr. Inf. Sci. 33, 454–465 (2019).

    Article  Google Scholar 

  51. Tyukavina, A. et al. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ. Res. Lett. 10, 074002 (2015).

    Article  Google Scholar 

  52. Goetz, S. & Dubayah, R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manag. 2, 231–244 (2011).

    Article  Google Scholar 

  53. Hansen, A. J., Phillips, L. B., Dubayah, R., Goetz, S. & Hofton, M. Regional-scale application of lidar: variation in forest canopy structure across the southeastern US. For. Ecol. Manag. 329, 214–226 (2014).

    Article  Google Scholar 

  54. Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sanderson, E. W. et al. The human footprint and the last of the wild. BioScience 52, 891–904 (2002).

    Article  Google Scholar 

  56. Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Dudley, N. (ed.) Guidelines for Applying Protected Area Management Categories (IUCN, 2008).

  58. Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded by the NASA Biodiversity and Ecological Forecasting Program under the 2016 ECO4CAST solicitation through grant no. NNX17AG51G, the NASA Global Ecosystem Dynamics Investigation grant no. NNL15AA03 to S.J.G. and the NASA GEO solicitation grant no. 80NSSC18K0338 to P.J.

Author information

Authors and Affiliations

Authors

Contributions

A.J.H., J.E., S.J.G., M.H., O.V. and J.E.M.W. conceived the study. A.J.H., P.B., K.B. and S.A. analysed the data. P.B. designed the graphics. J.E., A.L.S.V. and C.S. developed policy implications. S.R.-B. and D.A. supported field reconnaissance. A.J.H. wrote the manuscript with critical inputs from P.B., J.E., S.J.G., M.H., O.V., J.E.M.W., P.A.J., A.L.S.V., K.B., R.P., S.A., C.S., S.R.-B. and D.A.

Corresponding author

Correspondence to Andrew J. Hansen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1. Map of the tropical and subtropical moist broadleaf forests.

Reporting Summary

Peer Review Information

Supplementary Tables

Supplementary Tables 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, A.J., Burns, P., Ervin, J. et al. A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests. Nat Ecol Evol 4, 1377–1384 (2020). https://doi.org/10.1038/s41559-020-1274-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-1274-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing