Abstract
The international community has treated climate change as an emissions reduction challenge, drawing on the analytical metaphor of the global commons, and thus the politics of collective action and international cooperation. So far, these strategies have failed to produce an effective global response. We propose decarbonization as the defining challenge and a new guiding metaphor for the problem structure: the global fractal. This metaphor aptly describes the decarbonization challenge, capturing the multilevel and interdependent nature of carbon lock-in and the fractal carbon trap facing decarbonization efforts. It also provides a means to explore the range of diverse policies and practices that can potentially escape the fractal carbon trap and catalyse deep decarbonization.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Shimko, K. L. Metaphors and foreign policy decision making. Polit. Psychol. 15, 655–671 (1994).
Hajer, M. A. The Politics of Environmental Discourse: Ecological Modernization and the Policy Process (Clarendon, 1995).
Schlesinger, M. & Lau, R. R. The meaning and measure of policy metaphors. Am. Polit. Sci. Rev. 94, 611–626 (2000).
Lakoff, G. & Johnson, M. Metaphors We Live By (Univ. Chicago Press, 1980).
Bougher, L. D. The case for metaphor in political reasoning and cognition. Polit. Psychol. 33, 145–163 (2012).
Shaw, C. & Nerlich, B. Metaphor as a mechanism of global climate change governance: a study of international policies, 1992–2012. Ecol. Econ. 109, 34–40 (2015).
Keohane, R. O. & Victor, D. G. Cooperation and discord in global climate policy. Nat. Clim. Change 6, 570–575 (2016).
Barrett, S. Environment and Statecraft (Oxford Univ. Press, 2003).
Peters, S. Beyond carbon budgets. Nat. Geosci. 11, 378–380 (2018).
Geden, O. Politically informed advice for climate action. Nat. Geosci. 11, 380–383 (2018).
Victor, D. G. Global Warming Gridlock: Creating More Effective Strategies for Protecting the Planet (Cambridge Univ. Press, 2011).
Depledge, J. The opposite of learning: ossification in the climate change regime. Glob. Environ. Polit. 6, 1–22 (2006).
Falkner, R. The Paris agreement and the new logic of international climate politics. Int. Aff. 92, 1107–1125 (2016).
Beiser-McGrath, L. F. & Bernauer, T. Commitment failures are unlikely to undermine public support for the Paris agreement. Nat. Clim. Change 9, 248 (2019).
Mildenberger, M. Support for climate unilateralism. Nat. Clim. Change 9, 187–188 (2019).
Hsu, A. et al. A Research roadmap for quantifying non-state and subnational climate mitigation action. Nat. Clim. Change 9, 11–17 (2019).
Hale, T. The Role of Sub-State and Nonstate Actors in International Climate Processes Research Paper (Chatham House, 2018).
Unruh, G. C. Understanding carbon lock-in. Energy Policy 28, 817–830 (2000).
Seto, K. C. et al. Carbon lock-in: types, causes, and policy implications. Annu. Rev. Environ. Resour. 41, 425–452 (2016).
Farmer, J. D. et al. Sensitive intervention points in the post-carbon transition. Science 364, 132–134 (2019).
Duit, A. & Galaz, V. Governance and complexity — emerging issues for governance theory. Governance 21, 311–335 (2008).
Bak, P. & Creutz, M. in Fractals in Science (eds Bunde, A. & Havlin, S.) 27–48 (Springer, 1994).
Barrett, C. B. & Swallow, B. M. Fractal poverty traps. World Dev. 34, 1–15 (2006).
Chettiparamb, A. Complexity theory and planning: examining ‘fractals’ for organising policy domains in planning practice. Plann. Theor. 13, 5–25 (2013).
De Florio, V. et al. Models and concepts for socio‐technical complex systems: towards fractal social organizations. Syst. Res. Behav. Sci. 30, 750–772 (2013).
Perey, R. Organizing sustainability and the problem of scale: local, global, or fractal? Organ. Environ. 27, 215–222 (2014).
Meadowcroft, J. What about the politics? Sustainable development, transition management, and long term energy transitions. Policy Sci. 42, 323–340 (2009).
Geels, F. W. Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective. Res. Pol. 39, 495–510 (2010).
Princen, T., Manno, J. P. & Martin, P. L. (eds) Ending the Fossil Fuel Era (MIT Press, 2015).
Pathways to Deep Decarbonization (SDSN, 2014); http://deepdecarbonization.org
Bulkeley, H. A. et al. Transnational Climate Change Governance (Cambridge Univ. Press, 2014).
Jordan, A., Huitema, D., Van Asselt, H. & Forster, J. (eds) Governing Climate Change: Polycentricity in Action? (Cambridge Univ. Press 2018).
Widerberg, O. & Stripple, J. The expanding field of cooperative initiatives for decarbonization: a review of five databases. WIREs Clim. Change 7, 486–500 (2016).
Overdevest, C. & Zeitlin, J. Assembling an experimentalist regime: transnational governance interactions in the forest sector. J. Gov. Regul. 8, 22–48 (2014).
De Búrca, G., Keohane, R. O. & Sabel, C. Global experimentalist governance. Br. J. Polit. Sci. 44, 477–486 (2014).
Bulkeley, H. & Castán Broto, V. Government by experiment? Global cities and the governing of climate change. Trans. Inst. Br. Geogr. 38, 361–375 (2013).
Hoffmann, M. Climate Governance at the Crossroads: Experimenting with a Global Response after Kyoto (Oxford Univ. Press, 2011).
Romero-Lankao, P. et al. Urban transformative potential in a changing climate. Nat. Clim. Change 8, 754 (2018).
Betsill, M. & Bulkeley, H. Looking back and thinking ahead: a decade of cities and climate change research. Local Environ. 12, 447–456 (2007).
Rabe, B. G. Can We Price Carbon? (MIT Univ. Press, 2018).
Webb, M. Smart 2020: Enabling the Low Carbon Economy in the Information Age (The Climate Group, 2008).
Lade, S., Hader, J., Engström, J. & Schlüter, M. Resilience offers escape from trapped thinking on poverty alleviation. Sci. Adv. 3, e1603043 (2017).
Geroski, P. A. Models of technology diffusion. Res. Policy 29, 603–625 (2000).
Kauffman, S. At Home in the Universe: The Search for the Laws of Self-organization and Complexity (Oxford Univ. Press, 1996).
Juarrero, A. Dynamics in action: intentional behavior as a complex system. Emergence 2, 24–57 (2000).
Levin, S. et al. Social-ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ. 18, 111–132 (2013).
Levin, K., Cashore, B., Bernstein, S. & Auld, G. Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change. Policy Sci. 45, 123–152 (2012).
Newell, P. Trasformismo or transformation? The global political economy of energy transitions. Rev. Int. Pol. Econ. 26, 25–48 (2018).
Geels, F. W. Regime resistance against low-carbon transitions: introducing politics and power into the multi-level perspective. Theory Cult. Soc. 31, 21–40 (2014).
Bernstein, S. & Hoffmann, M. The politics of decarbonization and the catalytic impact of subnational experiments. Policy Sci. 51, 189–211 (2018).
Meckling, J., Kelsey, N., Biber, E. & Zysman, J. Winning coalitions for climate policy. Science 349, 1170–1171 (2015).
Breetz, H., Mildenberger, M. & Stokes, L. The political logics of clean energy transitions. Bus. Polit. 20, 492–522 (2018).
Green, F. Anti-fossil fuel norms. Climatic Change 150, 103–116 (2018).
Buschmann, P. & Oels, A. The overlooked role of discourse in breaking carbon lock-in: the case of the German energy transition. WIREs Clim. Change 574, https://doi.org/10.1002/wcc.574 (2019).
Boisvert, N. Metrolinx removes electric vehicle chargers from GO station parking lots. CBC go.nature.com/30MeHu7 (10 January 2019).
Benzie, R. Tesla wins lawsuit against Ontario government over phase-out of electric vehicle incentives. The Star go.nature.com/30WUiCl (27 August 2018).
Gorzelaney, J. Here’s which automakers will suffer if Trump ends electric car tax credits. Forbes go.nature.com/2LSshHP (10 December 2018).
Andrews-Speed, P. Applying institutional theory to the low-carbon energy transition. Energy Res. Soc. Sci. 13, 216–225 (2016).
Lockwood, M., Kuzemko, C., Mitchell, C. & Hoggett, R. Historical institutionalism and the politics of sustainable energy transitions: a research agenda. Environ. Plann. C 35, 312–333 (2017).
Maniates, M. F. Individualization: plant a tree, buy a bike, save the world? Glob. Environ. Polit. 1, 31–52 (2001).
Wapner, P. & Willoughby, J. The irony of environmentalism: the ecological futility but political necessity of lifestyle change. Ethics Int. Aff. 19, 77–89 (2005).
DeSombre, E. Why Do Good People Do Bad Environmental Things? (Oxford Univ Press, 2018).
Stokes, L. C. The politics of renewable energy policies: the case of feed-in tariffs in Ontario, Canada. Energy Policy 56, 490–500 (2013).
Miner, J. The Mainstreet Research survey suggests an even split in public opinion about Ontario’s embrace of wind energy. The London Free Press go.nature.com/2Mixloc (8 June 2016).
Carbon pricing: rebate announcement tips opinion in favour of federal plan, slim majority now support it. Angus Reid Institute go.nature.com/2MlVIB7 (1 November 2018).
Keith, D. W. Geoengineering. Nature 409, 420 (2001).
Keith, D. W., Wagner, G. & Zabel, C. L. Solar geoengineering reduces atmospheric carbon burden. Nat. Clim. Change 7, 617 (2017).
Givens, J. E. Geoengineering in context. Nat. Sustain. 1, 459 (2018).
Bennett, E. M. et al. Bright spots: seeds of a good Anthropocene. Front. Ecol. Environ. 14, 441–448 (2016).
Wettengel, J. Climate goal failure warrants high Energiewende priority — gov advisors. Clean Energy Wire go.nature.com/2nnS5Cj (27 June 2018).
Sixth ‘Energy Transition’ Monitoring Report: The Energy of the Future. Reporting Year 2016 — Summary (German Federal Ministry of Economic Affairs and Energy, 2018); go.nature.com/30ZlJfa
Cunningham, T., Hedberg, A., Nazakat, S. & Yao, L. Assessing the Energiewende: An International Expert Review (Konrad Adenaeur Stiftung, 2018); go.nature.com/2LVgGru
Meckling, J. (2019). Governing renewables: policy feedback in a global energy transition. Environ. Plann. C. 37, 317–338 (2018).
Alizada, K. Rethinking the diffusion of renewable energy policies: a global assessment of feed-in tariffs and renewable portfolio standards. Energy Res. Soc. Sci. 44, 346–361 (2018).
Boasson, E. Constitutionalization and entrepreneurship: explaining increased EU steering of renewables support schemes. Polit. Gov. 7, 70–80 (2019).
Global EV Outlook 2018 (IEA, 2018); https://www.iea.org/topics/transport/evi/
Figenbaum, E. & Kolbenstvedt, M. Electromobility in Norway — Experiences and Opportunities with Electric Vehicles (Transportøkonomisk Institutt, 2013).
Charles, D. A small spark from Bellona fuels Norway’s eco-friendly car explosion. Bellona Foundation go.nature.com/2IucEEy (8 January 2018).
Clean Energy Ministerial EV30@30 Campaign (IEA, 2017).
Danish Motor Vehicle Taxes (Danish Ecological Council, no date).
Electric vehicles summit 2019 in Norway: Ukraine is learning from the leaders. NUCC go.nature.com/2IrqS91 (22 March 2019).
Wappelhorst, S. & Tietge, U. Iceland is one of the world’s most interesting electric vehicle markets. ICCT https://www.theicct.org/blog/staff/iceland-ev-market-201807 (9 July 2019).
Lemphers, N. Rolling the Snowball: Norway’s Efforts to Electrify Transportation Working Paper 19-2 (EGL, 2019).
Global Climate Change Report 2015 (CDP, 2015); go.nature.com/30Pbr13
Tang, S. & Demeritt, D. Climate change and mandatory carbon reporting: Impacts on business process and performance. Bus. Strategy Environ. 27, 437–455 (2017).
Global 500 Report 2011 (CDP, 2011); go.nature.com/2AM24o6
PRI, ICGN launch discussion paper on corporate ESG reporting. PRI go.nature.com/2pSAhAh (18 October 2018).
Portfolio Decarbonization Coalition United Nations Environment Program https://www.unepfi.org/climate-change/pdc/ (no date).
Commit to adopt a science-based emissions reduction target to generate the innovations needed to transition to a low-carbon, sustainable economy. CDP https://www.cdp.net/en/campaigns/commit-to-action/science-based-targets (no date).
Putting a Price on Carbon (CDP, 2017); go.nature.com/2Me2RDu
Climate Change Disclosure in G20 Countries (OECD, 2015); go.nature.com/2ViSoLp
Pahle, M. et al. Sequencing to ratchet up climate policy stringency. Nat. Clim. Change 8, 861–867 (2018).
van der Ven, H. et al. Valuing the contributions of nonstate and subnational actors to climate governance. Glob. Environ. Polit. 17, 1–20 (2017).
Betsill, M. & Stevis, D. The politics and dynamics of energy transitions: lessons from Colorado’s ‘new energy economy’. Environ. Plann. C 24, 381–396 (2016).
Hagmann, D., Ho, E. H. & Loewenstein, G. Nudging out support for a carbon tax. Nat. Clim. Change 9, 484–489 (2019).
Johnsen, T. J. Norway’s Electric Vehicle Policies (Environment Oslo, 2017).
Emissions to Air (Statistisk sentralbyrå, 2018); https://www.ssb.no/en/klimagassn
Klöckner, C. A., Nayum, A. & Mehmetoglu, M. Positive and negative spillover effects from electric car purchase to car use. Transp. Res. D 21, 32–38 (2013).
Knudsen, C., Doyle, A. Norway powers ahead (electrically): over half new car sales now electric or hybrid. Reuters (3 January 2018).
Le Quere, C. et al. Drivers of declining CO2 emissions in 18 developed economies. Nat. Clim. Change 9, 213–217 (2019).
Stafford-Smith, M. et al. Integration: the key to implementing the Sustainable Development Goals. Sustain. Sci. 12, 911–919 (2017).
Haley, B. From staples trap to carbon trap: Canada’s peculiar form of carbon lock-in. Stud. Polit. Econ. 88, 97–132 (2011).
Acknowledgements
The authors were supported by a grant from the Social Sciences and Humanities Research Council of Canada. We thank N. Lemphers, A. Janzwood and M. Pedersen-Macnab for research assistance, and M. Paterson, B. Cashore, H. Millar, H. Bulkeley, M. Betsill, J. Green and D. Rosenbloom for comments on previous drafts.
Author information
Authors and Affiliations
Contributions
Both authors contributed equally to the research and writing of this article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Climate Change thanks Elin Boasson, Navroz Dubash, Jonas Meckling and Leah Stokes for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bernstein, S., Hoffmann, M. Climate politics, metaphors and the fractal carbon trap. Nat. Clim. Chang. 9, 919–925 (2019). https://doi.org/10.1038/s41558-019-0618-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41558-019-0618-2