[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy

Abstract

Ribosomes are abundant cellular machines1,2 that are regulated by assembly, supernumerary subunit turnover and nascent chain quality control mechanisms1,2,3,4,5. Moreover, nitrogen starvation in yeast has been reported to promote selective ribosome delivery to the vacuole in an autophagy conjugation system dependent manner, a process called ‘ribophagy’6,7. However, whether ribophagy in mammals is selective or regulated is unclear. Using Ribo–Keima flux reporters, we find that starvation or mTOR inhibition promotes VPS34-dependent ribophagic flux, which, unlike yeast, is largely independent of ATG8 conjugation and occurs concomitantly with other cytosolic protein autophagic flux reporters8,9. Ribophagic flux was not induced upon inhibition of translational elongation or nascent chain uncoupling, but was induced in a comparatively selective manner under proteotoxic stress induced by arsenite10 or chromosome mis-segregation11, dependent upon VPS34 and ATG8 conjugation. Unexpectedly, agents typically used to induce selective autophagy also promoted increased ribosome and cytosolic protein reporter flux, suggesting significant bulk or ‘bystander’ autophagy during what is often considered selective autophagy12,13. These results emphasize the importance of monitoring non-specific cargo flux when assessing selective autophagy pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Construction of a system for monitoring ribophagy flux in human cells.
Fig. 2: mTOR inhibition promotes ribophagy flux in a VPS34-dependent manner.
Fig. 3: Ribophagy in response to mTOR inhibition in HEK293 cells is ATG5-independent but BECN1-dependent.
Fig. 4: A screen of ribosome stress agents identifies sodium arsenite and reversine as ribophagy inducers.
Fig. 5: Quantitative western blot analyses of various Keima reporter cell lines reveal selective capture of ribosomes during AS and reversine treatment and the relative quantity of bystander autophagy during selective autophagy.

Similar content being viewed by others

References

  1. Warner, J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, T., Shen, S., Qu, J. & Ghaemmaghami, S. Global analysis of cellular protein flux quantifies the selectivity of basal autophagy. Cell Rep. 14, 2426–2439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shao, S. & Hegde, R. S. Target selection during protein quality control. Trends Biochem. Sci. 41, 124–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Sung, M. K., Reitsma, J. M., Sweredoski, M. J., Hess, S. & Deshaies, R. J. Ribosomal proteins produced in excess are degraded by the ubiquitin–proteasome system. Mol. Biol. Cell 27, 2642–2652 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sung, M. K. et al. A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. eL ife 5, e19105 (2016).

  6. Kraft, C., Deplazes, A., Sohrmann, M. & Peter, M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 10, 602–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Ossareh-Nazari, B. et al. Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep. 11, 548–554 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nishida, Y. et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Tsuboyama, K. et al. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354, 1036–1041 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Anderson, P. & Kedersha, N. RNA granules. J. Cell Biol. 172, 803–808 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Santaguida, S., Vasile, E., White, E. & Amon, A. Aneuploidy-induced cellular stresses limit autophagic degradation. Gene. Dev. 29, 2010–2021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Galluzzi, L. et al. Molecular definitions of autophagy and related processes. EMBO J. 36, 1811–1836 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Anding, A. L. & Baehrecke, E. H. Cleaning house: selective autophagy of organelles. Dev. Cell 41, 10–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kishi-Itakura, C., Koyama-Honda, I., Itakura, E. & Mizushima, N. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci. 127, 4089–4102 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Katayama, H., Kogure, T., Mizushima, N., Yoshimori, T. & Miyawaki, A. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem. Biol. 18, 1042–1052 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ni, H. M. et al. Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 7, 188–204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gross, L. A., Baird, G. S., Hoffman, R. C., Baldridge, K. K. & Tsien, R. Y. The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc. Natl Acad. Sci. USA 97, 11990–11995 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chan, E. Y., Kir, S. & Tooze, S. A. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J. Biol. Chem. 282, 25464–25474 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Hurley, J. H. & Young, L. N. Mechanisms of autophagy initiation. Annu. Rev. Biochem. 86, 225–244 (2017).

  21. Ktistakis, N. T. & Tooze, S. A. Digesting the expanding mechanisms of autophagy. Trends Cell Biol. 26, 624–635 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Anderson, D. J. et al. Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell 28, 653–665 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, J. et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147, 223–234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harper, J. W. & Bennett, E. J. Proteome complexity and the forces that drive proteome imbalance. Nature 537, 328–338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hewitt, L. et al. Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J. Cell Biol. 190, 25–34 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Santaguida, S., Tighe, A., D’Alise, A. M., Taylor, S. S. & Musacchio, A. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J. Cell Biol. 190, 73–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Panas, M. D., Ivanov, P. & Anderson, P. Mechanistic insights into mammalian stress granule dynamics. J. Cell Biol. 215, 313–323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buchan, J. R., Kolaitis, R. M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461–1474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ichimura, Y. et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51, 618–631 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495–501 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Higgins, R. et al. The unfolded protein response triggers site-specific regulatory ubiquitylation of 40S ribosomal proteins. Mol. Cell 59, 35–49 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoshii, S. R., Kishi, C., Ishihara, N. & Mizushima, N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286, 19630–19640 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (grants R37NS083524 and RO1GM095567 to J.W.H.). The authors acknowledge the Nikon Imaging Center and the Imaging and Data Analysis Core (Harvard Medical School) for imaging assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.W.H. and H.A. conceived the study. H.A. performed all experiments. H.A. and J.W.H. analysed the data and wrote the paper.

Corresponding author

Correspondence to J. Wade Harper.

Ethics declarations

Competing Interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Legends

Life Sciences Reporting Summary

Supplementary Table 1

Sequences of guide RNAs used for CRISPR tagging and knock-out, and primers for genotyping and next-generation sequencing.

Supplementary Table 2

Statistics Source Data. The source data for statistical analyses of Figs. 2b, 2f-h, 3b, 4b, 4d-e, 4g, 4l, 5e-f, and Supplemental Figs. 2j, 3a, 5c, and 5h.

Supplementary Table 3

Information of antibodies used in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, H., Harper, J.W. Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nat Cell Biol 20, 135–143 (2018). https://doi.org/10.1038/s41556-017-0007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-017-0007-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing