[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Differential impact of antihypertensive drugs on cardiovascular remodeling: a review of findings and perspectives for HFpEF prevention

Abstract

Heart failure (HF) is an important health problem worldwide whose stages have traditionally been classified from A to D. In addition, HF can be categorized as that with preserved ejection fraction (HFpEF) and that with reduced ejection fraction (HFrEF). Hypertension and arterial stiffness in stage A HF are major drivers of the progression to left ventricular hypertrophy (LVH), a criterion of stage B HF. Although the pathogenesis of HFpEF is heterogeneous, affected patients tend to be older than HFrEF patients and have a greater prevalence of hypertension, which is closely associated with arterial stiffness and LVH. Thus, to treat HFpEF, the optimal intervention for improving prognosis is an aggressive approach to early-stage, i.e., Stage A and B, HF. This paper reviews the findings on arterial stiffness and LVH using conventional antihypertensive drugs such as angiotensin receptor II blockers (ARBs) and a new drug class for HF, ARB/neprilysin inhibitor (ARNi). Previous studies have suggested that the combination of an ARB with an L–T-type calcium channel blocker might be recommended for the improvement of arterial stiffness and regression of LVH. More recent research has shown that ARNi also improves central BP, which leads to a reduced afterload and a significant reduction in LVH. For optimal treatment of HFpEF, drug therapy should directly address arterial stiffness as well as hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yasuda S, Miyamoto Y, Ogawa H. Current status of cardiovascular medicine in the aging society of Japan. Circulation. 2018;138:965–7.

    Article  PubMed  Google Scholar 

  2. Okura Y, Ramadan MM, Ohno Y, Mitsuma W, Tanaka K, Ito M, et al. Impending epidemic: future projection of heart failure in Japan to the year 2055. Circ J. 2008;72:489–91.

    Article  PubMed  Google Scholar 

  3. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017;136:e137–e161. 2017

    Article  PubMed  Google Scholar 

  4. Tsutsui H, Isobe M, Ito H, Ito H, Okumura K, Ono M, et al. JCS 2017/JHFS 2017 Guideline on diagnosis and treatment of acute and chronic heart failure- digest version. Circ J. 2019;83:2084–184.

    Article  PubMed  Google Scholar 

  5. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–2200.

    Article  PubMed  Google Scholar 

  6. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 2003;362:777–81.

    Article  CAS  PubMed  Google Scholar 

  7. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP. et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381:1609–20.

    Article  CAS  PubMed  Google Scholar 

  8. Seferovic JP, Claggett B, Seidelmann SB, Seely EW, Packer M, Zile MR, et al. Effect of sacubitril/valsartan versus enalapril on glycaemic control in patients with heart failure and diabetes: a post-hoc analysis from the PARADIGM-HF trial. Lancet Diabetes Endocrinol. 2017;5:333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun Z. Aging, arterial stiffness, and hypertension. Hypertension 2015;65:252–6.

    Article  CAS  PubMed  Google Scholar 

  10. Li T, Chen S, Guo X, Yang J, Sun Y. Impact of hypertension with or without diabetes on left ventricular remodeling in rural Chinese population: a cross-sectional study. BMC Cardiovasc Disord. 2017;17:206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Newman MS, Nguyen T, Watson MJ, Hull RW, Yu HG. Transcriptome profiling reveals novel BMI- and sex-specific gene expression signatures for human cardiac hypertrophy. Physiol Genomics. 2017;49:355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ichihara A, Hayashi M, Koura Y, Tada Y, Hirota N, Saruta T. Long-term effects of intensive blood pressure lowering on arterial wall stiffness in hypertensive patients. Am J Hypertens. 2003;16:959–65.

    Article  CAS  PubMed  Google Scholar 

  13. Soliman EZ, Ambrosius WT, Cushman WC, Zhang ZM, Bates JT, Neyra JA, et al. Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with hypertension: SPRINT (Systolic Blood Pressure Intervention Trial). Circulation 2017;136:440–50.

    Article  PubMed  PubMed Central  Google Scholar 

  14. SPRINT Research Group, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16.

    Article  Google Scholar 

  15. Tanaka A, Tomiyama H, Maruhashi T, Matsuzawa Y, Miyoshi T, Kabutoya T, et al. Physiological diagnosis criteria for vascular failure committee. Physiological diagnostic criteria for vascular failure. Hypertension 2018;72:1060–71.

    Article  CAS  PubMed  Google Scholar 

  16. Kollias A, Kyriakoulis KG, Gravvani A, Anagnostopoulos I, Stergiou GS. Automated pulse wave velocity assessment using a professional oscillometric office blood pressure monitor. J Clin Hypertens (Greenwich). 2020;22:1817–23.

    Article  Google Scholar 

  17. Nakagomi A, Imazeki F, Nishimura M, Sawabe Y, Matsushita K, Murata A, et al. Central blood pressure and pulse wave velocity in young and middle-aged Japanese adults with isolated systolic hypertension. Hypertens Res. 2020;43:207–12.

    Article  PubMed  Google Scholar 

  18. Tanaka A, Toyoda S, Node K. Vascular functional tests and preemptive medicine. Hypertens Res. 2021;44:117–9.

    Article  PubMed  Google Scholar 

  19. Fujii M, Tomiyama H, Nakano H, Iwasaki Y, Matsumoto C, Shiina K, et al. Differences in longitudinal associations of cardiovascular risk factors with arterial stiffness and pressure wave reflection in middle-aged Japanese men. Hypertens Res. 2021;44:98–106.

    Article  PubMed  Google Scholar 

  20. Kollias A, Lagou S, Zeniodi ME, Boubouchairopoulou N, Stergiou GS. Association of central versus brachial blood pressure with target-organ damage: systematic review and meta-analysis. Hypertension 2016;67:183–90.

    Article  CAS  PubMed  Google Scholar 

  21. Bulas J, Potocarova M, Kupcova V, Gaspar L, Wimmer G, Murin J. Central systolic blood pressure increases with aortic stiffness. Bratisl Lek Listy. 2019;120:894–8.

    CAS  PubMed  Google Scholar 

  22. Jekell A, Kahan T. The usefulness of a single arm cuff oscillometric method (Arteriograph) to assess changes in central aortic blood pressure and arterial stiffness by antihypertensive treatment: results from the Doxazosin-Ramipril Study. Blood Press. 2018;27:88–98.

    Article  CAS  PubMed  Google Scholar 

  23. Takami T, Shigemasa M. Efficacy of various antihypertensive agents as evaluated by indices of vascular stiffness in elderly hypertensive patients. Hypertens Res. 2003;26:609–14.

    Article  CAS  PubMed  Google Scholar 

  24. Takami T. Evaluation of arterial stiffness in morning hypertension under high-dose valsartan compared to valsartan plus low-dose diuretic. Hypertens Res. 2009;32:1086–90.

    Article  CAS  PubMed  Google Scholar 

  25. Tomiyama H, Yoshida M, Yamada J, Matsumoto C, Odaira M, Shiina K, et al. Arterial-cardiac destiffening following long-term antihypertensive treatment. Am J Hypertens. 2011;24:1080–6.

    Article  CAS  PubMed  Google Scholar 

  26. Dhakam Z, McEniery CM, Yasmin, Cockcroft JR, Brown MJ, Wilkinson IB. Atenolol and eprosartan: differential effects on central blood pressure and aortic pulse wave velocity. Am J Hypertens. 2006;19:214–9.

    Article  CAS  PubMed  Google Scholar 

  27. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  PubMed  Google Scholar 

  28. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, et al. 2017ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018;71:e13–e115.

    CAS  PubMed  Google Scholar 

  29. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    Article  PubMed  Google Scholar 

  30. Matsui Y, Eguchi K, O’Rourke MF, Ishikawa J, Miyashita H, Shimada K, et al. Differential effects between a calcium channel blocker and a diuretic when used in combination with angiotensin II receptor blocker on central aortic pressure in hypertensive patients. Hypertension. 2009;54:716–23.

    Article  CAS  PubMed  Google Scholar 

  31. Takami T, Saito Y. Effects of Azelnidipine plus OlmesaRTAn versus amlodipine plus olmesartan on central blood pressure and left ventricular mass index: the AORTA study. Vasc Health Risk Manag. 2011;7:383–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsui Y, O’Rourke MF, Ishikawa J, Shimada K, Kario K. Association of changes in ambulatory arterial stiffness index and pulse wave velocity during antihypertensive treatment: the J-CORE study. Am J Hypertens. 2012;25:862–8.

    Article  CAS  PubMed  Google Scholar 

  33. Takami T, Saito Y. Azelnidipine plus olmesartan versus amlodipine plus olmesartan on arterial stiffness and cardiac function in hypertensive patients: a randomized trial. Drug Des Devel Ther. 2013;7:175–83.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Williams B, Cockcroft JR, Kario K, Zappe DH, Brunel PC, Wang Q, et al. Effects of sacubitril/valsartan versus olmesartan on central hemodynamics in the elderly with systolic hypertension: the PARAMETER Study. Hypertension 2017;69:411–20.

    Article  CAS  PubMed  Google Scholar 

  35. Schmieder RE, Wagner F, Mayr M, Delles C, Ott C, Keicher C, et al. The effect of sacubitril/valsartan compared to olmesartan on cardiovascular remodelling in subjects with essential hypertension: the results of a randomized, double-blind, active-controlled study. Eur Heart J. 2017;38:3308–17.

    Article  CAS  PubMed  Google Scholar 

  36. Cho EJ, Lee HY, Sung KC, Park S, Sohn IS, Park CG, et al. Comparison of 24-hour ambulatory central blood pressure reduction efficacy between fixed amlodipine or up-titrated hydrochlorothiazide plus losartan: the K-Central Study. Am J Hypertens. 2019;32:992–1002.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hayashi K, Wakino S, Sugano N, Ozawa Y, Homma K, Saruta T. Ca2+ channel subtypes and pharmacology in the kidney. Circ Res. 2007;100:342–53.

    Article  CAS  PubMed  Google Scholar 

  38. Pathapati RM, Rajashekar ST, Buchineni M, Meriga RK, Reddy CB, Kumar KP. An open label parallel group study to assess the effects of amlodipine and cilnidipine on pulse wave velocity and augmentation pressures in mild to moderate essential hypertensive patients. J Clin Diagn Res. 2015;9:FC13–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Inomata J, Murai H, Kaneko S, Hamaoka T, Ikeda T, Kobayashi D, et al. Differential effects of azelnidipine and amlodipine on sympathetic nerve activity in patients with primary hypertension. J Hypertens. 2014;32:1898–904.

    Article  CAS  PubMed  Google Scholar 

  40. Shimizu H, Nakagami H, Yasumasa N, Mariana OK, Kyutoku M, Koriyama H, et al. Cilnidipine, but not amlodipine, ameliorates osteoporosis in ovariectomized hypertensive rats through inhibition of the N-type calcium channel. Hypertens Res. 2012;35:77–81.

    Article  CAS  PubMed  Google Scholar 

  41. Ogura C, Ono K, Miyamoto S, Ikai A, Mitani S, Sugimoto N, et al. L/T-type and L/N-type calcium-channel blockers attenuate cardiac sympathetic nerve activity in patients with hypertension. Blood Press. 2012;21:367–71.

    Article  CAS  PubMed  Google Scholar 

  42. Yamamoto K, Rakugi H. Angiotensin receptor neprilysin inhibitors. Comprehensive review and implication in hypertension treatment. Hypertens Res. 2021. https://doi.org/10.1038/s41440-021-00706-1. e-pub ahead of print 21 Juy 2021.

  43. Gu J, Noe A, Chandra P, Al-Fayoumi S, Ligueros-Saylan M, Sarangapani R, et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). J Clin Pharm. 2010;50:401–14.

    Article  CAS  Google Scholar 

  44. Kario K, Williams B. Nocturnal hypertension and heart failure mechanisms, evidence, and new treatments hypertension. 2021; 78. https://doi.org/10.1161/HYPERTENSIONAHA.121.17440.

  45. Hubers SA, Brown NJ. Combined angiotensin receptor antagonism and neprilysin inhibition. Circulation 2016;133:1115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pan S, Chen HH, Correia C, Dai H, Witt TA, Kleppe LS, et al. Cell surface protein disulfide isomerase regulates natriuretic peptide generation of cyclic guanosine monophosphate. PLoS ONE. 2014;9:e112986.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Levy D, Hwang SJ, Kayalar A, Benjamin EJ, Vasan RS, Parise H, et al. Associations of plasma natriuretic peptide, adrenomedullin, and homocysteine levels with alterations in arterial stiffness: the Framingham Heart Study. Circulation 2007;115:3079–85.

    Article  CAS  PubMed  Google Scholar 

  48. Hoshide S, Kanegae H, Kario K Nighttime home blood pressure as a mediator of N-terminal pro-brain natriuretic peptide in cardiovascular events. Hypertens Res. 2021. https://doi.org/10.1038/s41440-021-00667-5.

  49. Kass DA. Ventricular arterial stiffening: integrating the pathophysiology. Hypertension. 2005;46:185–93.

    Article  CAS  PubMed  Google Scholar 

  50. Dahlöf B, Devereux RB, Sverre EK, Julius S, Beevers G, de Faire U, et al. LIFE Study GroupCardiovascular morbidity and mortality in the Losartan Intervention for Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359:995–1003.

    Article  PubMed  Google Scholar 

  51. Yoshida C, Goda A, Naito Y, Nakaboh A, Matsumoto M, Otsuka M, et al. Role of plasma aldosterone concentration in regression of left-ventricular mass following antihypertensive medication. J Hypertens. 2011;29:357–63.

    Article  CAS  PubMed  Google Scholar 

  52. Chen JS, Pei Y, Li CE, Li YN, Wang QY, Yu J. Comparative efficacy of different types of antihypertensive drugs in reversing left ventricular hypertrophy as determined with echocardiography in hypertensive patients: a network meta-analysis of randomized controlled trials. J Clin Hypertens (Greenwich). 2020;22:2175–83.

    Article  CAS  Google Scholar 

  53. Burns J, Sivananthan MU, Ball SG, Mackintosh AF, Mary DA, Greenwood JP. Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation 2007;115:1999–2005.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Takami T, Shigematsu M. Effects of calcium channel antagonists on left ventricular hypertrophy and diastolic function in patients with essential hypertension. Clin Exp Hypertens. 2003;25:525–35.

    Article  CAS  PubMed  Google Scholar 

  55. Kiuchi S, Hisatake S, Kabuki T, Oka T, Dobashi S, Fujii T, et al. Azelnidipine is a useful medication for the treatment of heart failure preserved ejection fraction. Clin Exp Hypertens. 2017;39:350–4.

    Article  CAS  PubMed  Google Scholar 

  56. Kiuchi S, Hisatake S, Kabuki T, Oka T, Dobashi S, Fujii T, et al. Effect of switching from cilnidipine to azelnidipine on cardiac sympathetic nerve function in patients with heart failure preserved ejection fraction. Int Heart J. 2018;59:120–5.

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, Kishimoto I, Saito Y, Harada M, Kuwahara K, Izumi T, et al. Guanylyl cyclase-A inhibits angiotensin II type 1A receptor-mediated cardiac remodeling, an endogenous protective mechanism in the heart. Circulation 2002;106:1722–8.

    Article  CAS  PubMed  Google Scholar 

  58. Vasan RS, Benjamin EJ, Larson MG, Leip EP, Wang TJ, Wilson PW. et al. Plasma natriuretic peptides for community screening for left ventricular hypertrophy and systolic dysfunction: the Framingham heart study. J Am Med Assoc. 2002;288:1252–9.

    Article  CAS  Google Scholar 

  59. Correale M, Mallardi A, Tricarico L, Mazzeo P, Ferraretti A, Diella C, et al. Remodelling is inversely proportional to left ventricular dimensions in a real-life population of patients with chronic heart failure after therapy with sacubitril/valsartan. Acta Cardiol. 2021 Aug 6:1–6. https://doi.org/10.1080/00015385.2021.1950371.

  60. Komori T, Eguchi K, Saito T, Hoshide S, Kario K. C riser pattern is a novel predictor of adverse events in heart failure patients with preserved ejection fraction. Circ J. 2017;81:220–6.

    Article  CAS  PubMed  Google Scholar 

  61. Tsutsui H, Tsuchihashi M, Takeshita A. Mortality and readmission of hospitalized patients with congestive heart failure and preserved versus depressed systolic function. Am J Cardiol. 2001;88:530–3.

    Article  CAS  PubMed  Google Scholar 

  62. Gronda E, Vanoli E, Iacoviello M. The PARAGON-HF trial: the sacubitril/valsartan in heart failure with preserved ejection fraction. Eur Heart J Suppl. 2020;22:L77–L81. Suppl L

    Article  PubMed  PubMed Central  Google Scholar 

  63. Suzuki K, Clagget B, Minamisawa M, Nochioka K, Mitchell GF, Anand IS, et al. Pulse pressure, prognosis, and influence of sacubitril/valsartan in heart failure with preserved ejection fraction. Hypertension 2021;77:546–56.

    Article  CAS  PubMed  Google Scholar 

  64. Mancusi C, Losi MA, Izzo R, Canciello G, Carlino MV, Albano G, et al. Higher pulse pressure and risk for cardiovascular events in patients with essential hypertension: the Campania Salute Network. Eur J Prev Cardiol. 2018;25:235–43.

    Article  PubMed  Google Scholar 

  65. Uzu T, Ishikawa K, Fujii T, Nakamura S, Inenaga T, Kimura G. Sodium restriction shifts circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation 1997;96:1859–62.

    Article  CAS  PubMed  Google Scholar 

  66. Kario K, Hoshide S, Mizuno H, Kabutoya T, Nishizawa M, Yoshida T, et al. Nighttime blood pressure phenotype and cardiovascular prognosis: practitioner-based nationwide JAMP study. Circulation 2020;142:1810–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021 Aug 27. https://doi.org/10.1056/NEJMoa2107038.

  68. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART cardiolink-6 randomized clinical trial. Circulation 2019;140:1693–702.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuomi Kario.

Ethics declarations

Conflict of interest

K Kario reports scholarships from Otsuka Pharmaceuticals, Daiichi Sankyo, Sumitomo Dainippon Pharma, Boehringer Ingelheim Japan and Takeda Pharmaceuticals; honoraria from Sanwa Kagaku, Daiichi Sankyo, Novartis Pharma, Boehringer Ingelheim Japan and Mylan EPD outside the submitted work. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takami, T., Hoshide, S. & Kario, K. Differential impact of antihypertensive drugs on cardiovascular remodeling: a review of findings and perspectives for HFpEF prevention. Hypertens Res 45, 53–60 (2022). https://doi.org/10.1038/s41440-021-00771-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00771-6

Keywords

Search

Quick links