[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Capability of a large bacterial artificial chromosome clone harboring multiple biosynthetic gene clusters for the production of diverse compounds

Abstract

The biosynthetic gene clusters (BGCs) for the macrocyclic lactone-based polyketide compounds are extremely large-sized because the polyketide synthases that generate the polyketide chains of the basic backbone are of very high molecular weight. In developing a heterologous expression system for the large BGCs amenable to the production of such natural products, we selected concanamycin as an appropriate target. We obtained a bacterial artificial chromosome (BAC) clone with a 211-kb insert harboring the entire BGC responsible for the biosynthesis of concanamycin. Heterologous expression of this clone in a host strain, Streptomyces avermitilis SUKA32, permitted the production of concanamycin, as well as that of two additional aromatic polyketides. Structural elucidation identified these additional products as ent-gephyromycin and a novel compound that was designated JBIR-157. We describe herein sequencing and expression studies performed on these BGCs, demonstrating the utility of large BAC clones for the heterologous expression of cryptic or near-silent loci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG. Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA. 2017;114:5601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palazzolo AME, Simons CLW, Burke MD. The natural productome. Proc Natl Acad Sci USA. 2017;114:5564–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi CK. Strategies for fermentation medium optimization: an in-depth review. Front Microbiol. 2016;7:2087.

    PubMed  Google Scholar 

  4. Hoshino S, Onaka H, Abe I. Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria. J Ind Microbiol Biotechnol. 2019;46:363–74.

    Article  CAS  PubMed  Google Scholar 

  5. Adrio JL, Demain AL. Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev. 2006;30:187–214.

    Article  CAS  PubMed  Google Scholar 

  6. Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell. 2014;158:412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doroghazi JR, Albright JC, Goering AW, Ju KS, Haines RR, Tchalukov KA, et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol. 2014;10:963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M, et al. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol. 2013;2:384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hashimoto T, Hashimoto J, Kozone I, Amagai K, Kawahara T, Takahashi S, et al. Biosynthesis of quinolidomicin, the largest known macrolide of terrestrial origin: identification and heterologous expression of a biosynthetic gene cluster over 200 kb. Org Lett. 2018;20:7996–9.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Hashimoto T, Qin B, Hashimoto J, Kozone I, Kawahara T, et al. Characterization of giant modular PKSs provides insight into genetic mechanism for structural diversification of aminopolyol polyketides. Angew Chem Int Ed Engl. 2017;56:1740–5.

    Article  CAS  PubMed  Google Scholar 

  11. Hashimoto T, Kozone I, Hashimoto J, Ueoka R, Kagaya N, Fujie M, et al. Novel macrolactam compound produced by the heterologous expression of a large cryptic biosynthetic gene cluster of Streptomyces rochei IFO12908. J Antibiot. 2020;73:171–4.

    Article  CAS  Google Scholar 

  12. Hashimoto T, Kozone I, Hashimoto J, Suenaga H, Fujie M, Satoh N, et al. Identification, cloning and heterologous expression of biosynthetic gene cluster for desertomycin. J Antibiot. 2020;73:650–4.

    Article  CAS  Google Scholar 

  13. Kinashi H, Someno K, Sakaguchi K, Higashijima T, Miyazawa T. Structure of concanamycin a. Tetrahedron Lett. 1981;22:3861–4.

    Article  CAS  Google Scholar 

  14. Kinashi H, Someno K, Sakaguchi K. Isolation and characterization of concanamycins A, B and C. J Antibiot. 1984;37:1333–43.

    Article  CAS  Google Scholar 

  15. Yamamoto H, Nakazawa K, Horii S, Miyake A. Studies on Agricultural Antibiotic. J Agric Chem Soc Jpn. 1960;34:268–72.

    CAS  Google Scholar 

  16. Drose S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K. Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry. 1993;32:3902–6.

    Article  CAS  PubMed  Google Scholar 

  17. Haydock SF, Appleyard AN, Mironenko T, Lester J, Scott N, Leadlay PF. Organization of the biosynthetic gene cluster for the macrolide concanamycin A in Streptomyces neyagawaensis ATCC 27449. Microbiology. 2005;151:3161–9.

    Article  CAS  PubMed  Google Scholar 

  18. Demachi A, Ohte S, Uchida R, Shin-Ya K, Ohshiro T, Tomoda H, et al. Discovery of prescopranone, a key intermediate in scopranone biosynthesis. J Antibiot. 2022;75:305–11.

    Article  CAS  Google Scholar 

  19. Cane DE, He X, Kobayashi S, Ōmura S, Ikeda H. Geosmin biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and mechanistic study of the germacradienol/geosmin synthase. J Antibiot. 2006;59:471–9.

    Article  CAS  Google Scholar 

  20. Komatsu M, Uchiyama T, Ōmura S, Cane DE, Ikeda H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA. 2010;107:2646–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim JH, Komatsu M, Shin-ya K, Ōmura S, Ikeda H. Distribution and functional analysis of the phosphopantetheinyl transferase superfamily in Actinomycetales microorganisms. Proc Natl Acad Sci USA. 2018;115:6828–33.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chu G, Vollrath D, Davis RW. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986;234:1582–5.

    Article  CAS  PubMed  Google Scholar 

  23. Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2017;27:135–45.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bringmann G, Lang G, Maksimenka K, Hamm A, Gulder TA, Dieter A, et al. Gephyromycin, the first bridged angucyclinone, from Streptomyces griseus strain NTK 14. Phytochemistry. 2005;66:1366–73.

    Article  CAS  PubMed  Google Scholar 

  25. Chang Y, Xing L, Sun C, Liang S, Liu T, Zhang X, et al. Monacycliones G–K and ent-gephyromycin A, angucycline derivatives from the marine-derived Streptomyces sp. HDN15129. J Nat Prod. 2020;83:2749–55.

    Article  CAS  PubMed  Google Scholar 

  26. Keatinge-Clay A. Crystal structure of the erythromycin polyketide synthase dehydratase. J Mol Biol. 2008;384:941–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang W, Fortman JL, Carlson JC, Yan J, Liu Y, Bai F, et al. Characterization of the bafilomycin biosynthetic gene cluster from Streptomyces lohii. ChemBioChem. 2013;14:301–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhu W-Z, Wang S-H, Gao H-M, Ge Y-M, Dai J, Zhang X-L, et al. Characterization of bioactivities and biosynthesis of angucycline/angucyclinone derivatives derived from Gephyromycinifex aptenodytis gen. nov., sp. nov. Mar Drugs. 2021;20:34.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Davis NK, Chater KF. Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol. 1990;4:1679–91.

    Article  CAS  PubMed  Google Scholar 

  30. Kautsar SA, Blin K, Shaw S, Navarro-Munoz JC, Terlouw BR, van der Hooft JJJ, et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 2020;48:D454–D8.

    PubMed  Google Scholar 

  31. McDaniel R, Ebert-Khosla S, Hopwood DA, Khosla C. Engineered biosynthesis of novel polyketides. Science. 1993;262:1546–50.

    Article  CAS  PubMed  Google Scholar 

  32. Kulowski K, Wendt-Pienkowski E, Han L, Yang K, Vining LC, Hutchinson CR. Functional characterization of the jadI gene as a cyclase forming angucyclinones. J Am Chem Soc. 1999;121:1786–94.

    Article  CAS  Google Scholar 

  33. Westrich L, Domann S, Faust B, Bedford D, Hopwood DA, Bechthold A. Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol Lett. 1999;170:381–7.

    Article  CAS  PubMed  Google Scholar 

  34. Decker H, Haag S. Cloning and characterization of a polyketide synthase gene from Streptomyces fradiae Tu2717, which carries the genes for biosynthesis of the angucycline antibiotic urdamycin A and a gene probably involved in its oxygenation. J Bacteriol. 1995;177:6126–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han L, Yang K, Ramalingam E, Mosher RH, Vining LC. Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology. 1994;140:3379–89.

    Article  CAS  PubMed  Google Scholar 

  36. Patrikainen P, Kallio P, Fan K, Klika KD, Shaaban KA, Mantsala P, et al. Tailoring enzymes involved in the biosynthesis of angucyclines contain latent context-dependent catalytic activities. Chem Biol. 2012;19:647–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kallio P, Patrikainen P, Suomela JP, Mantsala P, Metsa-Ketela M, Niemi J. Flavoprotein hydroxylase PgaE catalyzes two consecutive oxygen-dependent tailoring reactions in angucycline biosynthesis. Biochemistry. 2011;50:5535–43.

    Article  CAS  PubMed  Google Scholar 

  38. Künzel E, Faust B, Oelkers C, Weissbach U, Bearden DW, Weitnauer G, et al. Inactivation of the urdGT2 gene, which encodes a glycosyltransferase responsible for the C-glycosyltransfer of activated d-olivose, leads to formation of the novel urdamycins I, J, and K. J Am Chem Soc. 1999;121:11058–62.

    Article  Google Scholar 

  39. Palmu K, Ishida K, Mantsala P, Hertweck C, Metsa-Ketela M. Artificial reconstruction of two cryptic angucycline antibiotic biosynthetic pathways. ChemBioChem. 2007;8:1577–84.

    Article  CAS  PubMed  Google Scholar 

  40. Sasaki T, Gomi S, Sezaki M, Takeuchi Y, Kodama Y, Kawamura K. New antibiotics SF2315A and B produced by an Excellospora sp. II. The structural elucidation. J Antibiot. 1988;41:843–8.

    Article  CAS  Google Scholar 

  41. Ishikawa K, Hashimoto M, Komatsu K, Taguchi T, Okamoto S, Ichinose K. Characterization of stereospecific enoyl reductase ActVI-ORF2 for pyran ring formation in the actinorhodin biosynthesis of Streptomyces coelicolor A3(2). Bioorg Med Chem Lett. 2022;66:128727.

    Article  CAS  PubMed  Google Scholar 

  42. Sasaki E, Ogasawara Y, Liu HW. A biosynthetic pathway for BE-7585A, a 2-thiosugar-containing angucycline-type natural product. J Am Chem Soc. 2010;132:7405–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schafer M, Le TB, Hearnshaw SJ, Maxwell A, Challis GL, Wilkinson B, et al. SimC7 is a novel NAD(P)H-dependent ketoreductase essential for the antibiotic activity of the DNA gyrase inhibitor simocyclinone. J Mol Biol. 2015;427:2192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sciara G, Kendrew SG, Miele AE, Marsh NG, Federici L, Malatesta F, et al. The structure of ActVA-Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis. EMBO J. 2003;22:205–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takao R, Sakai K, Koshino H, Osada H, Takahashi S. Identification of the kinanthraquinone biosynthetic gene cluster by expression of an atypical response regulator. Biosci Biotechnol Biochem. 2021;85:714–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

MI deceased on 23 December 2015. This work was supported by AMED under Grant JP19ae0101045 to KS and JSPS KAKENHI Grant Number JP23H04569 to KK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Shin-ya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudo, K., Nishimura, T., Izumikawa, M. et al. Capability of a large bacterial artificial chromosome clone harboring multiple biosynthetic gene clusters for the production of diverse compounds. J Antibiot 77, 288–298 (2024). https://doi.org/10.1038/s41429-024-00711-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-024-00711-9

This article is cited by

Search

Quick links