[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bone-metastatic lung adenocarcinoma cells bearing CD74-ROS1 fusion interact with macrophages to promote their dissemination

Abstract

Approximately 40% of patients with lung adenocarcinoma (LUAD) often develop bone metastases during the course of their disease. However, scarcely any in vivo model of LUAD bone metastasis has been established, leading to a poor understanding of the mechanisms underlying LUAD bone metastasis. Here, we established a multiorgan metastasis model via the left ventricular injection of luciferase-labeled LUAD cells into nude mice and then screened out lung metastasis (LuM) and bone metastasis (BoM) cell subpopulations. BoM cells exhibited greater stemness and epithelial-mesenchymal transition (EMT) plasticity than LuM cells and initially colonized the bone and subsequently disseminated to distant organs after being reinjected into mice. Moreover, a CD74-ROS1 fusion mutation (C6; R34) was detected in BoM cells but not in LuM cells. Mechanistically, BoM cells bearing the CD74-ROS1 fusion highly secrete the C-C motif chemokine ligand 5 (CCL5) protein by activating STAT3 signaling, recruiting macrophages in tumor microenvironment and strongly inducing M2 polarization of macrophages. BoM cell-activated macrophages produce a high level of TGF-β1, thereby facilitating EMT and invasion of LUAD cells via TGF-β/SMAD2/3 signaling. Targeting the CD74-ROS1/CCL5 axis with Crizotinib (a ROS1 inhibitor) and Maraviroc (a CCL5 receptor inhibitor) in vivo strongly impeded bone metastasis and secondary metastasis of BoM cells. Our findings reveal the critical role of the CD74-ROS1/STAT3/CCL5 axis in the interaction between LUAD bone metastasis cells and macrophages for controlling LUAD cell dissemination, highlighting the significance of the bone microenvironment in LUAD bone metastasis and multiorgan secondary metastasis, and suggesting that targeting CD74-ROS1 and CCL5 is a promising therapeutic strategy for LUAD bone metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo selection of organ-specific metastatic subpopulations of LUAD cells.
Fig. 2: BoM cell subpopulations possess greater EMT plasticity and stemness than parental cells.
Fig. 3: CD74-ROS1 (C6; R34) fusion mutation is identified in BoM subpopulations and enhances EMT and invasion of LUAD cells.
Fig. 4: CCL5 mediates BoM cell-induced M2 polarization of macrophages.
Fig. 5: BoM-induced macrophages in turn promote EMT and invasion of LUAD cells via TGF-β/SMAD signaling.
Fig. 6: CD74-ROS1 activates STAT3 and thereby promotes the transcription of CCL5 in BoM cells.
Fig. 7: Targeting the CD74-ROS1/CCL5 axis impedes bone metastasis and secondary metastasis of BoM cells in vivo.

Similar content being viewed by others

Data availability

The RNA-seq data generated in Table S1 have been deposited in the Gene Expression Omnibus (GEO) database under the accession code GSE249364.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    Article  PubMed  Google Scholar 

  3. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  Google Scholar 

  4. Su Z, Sun Z, Wang Z, Wang S, Wang Y, Jin E, et al. TIF1γ inhibits lung adenocarcinoma EMT and metastasis by interacting with the TAF15/TBP complex. Cell Rep. 2022;41:111513.

    Article  CAS  PubMed  Google Scholar 

  5. Al Husaini H, Wheatley-Price P, Clemons M, Shepherd FA. Prevention and management of bone metastases in lung cancer: a review. J Thorac Oncol. 2009;4:251–9.

    Article  PubMed  Google Scholar 

  6. Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, et al. Metastatic patterns in adenocarcinoma. Cancer. 2006;106:1624–33.

    Article  PubMed  Google Scholar 

  7. Riihimaki M, Hemminki A, Fallah M, Thomsen H, Sundquist K, Sundquist J, et al. Metastatic sites and survival in lung cancer. Lung Cancer. 2014;86:78–84.

    Article  CAS  PubMed  Google Scholar 

  8. Zajaczkowska R, Kocot-Kepska M, Leppert W, Wordliczek J. Bone pain in cancer patients: mechanisms and current treatment. Int J Mol Sci. 2019;20:6047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clezardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, et al. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev. 2021;101:797–855.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang W, Bado IL, Hu J, Wan YW, Wu L, Wang H, et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell. 2021;184:2471–2486.e2420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8:98–101.

    CAS  PubMed  Google Scholar 

  12. Popper HH. Progression and metastasis of lung cancer. Cancer Metastasis Rev. 2016;35:75–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bado IL, Zhang W, Hu J, Xu Z, Wang H, Sarkar P, et al. The bone microenvironment increases phenotypic plasticity of ER(+) breast cancer cells. Dev Cell. 2021;56:1100–1117.e1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest. 2005;115:44–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29:212–26.

    Article  CAS  PubMed  Google Scholar 

  16. Seton-Rogers S. Metastases arrive at other organs via bone. Nat Rev Cancer. 2021;21:411.

    Article  CAS  PubMed  Google Scholar 

  17. Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G. Tumor and its microenvironment: a synergistic interplay. Semin Cancer Biol. 2013;23:522–32.

    Article  CAS  PubMed  Google Scholar 

  18. Acquaviva J, Wong R, Charest A. The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochim Biophys Acta. 2009;1795:37–52.

    CAS  PubMed  Google Scholar 

  19. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30:863–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davies KD, Le AT, Theodoro MF, Skokan MC, Aisner DL, Berge EM, et al. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin Cancer Res. 2012;18:4570–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chin LP, Soo RA, Soong R, Ou SH. Targeting ROS1 with anaplastic lymphoma kinase inhibitors: a promising therapeutic strategy for a newly defined molecular subset of non-small-cell lung cancer. J Thorac Oncol. 2012;7:1625–30.

    Article  CAS  PubMed  Google Scholar 

  22. Kohno T, Nakaoku T, Tsuta K, Tsuchihara K, Matsumoto S, Yoh K, et al. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res. 2015;4:156–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  24. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16:201–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 2019;18:64.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater. 2020;32:e2002054.

    Article  PubMed  Google Scholar 

  28. Wang Z, Chen J, Wang S, Sun Z, Lei Z, Zhang HT, et al. RGS6 suppresses TGF-β-induced epithelial-mesenchymal transition in non-small cell lung cancers via a novel mechanism dependent on its interaction with SMAD4. Cell Death Dis. 2022;13:656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim BN, Ahn DH, Kang N, Yeo CD, Kim YK, Lee KY, et al. TGF-β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer. Sci Rep. 2020;10:10597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang S, Tong X, Li C, Jin E, Su Z, Sun Z, et al. Quaking 5 suppresses TGF-β-induced EMT and cell invasion in lung adenocarcinoma. EMBO Rep. 2021;22:e52079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190–203.

    Article  CAS  PubMed  Google Scholar 

  32. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93.

    Article  CAS  PubMed  Google Scholar 

  33. Ye L, Kynaston HG, Jiang WG. Bone metastasis in prostate cancer: molecular and cellular mechanisms (Review). Int J Mol Med. 2007;20:103–11.

    CAS  PubMed  Google Scholar 

  34. Yin JJ, Pollock CB, Kelly K. Mechanisms of cancer metastasis to the bone. Cell Res. 2005;15:57–62.

    Article  CAS  PubMed  Google Scholar 

  35. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    Article  CAS  PubMed  Google Scholar 

  36. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hart IR, Fidler IJ. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 1980;40:2281–7.

    CAS  PubMed  Google Scholar 

  38. Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer. 1987;55:61–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ullah I, Karthik GM, Alkodsi A, Kjallquist U, Stalhammar G, Lovrot J, et al. Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes. J Clin Invest. 2018;128:1355–70.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chang G, Shi L, Ye Y, Shi H, Zeng L, Tiwary S, et al. YTHDF3 Induces the Translation of m(6)A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 2020;38:857–871.e857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takahara Y, Nakase K, Nojiri M, Kato R, Shinomiya S, Oikawa T, et al. Relationship between clinical features and gene mutations in non-small cell lung cancer with osteoblastic bone metastasis. Cancer Treat Res Commun. 2021;28:100440.

    Article  PubMed  Google Scholar 

  42. Zhang H, Deng T, Liu R, Bai M, Zhou L, Wang X, et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun. 2017;8:15016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nie Y, Huang H, Guo M, Chen J, Wu W, Li W, et al. Breast phyllodes tumors recruit and repolarize tumor-associated macrophages via secreting CCL5 to promote malignant progression, which can be inhibited by CCR5 inhibition therapy. Clin Cancer Res. 2019;25:3873–86.

    Article  CAS  PubMed  Google Scholar 

  44. Rhee I. Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res. 2016;39:1588–96.

    Article  CAS  PubMed  Google Scholar 

  45. Mehla K, Singh PK. Metabolic Regulation of macrophage polarization in cancer. Trends Cancer. 2019;5:822–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang LY, Lin YC, Mahalingam J, Huang CT, Chen TW, Kang CW, et al. Tumor-derived chemokine CCL5 enhances TGF-β-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells. Cancer Res. 2012;72:1092–102.

    Article  CAS  PubMed  Google Scholar 

  47. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for the participation and cooperation from NSCLC patients. This work was supported in part by National Natural Science Foundation of China (82273372, 82073198), and Suzhou Key Laboratory for Molecular Cancer Genetics (SZS201209), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_3214, and KYCX23_3261), Collaborative Innovation Center of Molecular Medicine between Soochow University and Donghai County People’s Hospital (H230470), Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center (H230467), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

ZW, RS, and H-TZ contributed to study concept and design. ZW, ZL, YW, and SW performed all the experiments. J-PW, EJ, and XL provided technical support. EJ, ZL, RS, and H-TZ analyzed the data, wrote the manuscript, and contributed to the interpretation of data and critical revision of the manuscript. H-TZ supervised the study.

Corresponding authors

Correspondence to Runfeng Sun or Hong-Tao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Declarations

Human NSCLC tissues were collected after informed consent was obtained from all patients. The study protocol was conducted in accordance with the Declaration of Helsinki and has been approved by the Ethics Committee of the First Affiliated Hospital of Soochow University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Lei, Z., Wang, Y. et al. Bone-metastatic lung adenocarcinoma cells bearing CD74-ROS1 fusion interact with macrophages to promote their dissemination. Oncogene 43, 2215–2227 (2024). https://doi.org/10.1038/s41388-024-03072-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03072-7

Search

Quick links