[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

DNA damage signalling guards against activated oncogenes and tumour progression

Abstract

DNA damage response (DDR), the guardian of genomic integrity, emerges as an oncogene-inducible biological barrier against progression of cancer beyond its early stages. Recent evidence from both cell culture and animal models as well as analyses of clinical specimens show that activation of numerous oncogenes and loss of some tumour suppressors result in DNA replication stress and DNA damage that alarm the cellular DDR machinery, a multifaceted response orchestrated by the ATR–Chk1 and ATM–Chk2 kinase signalling pathways. Such activation of the DDR network leads to cellular senescence or death of oncogene-transformed cells, resulting in delay or prevention of tumorigenesis. At the same time, the ongoing chronic DDR activation creates selective pressure that eventually favours outgrowth of malignant clones with genetic or epigenetic defects in the genome maintenance machinery, such as aberrations in the ATM–Chk2–p53 cascade and other DDR components. Furthermore, the executive DDR machinery is shared by at least two anticancer barriers, as both the oncogene-induced DNA replication stress and telomere shortening impact the cell fate decisions through convergence on DNA damage signalling. In this study, we highlight recent advances in this rapidly evolving area of cancer research, with particular emphasis on mechanistic insights, emerging issues of special conceptual significance and discussion of major remaining challenges and implications of the concept of DDR as a tumorigenesis barrier for experimental and clinical oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Bartek J, Lukas J . (2007). DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19: 238–245.

    Article  CAS  Google Scholar 

  • Bartkova J, Bakkenist CJ, Rajpert-De Meyts E, Skakkebæk NE, Sehested M, Lukas J et al. (2005b). ATM activation in normal human tissues and testicular cancer. Cell Cycle 4: 838–845.

    Article  CAS  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005a). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  Google Scholar 

  • Bartkova J, Horejsi Z, Sehested M, Nesland JM, Rajpert-De Meyts E, Skakkebæk NE et al. (2007a). DNA damage response mediators MDC1 and 53BP1: Constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours. Oncogene; e-pub ahead of print: 4 June 2007.

  • Bartkova J, Rajpert-De Meyts E, Skakkebæk NE, Lukas J Bartek J . (2007b). DNA damage response in human testes and testicular germ cell tumors: biology and implications for therapy. J Androl 30: 282–291.

    CAS  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  Google Scholar 

  • Branzei D, Foiani M . (2005). The DNA damage response during DNA replication. Curr Opin Cell Biol 17: 568–575.

    Article  CAS  Google Scholar 

  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flowed D, Lopez E et al. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434: 913–917.

    Article  CAS  Google Scholar 

  • Campisi J, d’Adda di Fagagna F . (2007). Cellular senescence: when bad things happen to good cells. Nat Rev Cancer 8: 729–740.

    Article  CAS  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T et al. (2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature 426: 194–198.

    Article  Google Scholar 

  • d’Adda di Fagagna F, Teo SH, Jackson SP . (2004). Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 18: 1781–1799.

    Article  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccini S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444: 638–642.

    Article  CAS  Google Scholar 

  • DiTullio RA, Mochan TA, Venere M, Bartkova J, Sehested M, Bartek J et al. (2002). 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 4: 998–1002.

    Article  CAS  Google Scholar 

  • Fan C, Quan R, Feng X, Gillis A, He L, Matsumoto ED et al. (2006). ATM activation is accompanied with earlier stages of prostate tumorigenesis. Biochim Biophys Acta 1763: 1090–1097.

    Article  CAS  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434: 917–921.

    Article  CAS  Google Scholar 

  • Finkel T, Serrano M, Blasco MA . (2007). The common biology of cancer and ageing. Nature 448: 767–774.

    Article  CAS  Google Scholar 

  • Frame FM, Rogoff HA, Pickering MT, Cress WD, Kowalik TF . (2006). E2F1 induces MRN foci formation and a cell cycle checkpoint response in human fibroblasts. Oncogene 25: 3258–6326.

    Article  CAS  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  Google Scholar 

  • Hoeijmakers JH . (2001). Genome maintenance mechanisms for preventing cancer. Nature 411: 366–374.

    Article  CAS  Google Scholar 

  • Kastan M, Bartek J . (2004). Cell-cycle checkpoints and cancer. Nature 432: 316–323.

    Article  CAS  Google Scholar 

  • Lukas J, Lukas C, Bartek J . (2004). Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair 3: 997–1007.

    Article  CAS  Google Scholar 

  • Mallette FA, Ferbeyre G . (2007). The DNA damage signaling pathway connects oncogenic stress to cellular senescence. Cell Cycle 6: 1831–1836.

    Article  CAS  Google Scholar 

  • Mallette FA, Gaumont-Leclerc MF, Ferbeyre G . (2007). The DNA damage signalling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 21: 43–48.

    Article  CAS  Google Scholar 

  • Nuciforo PG, Luise C, Capra M, Pelosi G, d’Adda di Fagagna F . (2007). Complex engagement of DNA-damage response pathways in human cancer and in lung tumor progression. Carcinogenesis 28: 2082–2088.

    Article  CAS  Google Scholar 

  • Pickering MT, Kowalik TF . (2006). Rb inactivation leads to E2F1-mediated DNA double-strand break accumulation. Oncogene 25: 746–755.

    Article  CAS  Google Scholar 

  • Powers JT, Hong S, Mayhew CN, Rogers PM, Knudsen ES, Johnson DG . (2004). E2F1 uses the ATM signalling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2: 203–214.

    CAS  PubMed  Google Scholar 

  • Pusapati RV, Rounbehler RJ, Hong S, Powers JT, Yan M, Kiguchi K et al. (2006). ATM promotes apoptosis and suppresses tumorigenesis in response to Myc. Proc Natl Acad Sci USA 103: 1446–1451.

    Article  CAS  Google Scholar 

  • Reimann M, Loddenkemper C, Rudolph C, Schildhauer I, Teichmann B, Stein H et al. (2007). The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood 110: 2996–3004.

    Article  CAS  Google Scholar 

  • Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA . (2007). Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol 9: 493–505.

    Article  CAS  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    Article  CAS  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T . (2003). DNA damage foci at dysfunctional telomeres. Curr Biol 13: 1549–1556.

    Article  CAS  Google Scholar 

  • Tort F, Bartkova J, Sehested M, Orntoft T, Lukas J, Bartek J . (2006). Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis. Cancer Res 66: 10258–10263.

    Article  CAS  Google Scholar 

  • Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al. (2002). cMyc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: A mechanism for oncogene-induced genetic instability. Mol Cell 9: 1031–1044.

    Article  CAS  Google Scholar 

  • Vousden KH, Lane DP . (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8: 275–283.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research in authors’ laboratories is supported by the Danish Cancer Society, the Danish National Research Foundation, the European Commission (integrated projects ‘Active p53’, ‘DNA repair’ and ‘Mutant p53’), MSM (No. 6198959216), the Novo Nordisk Foundation and the Danish National Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Bartek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartek, J., Bartkova, J. & Lukas, J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26, 7773–7779 (2007). https://doi.org/10.1038/sj.onc.1210881

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210881

Keywords

This article is cited by

Search

Quick links