[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computational redesign of protein-protein interaction specificity

Abstract

We developed a 'computational second-site suppressor' strategy to redesign specificity at a protein-protein interface and applied it to create new specifically interacting DNase-inhibitor protein pairs. We demonstrate that the designed switch in specificity holds in in vitro binding and functional assays. We also show that the designed interfaces are specific in the natural functional context in living cells, and present the first high-resolution X-ray crystallographic analysis of a computer-redesigned functional protein-protein interface with altered specificity. The approach should be applicable to the design of interacting protein pairs with novel specificities for delineating and re-engineering protein interaction networks in living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The DNase-immunity protein model system.
Figure 2: In vitro DNase activity assay.
Figure 3: SPR sensograms.
Figure 4: Intrinsic fluorescence.
Figure 5: In vivo cell death assay.
Figure 6: The crystal structure of the E7_C/Im7_C complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bogan, A.A. & Thorn, K.S. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9 (1998).

    Article  CAS  Google Scholar 

  2. Conte, L.L., Chothia, C. & Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198 (1999).

    Article  Google Scholar 

  3. Sharp, K.A. Calculation of HyHel10-lysozyme binding free energy changes: effect of ten point mutations. Proteins 33, 39–48 (1998).

    Article  CAS  Google Scholar 

  4. Massova, I. & Kollman, P.A. Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J. Am. Chem. Soc. 121, 8133–8143 (1999).

    Article  CAS  Google Scholar 

  5. Huo, S., Massova, I. & Kollman, P.A. Computational alanine scanning of the 1:1 human growth hormone-receptor complex. J. Comput. Chem. 23, 15–27 (2002).

    Article  CAS  Google Scholar 

  6. Guerois, R., Nielsen, J.E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320, 369–387 (2002).

    Article  CAS  Google Scholar 

  7. Kortemme, T. & Baker, D. A simple physical model for binding energy hot spots in protein-protein complexes. Proc. Natl. Acad. Sci. USA 99, 14116–14121 (2002).

    Article  CAS  Google Scholar 

  8. Brannetti, B., Via, A., Cestra, G., Cesareni, G. & Helmer-Citterich, M. SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family. J. Mol. Biol. 298, 313–328 (2000).

    Article  CAS  Google Scholar 

  9. Vaccaro, P. et al. Distinct binding specificity of the multiple PDZ domains of INADL, a human protein with homology to INAD from Drosophila melanogaster. J. Biol. Chem. 276, 42122–42130 (2001).

    Article  CAS  Google Scholar 

  10. Li, L., Shakhnovich, E.I. & Mirny, L.A. Amino acids determining enzyme-substrate specificity in prokaryotic and eukaryotic protein kinases. Proc. Natl. Acad. Sci. USA 100, 4463–4468 (2003).

    Article  CAS  Google Scholar 

  11. Aloy, P. & Russell, R.B. Interrogating protein interaction networks through structural biology. Proc. Natl. Acad. Sci. USA 99, 5896–5901 (2002).

    Article  CAS  Google Scholar 

  12. Wollacott, A.M. & Desjarlais, J.R. Virtual interaction profiles of proteins. J. Mol. Biol. 313, 317–342 (2001).

    Article  CAS  Google Scholar 

  13. Desjarlais, J.R. & Handel, T.M. De novo design of the hydrophobic cores of proteins. Protein Sci. 4, 2006–2018 (1995).

    Article  CAS  Google Scholar 

  14. Ventura, S. et al. Conformational strain in the hydrophobic core and its implications for protein folding and design. Nat. Struct. Biol. 9, 485–493 (2002).

    Article  CAS  Google Scholar 

  15. Bolon, D.N., Marcus, J.S., Ross, S.A. & Mayo, S.L. Prudent modeling of core polar residues in computational protein design. J. Mol. Biol. 329, 611–622 (2003).

    Article  CAS  Google Scholar 

  16. Pokala, N. & Handel, T.M. Review: protein design—where we were, where we are, where we're going. J. Struct. Biol. 134, 269–281 (2001).

    Article  CAS  Google Scholar 

  17. Hellinga, H.W., Caradonna, J.P. & Richards, F.M. Construction of new ligand binding sites in proteins of known structure. II. Grafting of a buried transition metal binding site into Escherichia coli thioredoxin. J. Mol. Biol. 222, 787–803 (1991).

    Article  CAS  Google Scholar 

  18. Dahiyat, B.I. & Mayo, S.L. De novo protein design: fully automated sequence selection. Science 278, 82–87 (1997).

    Article  CAS  Google Scholar 

  19. Nauli, S., Kuhlman, B. & Baker, D. Computer-based redesign of a protein folding pathway. Nat. Struct. Biol. 8, 602–605 (2001).

    Article  CAS  Google Scholar 

  20. Harbury, P.B., Plecs, J.J., Tidor, B., Alber, T. & Kim, P.S. High-resolution protein design with backbone freedom. Science 282, 1462–1467 (1998).

    Article  CAS  Google Scholar 

  21. Kuhlman, B. et al. Design of a novel globular protein fold with atomic level accuracy. Science 302, 1364–1368 (2003).

    Article  CAS  Google Scholar 

  22. Looger, L.L., Dwyer, M.A., Smith, J.J. & Hellinga, H.W. Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003).

    Article  CAS  Google Scholar 

  23. Harbury, P.B., Zhang, T., Kim, P.S. & Alber, T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401–1407 (1993).

    Article  CAS  Google Scholar 

  24. Havranek, J.J. & Harbury, P.B. Automated design of specificity in molecular recognition. Nat. Struct. Biol. 10, 45–52 (2003).

    Article  CAS  Google Scholar 

  25. Shifman, J.M. & Mayo, S.L. Modulating calmodulin binding specificity through computational protein design. J. Mol. Biol. 323, 417–423 (2002).

    Article  CAS  Google Scholar 

  26. Reina, J. et al. Computer-aided design of a PDZ domain to recognize new target sequences. Nat. Struct. Biol. 9, 621–627 (2002).

    CAS  PubMed  Google Scholar 

  27. Shifman, J.M. & Mayo, S.L. Exploring the origins of binding specificity through the computational redesign of calmodulin. Proc. Natl. Acad. Sci. USA 100, 13274–13279 (2003).

    Article  CAS  Google Scholar 

  28. Ko, T.P., Liao, C.C., Ku, W.Y., Chak, K.F. & Yuan, H.S. The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. Structure Fold. Des. 7, 91–102 (1999).

    Article  CAS  Google Scholar 

  29. Schamberger, G.P. & Diez-Gonzalez, F. Selection of recently isolated colicinogenic Escherichia coli strains inhibitory to Escherichia coli O157:H7. J. Food. Prot. 65, 1381–1387 (2002).

    Article  Google Scholar 

  30. Murinda, S.E., Rashid, K.A. & Roberts, R.F. In vitro assessment of the cytotoxicity of nisin, pediocin, and selected colicins on simian virus 40-transfected human colon and Vero monkey kidney cells with trypan blue staining viability assays. J. Food. Prot. 66, 847–853 (2003).

    Article  CAS  Google Scholar 

  31. Kuhlman, B. & Baker, D. Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. USA 97, 10383–10388 (2000).

    Article  CAS  Google Scholar 

  32. Kortemme, T., Morozov, A.V. & Baker, D. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol. 326, 1239–1259 (2003).

    Article  CAS  Google Scholar 

  33. Morozov, A.V., Kortemme, T. & Baker, D. Evaluation of models of electrostatic interactions in proteins. J. Phys. Chem. B 107, 2075–2090 (2003).

    Article  CAS  Google Scholar 

  34. Wallis, R. et al. Protein-protein interactions in colicin E9 DNase-immunity protein complexes. 2. Cognate and noncognate interactions that span the millimolar to femtomolar affinity range. Biochemistry 34, 13751–13759 (1995).

    Article  CAS  Google Scholar 

  35. Kleanthous, C., Hemmings, A.M., Moore, G.R. & James, R. Immunity proteins and their specificity for endonuclease colicins: telling right from wrong in protein-protein recognition. Mol. Microbiol. 28, 227–233 (1998).

    Article  CAS  Google Scholar 

  36. Kuhlmann, U.C., Pommer, A.J., Moore, G.R., James, R. & Kleanthous, C. Specificity in protein-protein interactions: the structural basis for dual recognition in endonuclease colicin–immunity protein complexes. J. Mol. Biol. 301, 1163–1178 (2000).

    Article  CAS  Google Scholar 

  37. Covell, D.G. & Wallqvist, A. Analysis of protein-protein interactions and the effects of amino acid mutations on their energetics. The importance of water molecules in the binding epitope. J. Mol. Biol. 269, 281–297 (1997).

    Article  CAS  Google Scholar 

  38. Dunbrack, R.L., Jr. & Cohen, F.E. Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci. 6, 1661–1681 (1997).

    Article  CAS  Google Scholar 

  39. Lazaridis, T. & Karplus, M. Effective energy function for proteins in solution. Proteins 35, 133–152 (1999).

    Article  CAS  Google Scholar 

  40. Otwinowski, J. & Minor, W. Processing of X-ray data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  41. Kissinger, C.R., Gehlhaar, D.K. & Fogel, D.B. Rapid automated molecular replacement by evolutionary search. Acta Crystallogr. D 55, 484–491 (1999).

    Article  CAS  Google Scholar 

  42. McRee, D.E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  43. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Baker lab for stimulating discussions, and J. Havranek for critical reading of the manuscript. This work was supported by a long-term fellowship from the Human Frontier Science Program (T.K.), a Wellcome Trust International Prize fellowship (A.N.B.), a US National Institutes of Health (NIH) training grant (L.A.J.) and a grant from the NIH (D.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Baker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortemme, T., Joachimiak, L., Bullock, A. et al. Computational redesign of protein-protein interaction specificity. Nat Struct Mol Biol 11, 371–379 (2004). https://doi.org/10.1038/nsmb749

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb749

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing