Key Points
-
Methotrexate shows good efficacy in a proportion of patients: 40% of treated patients with rheumatoid arthritis achieve an ACR50 response
-
The mechanism of action of methotrexate has not fully been defined, however potentiation of adenosine signalling carries the most robust data
-
Pharmacokinetic parameters, particularly intracellular methotrexate polyglutamation, show some association with disease activity, although they cannot yet be used to predict treatment response
-
An exploration of the expression and polymorphisms of genes encoding molecules linked to proposed mechanisms of methotrexate action is underway to identify methotrexate-responsive signatures
-
At present, no robust markers or predictive models exist for methotrexate responsiveness in RA
Abstract
The treatment and outcomes of patients with rheumatoid arthritis (RA) have been transformed over the past two decades. Low disease activity and remission are now frequently achieved, and this success is largely the result of the evolution of treatment paradigms and the introduction of new therapeutic agents. Despite the rapid pace of change, the most commonly used drug in RA remains methotrexate, which is considered the anchor drug for this condition. In this Review, we describe the known pharmacokinetic properties and putative mechanisms of action of methotrexate. Consideration of the pharmacodynamic perspective could inform the development of biomarkers of responsiveness to methotrexate, enabling therapy to be targeted to specific groups of patients. Such biomarkers could revolutionize the management of RA.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Haraoui, B. & Pope, J. Treatment of early rheumatoid arthritis: concepts in management. Semin. Arthritis Rheum. 40, 371–388 (2011).
Visser, K. & van der Heijde, D. Optimal dosage and route of administration of methotrexate in rheumatoid arthritis: a systematic review of the literature. Ann. Rheum. Dis. 68, 1094–1099 (2009).
Gubner, R., August, S. & Ginsberg, V. Therapeutic suppression of tissue reactivity. II. Effect of aminopterin in rheumatoid arthritis and psoriasis. Am. J. Med. Sci. 221, 176–182 (1951).
Weinblatt, M. E. et al. Efficacy of low-dose methotrexate in rheumatoid arthritis. N. Engl. J. Med. 312, 818–822 (1985).
Williams, H. J. et al. Comparison of low-dose oral pulse methotrexate and placebo in the treatment of rheumatoid arthritis. A controlled clinical trial. Arthritis Rheum. 28, 721–730 (1985).
Lopez-Olivo, M. A. et al. Methotrexate for treating rheumatoid arthritis. Cochrane Database Syst. Rev. 6, CD000957 (2014).
Kavanaugh, A. et al. Clinical, functional and radiographic consequences of achieving stable low disease activity and remission with adalimumab plus methotrexate or methotrexate alone in early rheumatoid arthritis: 26-week results from the randomised, controlled OPTIMA study. Ann. Rheum. Dis. 72, 64–71 (2013).
Detert, J. et al. Induction therapy with adalimumab plus methotrexate for 24 weeks followed by methotrexate monotherapy up to week 48 versus methotrexate therapy alone for DMARD-naive patients with early rheumatoid arthritis: HIT HARD, an investigator-initiated study. Ann. Rheum. Dis. 72, 844–850 (2013).
Horslev-Petersen, K. et al. Adalimumab added to a treat-to-target strategy with methotrexate and intra-articular triamcinolone in early rheumatoid arthritis increased remission rates, function and quality of life. The OPERA Study: an investigator-initiated, randomised, double-blind, parallel-group, placebo-controlled trial. Ann. Rheum. Dis. 73, 654–661 (2014).
O'Dell, J. R. et al. Validation of the methotrexate-first strategy in patients with early, poor-prognosis rheumatoid arthritis: results from a two-year randomized, double-blind trial. Arthritis Rheum. 65, 1985–1994 (2013).
Bathon, J. M. et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N. Engl. J. Med. 343, 1586–1593 (2000).
Klareskog, L. et al. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet 363, 675–681 (2004).
Goekoop-Ruiterman, Y. P. et al. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): a randomized, controlled trial. Arthritis Rheum. 52, 3381–3390 (2005).
Breedveld, F. C. et al. The PREMIER study: a multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis. Rheum. 54, 26–37 (2006).
Soubrier, M. et al. Evaluation of two strategies (initial methotrexate monotherapy versus its combination with adalimumab) in management of early active rheumatoid arthritis: data from the GUEPARD trial. Rheumatology 48, 1429–1434 (2009).
Tak, P. P. et al. Inhibition of joint damage and improved clinical outcomes with rituximab plus methotrexate in early active rheumatoid arthritis: the IMAGE trial. Ann. Rheum. Dis. 70, 39–46 (2011).
de Jong, P. H. et al. Induction therapy with a combination of DMARDs is better than methotrexate monotherapy: first results of the tREACH trial. Ann. Rheum. Dis. 72, 72–78 (2013).
Emery, P. et al. Golimumab, a human anti-tumor necrosis factor monoclonal antibody, injected subcutaneously every 4 weeks in patients with active rheumatoid arthritis who had never taken methotrexate: 1-year and 2-year clinical, radiologic, and physical function findings of a phase III, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Care Res. (Hoboken) 65, 1732–1742 (2013).
Takeuchi, T. et al. Adalimumab, a human anti-TNF monoclonal antibody, outcome study for the prevention of joint damage in Japanese patients with early rheumatoid arthritis: the HOPEFUL 1 study. Ann. Rheum. Dis. 73, 536–543 (2014).
Nam, J. L. et al. A randomised controlled trial of etanercept and methotrexate to induce remission in early inflammatory arthritis: the EMPIRE trial. Ann. Rheum. Dis. 73, 1027–1036 (2014).
Emery, P. et al. Evaluating drug-free remission with abatacept in early rheumatoid arthritis: results from the phase 3b, multicentre, randomised, active-controlled AVERT study of 24 months, with a 12-month, double-blind treatment period. Ann. Rheum. Dis. 74, 19–26 (2015).
Visentin, M., Zhao, R. & Goldman, I. D. The antifolates. Hematol. Oncol. Clin. North Am. 26, 629–648 (2012).
Whittle, S. L. & Hughes, R. A. Folate supplementation and methotrexate treatment in rheumatoid arthritis: a review. Rheumatology 43, 267–271 (2004).
Salliot, C. & van der Heijde, D. Long-term safety of methotrexate monotherapy in patients with rheumatoid arthritis: a systematic literature research. Ann. Rheum. Dis. 68, 1100–1104 (2009).
Hazlewood, G. S. et al. Methotrexate monotherapy and methotrexate combination therapy with traditional and biologic disease modifying antirheumatic drugs for rheumatoid arthritis: abridged Cochrane systematic review and network meta-analysis. BMJ 353, i1777 (2016).
Hamilton, R. A. & Kremer, J. M. Why intramuscular methotrexate may be more efficacious than oral dosing in patients with rheumatoid arthritis. Br. J. Rheum. 36, 86–90 (1997).
Pichlmeier, U. & Heuer, K. U. Subcutaneous administration of methotrexate with a prefilled autoinjector pen results in a higher relative bioavailability compared with oral administration of methotrexate. Clin. Exp. Rheumatol. 32, 563–571 (2014).
Hoekstra, M. et al. Bioavailability of higher dose methotrexate comparing oral and subcutaneous administration in patients with rheumatoid arthritis. J. Rheumatol. 31, 645–648 (2004).
Herman, R. A., Veng-Pedersen, P., Hoffman, J., Koehnke, R. & Furst, D. E. Pharmacokinetics of low-dose methotrexate in rheumatoid arthritis patients. J. Pharm. Sci. 78, 165–171 (1989).
Lebbe, C., Beyeler, C., Gerber, N. J. & Reichen, J. Intraindividual variability of the bioavailability of low dose methotrexate after oral administration in rheumatoid arthritis. Ann. Rheum. Dis. 53, 475–477 (1994).
Schiff, M. H., Jaffe, J. S. & Freundlich, B. Head-to-head, randomised, crossover study of oral versus subcutaneous methotrexate in patients with rheumatoid arthritis: drug-exposure limitations of oral methotrexate at doses ≥15 mg may be overcome with subcutaneous administration. Ann. Rheum. Dis. 73, 1549–1551 (2014).
Hoekstra, M. et al. Splitting high-dose oral methotrexate improves bioavailability: a pharmacokinetic study in patients with rheumatoid arthritis. J. Rheumatol. 33, 481–485 (2006).
Wegrzyn, J., Adeleine, P. & Miossec, P. Better efficacy of methotrexate given by intramuscular injection than orally in patients with rheumatoid arthritis. Ann. Rheum. Dis. 63, 1232–1234 (2004).
Desmoulin, S. K., Hou, Z., Gangjee, A. & Matherly, L. H. The human proton-coupled folate transporter: biology and therapeutic applications to cancer. Cancer Biol. Ther. 13, 1355–1373 (2012).
Edno, L. et al. Total and free methotrexate pharmacokinetics in rheumatoid arthritis patients. Ther. Drug Monit. 18, 128–134 (1996).
Seideman, P., Beck, O., Eksborg, S. & Wennberg, M. The pharmacokinetics of methotrexate and its 7-hydroxy metabolite in patients with rheumatoid arthritis. Br. J. Clin. Pharmacol. 35, 409–412 (1993).
Bressolle, F., Bologna, C., Kinowski, J. M., Sany, J. & Combe, B. Effects of moderate renal insufficiency on pharmacokinetics of methotrexate in rheumatoid arthritis patients. Ann. Rheum. Dis. 57, 110–113 (1998)
Fotoohi, A. K. et al. Gene expression profiling of leukemia T-cells resistant to methotrexate and 7-hydroxymethotrexate reveals alterations that preserve intracellular levels of folate and nucleotide biosynthesis. Biochem. Pharmacol. 77, 1410–1417 (2009).
Baggott, J. E., Morgan, S. L. & Vaughn, W. H. Differences in methotrexate and 7-hydroxymethotrexate inhibition of folate-dependent enzymes of purine nucleotide biosynthesis. Biochem. J. 300, 627–629 (1994).
Baggott, J. E., Morgan, S. L. & Koopman, W. J. The effect of methotrexate and 7-hydroxymethotrexate on rat adjuvant arthritis and on urinary aminoimidazole carboxamide excretion. Arthritis Rheum. 41, 1407–1410 (1998).
Fabre, G., Fabre, I., Matherly, L. H., Cano, J. P. & Goldman, I. D. Synthesis and properties of 7-hydroxymethotrexate polyglutamyl derivatives in Ehrlich ascites tumor cells in vitro. J. Biol. Chem. 259, 5066–5072 (1984).
Nuernberg, B., Koehnke, R., Solsky, M., Hoffman, J. & Furst, D. E. Biliary elimination of low-dose methotrexate in humans. Arthritis Rheum. 33, 898–902 (1990).
Bremnes, R. M., Slordal, L., Wist, E. & Aarbakke, J. Dose-dependent pharmacokinetics of methotrexate and 7-hydroxymethotrexate in the rat in vivo. Cancer Res. 49, 6359–6364 (1989).
Sinnett, M. J., Groff, G. D., Raddatz, D. A., Franck, W. A. & Bertino, J. S. Jr. Methotrexate pharmacokinetics in patients with rheumatoid arthritis. J. Rheumatol. 16, 745–748 (1989).
Godfrey, C., Sweeney, K., Miller, K., Hamilton, R. & Kremer, J. The population pharmacokinetics of long-term methotrexate in rheumatoid arthritis. Br. J. Clin. Pharmacol. 46, 369–376 (1998).
Koizumi, S., Curt, G. A., Fine, R. L., Griffin, J. D. & Chabner, B. A. Formation of methotrexate polyglutamates in purified myeloid precursor cells from normal human bone marrow. J. Clin. Invest. 75, 1008–1014 (1985).
Angelis-Stoforidis, P., Vajda, F. J. & Christophidis, N. Methotrexate polyglutamate levels in circulating erythrocytes and polymorphs correlate with clinical efficacy in rheumatoid arthritis. Clin. Exp. Rheumatol. 17, 313–320 (1999).
Murakami, T. & Mori, N. Involvement of multiple transporters-mediated transports in mizoribine and methotrexate pharmacokinetics. Pharmaceuticals (Basel) 5, 802–836 (2012).
Baggott, J. E., Vaughn, W. H. & Hudson, B. B. Inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase, adenosine deaminase and 5′-adenylate deaminase by polyglutamates of methotrexate and oxidized folates and by 5-aminoimidazole-4-carboxamide riboside and ribotide. Biochem. J. 236, 193–200 (1986).
Jolivet, J., Schilsky, R. L., Bailey, B. D., Drake, J. C. & Chabner, B. A. Synthesis, retention, and biological activity of methotrexate polyglutamates in cultured human breast cancer cells. J. Clin. Invest. 70, 351–360 (1982).
Goodsell, D. S. The molecular perspective: methotrexate. Oncologist 4, 340–341 (1999).
Quemeneur, L. et al. Differential control of cell cycle, proliferation, and survival of primary T lymphocytes by purine and pyrimidine nucleotides. J. Immunol. 170, 4986–4995 (2003).
Budzik, G. P., Colletti, L. M. & Faltynek, C. R. Effects of methotrexate on nucleotide pools in normal human T cells and the CEM T cell line. Life Sci. 66, 2297–2307 (2000).
Fairbanks, L. D. et al. Methotrexate inhibits the first committed step of purine biosynthesis in mitogen-stimulated human T-lymphocytes: a metabolic basis for efficacy in rheumatoid arthritis? Biochem. J. 342, 143–152 (1999).
Genestier, L. et al. Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J. Clin. Invest. 102, 322–328 (1998).
Nakajima, A., Hakoda, M., Yamanaka, H., Kamatani, N. & Kashiwazaki, S. Divergent effects of methotrexate on the clonal growth of T and B lymphocytes and synovial adherent cells from patients with rheumatoid arthritis. Ann. Rheum. Dis. 55, 237–242 (1996).
Hasko, G. & Cronstein, B. Regulation of inflammation by adenosine. Front. Immunol. 4, 85 (2013).
Johnson, H. & Lapin, C. 4-aminoimidazole-5-carboxamide excretion in acute leukemia. Med. Pediatr. Oncol. 5, 225–229 (1978).
Baggott, J. E., Morgan, S. L., Sams, W. M. & Linden, J. Urinary adenosine and aminoimidazolecarboxamide excretion in methotrexate-treated patients with psoriasis. Arch. Dermatol. 135, 813–817 (1999).
Moser, G. H., Schrader, J. & Deussen, A. Turnover of adenosine in plasma of human and dog blood. Am. J. Physiol. 256, C799–C806 (1989).
Fredholm, B. B. et al. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors — an update. Pharmacol. Rev. 63, 1–34 (2011).
Hasko, G., Linden, J., Cronstein, B. & Pacher, P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov. 7, 759–770 (2008).
Vincenzi, F. et al. A2A adenosine receptors are differentially modulated by pharmacological treatments in rheumatoid arthritis patients and their stimulation ameliorates adjuvant-induced arthritis in rats. PLoS ONE 8, e54195 (2013).
Varani, K. et al. A2A and A3 adenosine receptor expression in rheumatoid arthritis: upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res. Ther. 13, R197 (2011).
Varani, K. et al. Normalization of A2A and A3 adenosine receptor up-regulation in rheumatoid arthritis patients by treatment with anti-tumor necrosis factor α but not methotrexate. Arthritis Rheum. 60, 2880–2891 (2009).
Nguyen, D. K., Montesinos, M. C., Williams, A. J., Kelly, M. & Cronstein, B. N. TH1 cytokines regulate adenosine receptors and their downstream signaling elements in human microvascular endothelial cells. J. Immunol. 171, 3991–3998 (2003).
Stamp, L. K. et al. Adenosine receptor expression in rheumatoid synovium: a basis for methotrexate action. Arthritis Res. Ther. 14, R138 (2012).
Bar-Yehuda, S. et al. The anti-inflammatory effect of A3 adenosine receptor agonists: a novel targeted therapy for rheumatoid arthritis. Expert Opin. Investig. Drugs 16, 1601–1613 (2007).
Silverman, M. H. et al. Clinical evidence for utilization of the A3 adenosine receptor as a target to treat rheumatoid arthritis: data from a phase II clinical trial. J. Rheumatol. 35, 41–48 (2008).
Cronstein, B. N., Eberle, M. A., Gruber, H. E. & Levin, R. I. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc. Natl Acad. Sci. USA 88, 2441–2445 (1991).
Cronstein, B. N., Naime, D. & Ostad, E. The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J. Clin. Investig. 92, 2675–2682 (1993).
Asako, H., Wolf, R. E. & Granger, D. N. Leukocyte adherence in rat mesenteric venules: effects of adenosine and methotrexate. Gastroenterology 104, 31–37 (1993).
Delano, D. L. et al. Genetically based resistance to the antiinflammatory effects of methotrexate in the air-pouch model of acute inflammation. Arthritis Rheum. 52, 2567–2575 (2005).
Montesinos, M. C., Desai, A. & Cronstein, B. N. Suppression of inflammation by low-dose methotrexate is mediated by adenosine A2A receptor but not A3 receptor activation in thioglycollate-induced peritonitis. Arthritis Res. Ther. 8, R53 (2006).
Montesinos, M. C. et al. The antiinflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5′-nucleotidase: findings in a study of ecto-5′-nucleotidase gene-deficient mice. Arthritis Rheum. 56, 1440–1445 (2007).
Morabito, L. et al. Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5′-nucleotidase-mediated conversion of adenine nucleotides. J. Clin. Invest. 101, 295–300 (1998).
Morovic-Vergles, J., Culo, M. I., Gamulin, S. & Culo, F. Cyclic adenosine 5′-monophosphate in synovial fluid of rheumatoid arthritis and osteoarthritis patients. Rheumatol. Int. 29, 167–171 (2008).
Bours, M. J. et al. Adenosine 5′-triphosphate infusions reduced disease activity and inflammation in a patient with active rheumatoid arthritis. Rheumatology 49, 2223–2225 (2010).
Fletcher, J. M. et al. CD39+Foxp3+ regulatory T cells suppress pathogenic TH17 cells and are impaired in multiple sclerosis. J. Immunol. 183, 7602–7610 (2009).
Loza, M. J., Anderson, A. S., O'Rourke, K. S., Wood, J. & Khan, I. U. T-cell specific defect in expression of the NTPDase CD39 as a biomarker for lupus. Cell. Immunol. 271, 110–117 (2011).
Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).
Li, N. et al. Increased apoptosis induction in CD4+CD25+ Foxp3+ T cells contributes to enhanced disease activity in patients with rheumatoid arthritis through Il-10 regulation. Eur. Rev. Med. Pharmacol. Sci. 18, 78–85 (2014).
Peres, R. S. et al. Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 112, 2509–2514 (2015).
Nesher, G., Mates, M. & Zevin, S. Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis. Arthritis Rheum. 48, 571–572 (2003).
Montesinos, M. C. et al. Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine: evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis Rheum. 43, 656–663 (2000).
Benito-Garcia, E. et al. Dietary caffeine intake does not affect methotrexate efficacy in patients with rheumatoid arthritis. J. Rheumatol. 33, 1275–1281 (2006).
Zakeri, Z. et al. Comparison of adenosine deaminase levels in serum and synovial fluid between patients with rheumatoid arthritis and osteoarthritis. Int. J. Clin. Exp. Med. 5, 195–200 (2012).
Zamani, B., Jamali, R. & Jamali, A. Serum adenosine deaminase may predict disease activity in rheumatoid arthritis. Rheumatol. Int. 32, 1967–1975 (2012).
Andersson, S. E., Johansson, L. H., Lexmuller, K. & Ekstrom, G. M. Anti-arthritic effect of methotrexate: is it really mediated by adenosine? Eur. J. Pharm. Sci. 9, 333–343 (2000).
Teramachi, J. et al. Adenosine abolishes MTX-induced suppression of osteoclastogenesis and inflammatory bone destruction in adjuvant-induced arthritis. Lab. Investig. 91, 719–731 (2011).
Ottonello, L. et al. Delayed neutrophil apoptosis induced by synovial fluid in rheumatoid arthritis: role of cytokines, estrogens, and adenosine. Ann. NY Acad. Sci. 966, 226–231 (2002).
Smolenska, Z., Kaznowska, Z., Zarowny, D., Simmonds, H. A. & Smolenski, R. T. Effect of methotrexate on blood purine and pyrimidine levels in patients with rheumatoid arthritis. Rheumatology 38, 997–1002 (1999).
Egan, L. J., Sandborn, W. J., Mays, D. C., Tremaine, W. J. & Lipsky, J. J. Plasma and rectal adenosine in inflammatory bowel disease: effect of methotrexate. Inflamm. Bowel Dis. 5, 167–173 (1999).
Yukioka, K. et al. Polyamine levels in synovial tissues and synovial fluids of patients with rheumatoid arthritis. J. Rheumatol. 19, 689–692 (1992).
Nesher, G. & Moore, T. L. The in vitro effects of methotrexate on peripheral blood mononuclear cells. Modulation by methyl donors and spermidine. Arthritis Rheum. 33, 954–959 (1990).
Nesher, G., Osborn, T. G. & Moore, T. L. In vitro effects of methotrexate on polyamine levels in lymphocytes from rheumatoid arthritis patients. Clin. Exp. Rheumatol. 14, 395–399 (1996).
Nesher, G., Osborn, T. G. & Moore, T. L. Effect of treatment with methotrexate, hydroxychloroquine, and prednisone on lymphocyte polyamine levels in rheumatoid arthritis: correlation with the clinical response and rheumatoid factor synthesis. Clin. Exp. Rheumatol. 15, 343–347 (1997).
Huang, C. et al. Ornithine decarboxylase prevents methotrexate-induced apoptosis by reducing intracellular reactive oxygen species production. Apoptosis 10, 895–907 (2005).
Smith, D. M., Johnson, J. A. & Turner, R. A. Biochemical perturbations of BW 91Y (3-deazaadenosine) on human neutrophil chemotactic potential and lipid metabolism. Int. J. Tissue React. 13, 1–18 (1991).
Cronstein, B. N. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol. Rev. 57, 163–172 (2005).
Kim, Y. I., Logan, J. W., Mason, J. B. & Roubenoff, R. DNA hypomethylation in inflammatory arthritis: reversal with methotrexate. J. Lab. Clin. Med. 128, 165–172 (1996).
Karouzakis, E., Gay, R. E., Gay, S. & Neidhart, M. Increased recycling of polyamines is associated with global DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 64, 1809–1817 (2012).
Phillips, D. C., Woollard, K. J. & Griffiths, H. R. The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species. Br. J. Pharmacol. 138, 501–511 (2003).
Herman, S., Zurgil, N. & Deutsch, M. Low dose methotrexate induces apoptosis with reactive oxygen species involvement in T lymphocytic cell lines to a greater extent than in monocytic lines. Inflamm. Res. 54, 273–280 (2005).
Crabtree, M. J., Hale, A. B. & Channon, K. M. Dihydrofolate reductase protects endothelial nitric oxide synthase from uncoupling in tetrahydrobiopterin deficiency. Free Radic. Biol. Med. 50, 1639–1646 (2011).
Vasquez-Vivar, J. et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl Acad. Sci. USA 95, 9220–9225 (1998).
Schoedon, G. et al. Biosynthesis and metabolism of pterins in peripheral blood mononuclear cells and leukemia lines of man and mouse. Eur. J. Biochem. 166, 303–310 (1987).
Altindag, Z. Z., Sahin, G., Inanici, F. & Hascelik, Z. Urinary neopterin excretion and dihydropteridine reductase activity in rheumatoid arthritis. Rheumatol. Int. 18, 107–111 (1998).
Kullich, W. Correlation of interleukin-2 receptor and neopterin secretion in rheumatoid arthritis. Clin. Rheumatol. 12, 387–391 (1993).
Spurlock, C. F. III et al. Increased sensitivity to apoptosis induced by methotrexate is mediated by JNK. Arthritis Rheum. 63, 2606–2616 (2011).
Spurlock, C. F. III et al. Methotrexate-mediated inhibition of nuclear factor κB activation by distinct pathways in T cells and fibroblast-like synoviocytes. Rheumatology 54, 178–187 (2014).
Sung, J. Y. et al. Methotrexate suppresses the interleukin-6 induced generation of reactive oxygen species in the synoviocytes of rheumatoid arthritis. Immunopharmacology 47, 35–44 (2000).
Sigmundsdottir, H., Johnston, A., Gudjonsson, J. E., Bjarnason, B. & Valdimarsson, H. Methotrexate markedly reduces the expression of vascular E-selectin, cutaneous lymphocyte-associated antigen and the numbers of mononuclear leucocytes in psoriatic skin. Exp. Dermatol. 13, 426–434 (2004).
Johnston, A., Gudjonsson, J. E., Sigmundsdottir, H., Ludviksson, B. R. & Valdimarsson, H. The anti-inflammatory action of methotrexate is not mediated by lymphocyte apoptosis, but by the suppression of activation and adhesion molecules. Clin. Immunol. 114, 154–163 (2005).
Dolhain, R. J. et al. Methotrexate reduces inflammatory cell numbers, expression of monokines and of adhesion molecules in synovial tissue of patients with rheumatoid arthritis. Br. J. Rheumatol. 37, 502–508 (1998).
Klimiuk, P. A., Fiedorczyk, M., Sierakowski, S. & Chwiecko, J. Soluble cell adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin) in patients with early rheumatoid arthritis. Scand. J. Rheumatol. 36, 345–350 (2007).
Cobankara, V. et al. Successful treatment of rheumatoid arthritis is associated with a reduction in serum sE-selectin and thrombomodulin level. Clin. Rheumatol. 23, 430–434 (2004).
Sands, W. A., Martin, A. F., Strong, E. W. & Palmer, T. M. Specific inhibition of nuclear factor-κB-dependent inflammatory responses by cell type-specific mechanisms upon A2A adenosine receptor gene transfer. Mol. Pharmacol. 66, 1147–1159 (2004).
Hassanian, S. M., Dinarvand, P. & Rezaie, A. R. Adenosine regulates the proinflammatory signaling function of thrombin in endothelial cells. J. Cell. Physiol. 229, 1292–1300 (2014).
Miranda-Carus, M. E., Balsa, A., Benito-Miguel, M., Perez de Ayala, C. & Martin-Mola, E. IL-15 and the initiation of cell contact-dependent synovial fibroblast-T lymphocyte cross-talk in rheumatoid arthritis: effect of methotrexate. J. Immunol. 173, 1463–1476 (2004).
Wijngaarden, S., van Roon, J. A., van de Winkel, J. G., Bijlsma, J. W. & Lafeber, F. P. Down-regulation of activating Fcγ receptors on monocytes of patients with rheumatoid arthritis upon methotrexate treatment. Rheumatology 44, 729–734 (2005).
Cooper, D. L. et al. FcγRIIIa expression on monocytes in rheumatoid arthritis: role in immune-complex stimulated TNF production and non-response to methotrexate therapy. PLoS ONE 7, e28918 (2012).
Barrera, P. et al. Circulating concentrations and production of cytokines and soluble receptors in rheumatoid arthritis patients: effects of a single dose methotrexate. Br. J. Rheumatol. 33, 1017–1024 (1994).
Barrera, P. et al. Effect of methotrexate alone or in combination with sulphasalazine on the production and circulating concentrations of cytokines and their antagonists. Longitudinal evaluation in patients with rheumatoid arthritis. Br. J. Rheumatol. 34, 747–755 (1995).
Gerards, A. H., de Lathouder, S., de Groot, E. R., Dijkmans, B. A. & Aarden, L. A. Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis. Rheumatology (Oxford) 42, 1189–1196 (2003).
Rudwaleit, M. et al. Response to methotrexate in early rheumatoid arthritis is associated with a decrease of T cell derived tumour necrosis factor α, increase of interleukin 10, and predicted by the initial concentration of interleukin 4. Ann. Rheum. Dis. 59, 311–314 (2000).
Majumdar, S. & Aggarwal, B. B. Methotrexate suppresses NF-κB activation through inhibition of IκBα phosphorylation and degradation. J. Immunol. 167, 2911–2920 (2001).
Mello, S. B., Barros, D. M., Silva, A. S., Laurindo, I. M. & Novaes, G. S. Methotrexate as a preferential cyclooxygenase 2 inhibitor in whole blood of patients with rheumatoid arthritis. Rheumatology 39, 533–536 (2000).
Vergne, P. et al. Methotrexate and cyclooxygenase metabolism in cultured human rheumatoid synoviocytes. J. Rheumatol. 25, 433–440 (1998).
Novaes, G. S., Mello, S. B., Laurindo, I. M. & Cossermelli, W. Low dose methotrexate decreases intraarticular prostaglandin and interleukin 1 levels in antigen induced arthritis in rabbits. J. Rheumatol. 23, 2092–2097 (1996).
Leroux, J. L., Damon, M., Chavis, C., Crastes De Paulet, A. & Blotman, F. Effects of methotrexate on leukotriene and derivated lipoxygenase synthesis in polynuclear neutrophils in rheumatoid polyarthritis. Rev. Rheum. Mal. Osteoartic. 59, 587–591 (in French) (1992).
Fiedorczyk, M., Klimiuk, P. A., Sierakowski, S., Gindzienska-Sieskiewicz, E. & Chwiecko, J. Serum matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with early rheumatoid arthritis. J. Rheumatol. 33, 1523–1529 (2006).
Seitz, M. & Dayer, J. M. Enhanced production of tissue inhibitor of metalloproteinases by peripheral blood mononuclear cells of rheumatoid arthritis patients responding to methotrexate treatment. Rheumatology 39, 637–645 (2000).
Tchetverikov, I. et al. Leflunomide and methotrexate reduce levels of activated matrix metalloproteinases in complexes with α2 macroglobulin in serum of rheumatoid arthritis patients. Ann. Rheum. Dis. 67, 128–130 (2008).
Bulatovic Calasan, M. et al. Methotrexate polyglutamates in erythrocytes are associated with lower disease activity in juvenile idiopathic arthritis patients. Ann. Rheum. Dis. 74, 402–407 (2013).
de Rotte, M. C. et al. Methotrexate polyglutamates in erythrocytes are associated with lower disease activity in patients with rheumatoid arthritis. Ann. Rheum. Dis. 74, 408–414 (2013).
Stamp, L. K. et al. Effects of changing from oral to subcutaneous methotrexate on red blood cell methotrexate polyglutamate concentrations and disease activity in patients with rheumatoid arthritis. J. Rheumatol. 38, 2540–2547 (2011).
Dervieux, T. et al. Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentred cross sectional observational study. Ann. Rheum. Dis. 64, 1180–1185 (2005).
Becker, M. L. et al. The effect of genotype on methotrexate polyglutamate variability in juvenile idiopathic arthritis and association with drug response. Arthritis Rheum. 63, 276–285 (2011).
Stamp, L. K. et al. Methotrexate polyglutamate concentrations are not associated with disease control in rheumatoid arthritis patients receiving long-term methotrexate therapy. Arthritis Rheum. 62, 359–368 (2010).
Dervieux, T., Weinblatt, M. E., Kivitz, A. & Kremer, J. M. Methotrexate polyglutamation in relation to infliximab pharmacokinetics in rheumatoid arthritis. Ann. Rheum. Dis. 72, 908–910 (2013).
Jani, M. et al. Clinical utility of random anti-tumor necrosis factor drug-level testing and measurement of antidrug antibodies on the long-term treatment response in rheumatoid arthritis. Arthritis Rheumatol. 67, 2011–2019 (2015).
Dervieux, T., Zablocki, R. & Kremer, J. Red blood cell methotrexate polyglutamates emerge as a function of dosage intensity and route of administration during pulse methotrexate therapy in rheumatoid arthritis. Rheumatology 49, 2337–2345 (2010).
Dervieux, T. et al. Contribution of common polymorphisms in reduced folate carrier and γ-glutamylhydrolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis. Pharmacogenetics 14, 733–739 (2004).
Korell, J. et al. Comparison of intracellular methotrexate kinetics in red blood cells with the kinetics in other cell types. Br. J. Clin. Pharmacol. 77, 493–497 (2014).
Blits, M. et al. Methotrexate normalizes up-regulated folate pathway genes in rheumatoid arthritis. Arthritis Rheum. 65, 2791–2802 (2013).
O'Dell, J. R. et al. HLA-DRB1 typing in rheumatoid arthritis: predicting response to specific treatments. Ann. Rheum. Dis. 57, 209–213 (1998).
Sharma, S. et al. Interaction of genes from influx–metabolism–efflux pathway and their influence on methotrexate efficacy in rheumatoid arthritis patients among Indians. Pharmacogenet. Genomics 18, 1041–1049 (2008).
Sharma, S. et al. Purine biosynthetic pathway genes and methotrexate response in rheumatoid arthritis patients among north Indians. Pharmacogenet. Genomics 19, 823–828 (2009).
Wessels, J. A. et al. Relationship between genetic variants in the adenosine pathway and outcome of methotrexate treatment in patients with recent-onset rheumatoid arthritis. Arthritis Rheum. 54, 2830–2839 (2006).
Wessels, J. A. et al. A clinical pharmacogenetic model to predict the efficacy of methotrexate monotherapy in recent-onset rheumatoid arthritis. Arthritis Rheum. 56, 1765–1775 (2007).
Fransen, J. et al. Clinical pharmacogenetic model to predict response of MTX monotherapy in patients with established rheumatoid arthritis after DMARD failure. Pharmacogenomics 13, 1087–1094 (2012).
Dervieux, T. et al. Patterns of interaction between genetic and nongenetic attributes and methotrexate efficacy in rheumatoid arthritis. Pharmacogenet. Genomics 22, 1–9 (2012).
Owen, S. A. et al. Genetic polymorphisms in key methotrexate pathway genes are associated with response to treatment in rheumatoid arthritis patients. Pharmacogenomics J. 13, 227–234 (2013).
Aslibekyan, S. et al. Genetic variants associated with methotrexate efficacy and toxicity in early rheumatoid arthritis: results from the treatment of early aggressive rheumatoid arthritis trial. Pharmacogenomics J. 14, 48–53 (2014).
Senapati, S. et al. Genome-wide analysis of methotrexate pharmacogenomics in rheumatoid arthritis shows multiple novel risk variants and leads for TYMS regulation. Pharmacogenet. Genomics 24, 211–219 (2014).
Kung, T. N. et al. RFC1 80G>A is a genetic determinant of methotrexate efficacy in rheumatoid arthritis: a huge review and meta-analysis of observational studies. Arthritis Rheumatol. 66, 1111–1120 (2013).
Morgan, M. D. et al. MTHFR functional genetic variation and methotrexate treatment response in rheumatoid arthritis: a meta-analysis. Pharmacogenomics 15, 467–475 (2014).
Acknowledgements
The authors' work is supported by the National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre based at Newcastle Hospitals National Health Service (NHS) Foundation Trust and Newcastle University, UK. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.
Author information
Authors and Affiliations
Contributions
P.M.B. researched the data for the article, and wrote the manuscript. All authors contributed substantially to discussions of the article content and to review or editing of the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Brown, P., Pratt, A. & Isaacs, J. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat Rev Rheumatol 12, 731–742 (2016). https://doi.org/10.1038/nrrheum.2016.175
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrrheum.2016.175
This article is cited by
-
The impact of folate pathway variants on the outcome of methotrexate therapy in rheumatoid arthritis patients
Clinical Rheumatology (2024)
-
Clinical prediction models of rheumatoid arthritis and its complications: focus on cardiovascular disease and interstitial lung disease
Arthritis Research & Therapy (2023)
-
Nucleotide metabolism: a pan-cancer metabolic dependency
Nature Reviews Cancer (2023)
-
Oral Versus Subcutaneous Methotrexate in Immune-Mediated Inflammatory Disorders: an Update of the Current Literature
Current Rheumatology Reports (2023)
-
Therapeutic drug monitoring of disease-modifying antirheumatic drugs in circulating leukocytes in immune-mediated inflammatory diseases
Inflammopharmacology (2023)