Key Points
-
Multiple danger-associated molecular patterns, including activators of complement, are increased within joints affected by osteoarthritis (OA), and complement activation is a major factor in progression of experimental knee OA
-
Biomechanical cartilage injury and joint inflammation compromise chondrocyte viability and reprogram viable chondrocytes to procatabolic differentiation using transcriptional 'go signals', including NFκB and possibly HIF-2α and MTF1
-
Oxidative stress and dysregulated chondrocyte mitochondrial function contribute not only to impaired matrix synthetic function and viability, but also to molecular inflammatory processes and matrix catabolism in OA
-
Biomechanical injury, oxidative stress and inflammatory mediators modulate proteostasis responses, including autophagy and the unfolded protein response to endoplasmic reticulum stress
-
Chondrocyte bioenergy sensors including AMPK and SIRT1 can modulate deleterious chondrocyte responses to oxidative stress and inflammatory mediators, potentially providing therapeutic 'entry points' for limiting OA progression
Abstract
Chronic, low-grade inflammation in osteoarthritis (OA) contributes to symptoms and disease progression. Effective disease-modifying OA therapies are lacking, but better understanding inflammatory pathophysiology in OA could lead to transformative therapy. Networks of diverse innate inflammatory danger signals, including complement and alarmins, are activated in OA. Through inflammatory mediators, biomechanical injury and oxidative stress compromise the viability of chondrocytes, reprogramming them to hypertrophic differentiation and proinflammatory and pro-catabolic responses. Integral to this reprogramming are 'switching' pathways in transcriptional networks, other than the well-characterized effects of NFκB and mitogen-activated protein kinase signalling; HIF-2α transcriptional signalling and ZIP8-mediated Zn2+ uptake, with downstream MTF1 transcriptional signalling, have been implicated but further validation is required. Permissive factors, including impaired bioenergetics via altered mitochondrial function and decreased activity of bioenergy sensors, interact with molecular inflammatory responses and proteostasis mechanisms such as the unfolded protein response and autophagy. Bioenergy-sensing by AMPK and SIRT1 provides 'stop signals' for oxidative stress, inflammatory, and matrix catabolic processes in chondrocytes. The complexity of molecular inflammatory processes in OA and the involvement of multiple inflammatory mediators in tissue repair responses, raises daunting questions about how to therapeutically target inflammatory processes and macroscopic inflammation in OA. Bioenergy sensing might provide a pragmatic 'entry point'.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).
Sellam, J. & Berenbaum, F. The role of synovitis in pathophysiology and clinicalsymptoms of osteoarthritis. Nat. Rev. Rheumatol. 6, 625–635 (2010).
Karsdal, M. A. et al. The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann. Rheum. Dis. 73, 336–348 (2014).
Goldring, M. B. & Goldring, S. R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. NY Acad. Sci. 1192, 230–237 (2010).
Blanco, F. J., Rego, I. & Ruiz-Romero, C. The role of mitochondria in osteoarthritis. Nat. Rev. Rheumatol. 7, 161–169 (2011).
Bao, J. P., Chen, W. P. & Wu, L. D. Lubricin: a novel potential biotherapeutic approaches for the treatment of osteoarthritis. Mol. Biol. Rep. 38, 2879–2885 (2011).
Berenbaum, F., Eymard, F. & Houard, X. Osteoarthritis, inflammation and obesity. Curr. Opin. Rheumatol. 25, 114–118 (2013).
Issa, R. I. & Griffin, T. M. Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation. Pathobiol. Aging Age Relat. Dis. 2, 17470 (2012).
Bonnet, C. S. et al. AMPA/kainate glutamate receptors contribute to inflammation, degeneration and pain related behaviour in inflammatory stages of arthritis. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2013-203670.
Malfait, A. M. & Schnitzer, T. J. Towards a mechanism-based approach to pain management in osteoarthritis. Nat. Rev. Rheumatol. 9, 654–664 (2013).
Miller, R. E. et al. CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc. Natl Acad. Sci. USA 109, 20602–20607 (2012).
Punzi, L., Frigato, M., Frallonardo, P. & Ramonda, R. Inflammatory osteoarthritis of the hand. Best Pract. Res. Clin. Rheumatol. 24, 301–312 (2010).
Zhen, G. et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 19, 704–712 (2013).
Guermazi, A. et al. Synovitis in knee osteoarthritis assessed by contrast-enhanced magnetic resonance imaging (MRI) is associated with radiographic tibiofemoral osteoarthritis and MRI-detected widespread cartilage damage: the MOST study. J. Rheumatol. 41, 501–508 (2014).
de Lange-Brokaar, B. J. E. et al. Degree of synovitis on MRI by comprehensive whole knee semi-quantitative scoring method correlates with histologic and macroscopic features of synovial tissue inflammation in knee osteoarthritis. Osteoarthritis Cartilage http://dx.doi.org/10.1016/j.joca.2013.12.013.
Knoop, J. et al. Biomechanical factors and physical examination findings in osteoarthritis of the knee: associations with tissue abnormalities assessed by conventional radiography and high-resolution 3.0 Tesla magnetic resonance imaging. Arthritis Res. Ther. 14, R212 (2012).
Guermazi, A. et al. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). BMJ 345, e5339 (2012).
Lambert, C. et al. Gene expression pattern of synovial cells from inflammatory and normal areas of osteoarthritis synovial membrane. Arthritis Rheum. http://dx.doi.org/10.1002/art.38315.
Li, J. et al. Hyaluronan injection in murine osteoarthritis prevents TGFβ 1-induced synovial neovascularization and fibrosis and maintains articular cartilage integrity by a CD44-dependent mechanism. Arthritis Res. Ther. 14, R151 (2012).
Flannery, C. R. et al. Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum. 60, 840–847 (2009).
Scanzello, C. R. & Goldring, S. R. The role of synovitis in osteoarthritis pathogenesis. Bone 51, 249–257 (2012).
Chevalier, X., Eymard, F. & Richette, P. Biologic agents in osteoarthritis: hopes and disappointments. Nat. Rev. Rheumatol. 9, 400–410 (2013).
Husa, M., Liu-Bryan, R. & Terkeltaub, R. Shifting HIFs in osteoarthritis. Nat. Med. 16, 641–644 (2010).
Bougault, C. et al. Stress-induced cartilage degradation does not depend on the NLRP3 inflammasome in human osteoarthritis and mouse models. Arthritis Rheum. 64, 3972–3981 (2012).
Hernandez-Cuellar, E. et al. Cutting edge: nitric oxide inhibits the NLRP3 inflammasome. J. Immunol. 189, 5113–5117 (2012).
Mao, K. et al. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Res. 23, 201–212 (2013).
Liu-Bryan, R. & Terkeltaub, R. The growing array of innate inflammatory ignition switches in osteoarthritis. Arthritis Rheum. 64, 2055–2058 (2012).
Schelbergen, R. F. et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 64, 1477–1487 (2012).
Zreiqat, H. et al. S100A8 and S100A9 in experimental osteoarthritis. Arthritis Res. Ther. 12, R16 (2010).
Cecil, D. L. et al. The pattern recognition receptor CD36 is a chondrocyte hypertrophy marker associated with suppression of catabolic responses and promotion of repair responses to inflammatory stimuli. J. Immunol. 182, 5024–5031 (2009).
Jin, C. et al. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc. Natl Acad. Sci. USA 108, 14867–14872 (2011).
Wang, Q. et al. Identification of a central role for complement in osteoarthritis. Nat. Med. 17, 1674–1679 (2011).
Lepus, C. M. et al. Brief report: carboxypeptidase B serves as a protective mediator in osteoarthritis. Arthritis Rheum. 66, 101–106 (2014).
de Cabo, R., Carmona-Gutierrez, D., Bernier, M., Hall, M. N. & Madeo, F. The search for antiaging interventions: from elixirs to fasting regimens. Cell 157, 1515–1526 (2014).
Merz, D., Liu, R., Johnson, K. & Terkeltaub, R. IL-8/CXCL8 and growth-related oncogene α/CXCL1 induce chondrocyte hypertrophic differentiation. J. Immunol. 171, 4406–4415 (2003).
Sherwood, J. et al. A homeostatic function of CXCR2 signalling in articular cartilage. Ann. Rheum. Dis. http://dx/doi.org/10.1136/annrheumdis-2014-205546.
Marcu, K. B., Otero, M., Olivotto, E., Borzi, R. M. & Goldring, M. B. NF-κB signaling: multiple angles to target OA. Curr. Drug Targets 11, 599–613 (2010).
Lin, A. C. et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat. Med. 15, 1421–1425 (2009).
Echtermeyer, F. et al. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med. 15, 1072–1076 (2009).
Pap., T. & Bertrand, J. Syndecans in cartilage breakdown and synovial inflammation. Nat. Rev. Rheumatol. 9, 43–55 (2013).
Saito, T. et al. Transcriptional regulation of endochondral ossification by HIF-2α during skeletal growth and osteoarthritis development. Nat. Med. 16, 678–686 (2010).
Yang, S. et al. Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction. Nat. Med. 16, 687–693 (2010).
Kim, J. H. et al. Regulation of the catabolic cascade in osteoarthritis by the zinc–ZIP8–MTF1 axis. Cell 156, 730–743 (2014).
Liu-Bryan, R. & Terkeltaub, R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum. 62, 2004–2012 (2010).
Yano, F. et al. β-catenin regulates parathyroid hormone/parathyroid hormone-related protein receptor signals and chondrocyte hypertrophy through binding to the intracellular C-terminal region of the receptor. Arthritis Rheum. 65, 429–435 (2013).
Pesesse, L. et al. Consequences of chondrocyte hypertrophy on osteoarthritic cartilage: potential effect on angiogenesis. Osteoarthritis Cartilage 21, 1913–1923 (2013).
Konisti, S., Kiriakidis, S. & Paleolog, E. M. Hypoxia—a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nat. Rev. Rheumatol. 8, 153–162 (2012).
Murphy, C. L. HIF-2α—a mediator of osteoarthritis? Cell Res. 20, 977–979 (2010).
Clérigues, V., Murphy, C. L., Guillén, M. I. & Alcaraz, M. J. Haem oxygenase-1 induction reverses the actions of interleukin-1β on hypoxia-inducible transcription factors and human chondrocyte metabolism in hypoxia. Clin. Sci. (Lond.) 125, 99–108 (2013).
Thoms, B. L., Dudek, K. A., Lafont, J. E. & Murphy, C. L. Hypoxia promotes the production and inhibits the destruction of human articular cartilage. Arthritis Rheum. 65, 1302–1312 (2013).
Johnson, K. et al. Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum. 43, 1560–1570 (2000).
Johnson, K. et al. Mediation of spontaneous knee osteoarthritis by progressive chondrocyte ATP depletion in Hartley guinea pigs. Arthritis Rheum. 50, 1216–1225 (2004).
Blanco, F. J., Rego, I. & Ruiz-Romero, C. The role of mitochondria in osteoarthritis. Nat. Rev. Rheumatol. 7, 161–169 (2011).
Rego-Perez, I. et al. Mitochondrial genetics and osteoarthritis. Front. Biosci. (Schol. Ed.) 5, 360–368 (2013).
Scott, J. L. et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann. Rheum. Dis. 69, 1502–1510 (2010).
Tschopp, J. Mitochondria: sovereign of inflammation? Eur. J. Immunol. 41, 1196–1202 (2011).
Misawa, T. et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 14, 454–460 (2013).
Gavriilidis, C., Miwa, S., von Zglinicki, T., Taylor, R. W. & Young, D. A. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum. 65, 378–387 (2013).
Vaamonde-Garcia, C. et al. Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum. 64, 2927–2936 (2012).
O'Neill, L. A. & Hardie, D. G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346–355 (2013).
Rath, E. & Haller, D. Mitochondria at the interface between danger signaling and metabolism: role of unfolded protein responses in chronic inflammation. Inflamm. Bowel Dis. 18, 1364–1377 (2012).
Schiavi, A. & Ventura, N. The interplay between mitochondria and autophagy and its role in the aging process. Exp. Gerontol. 56, 147–153 (2014).
Steinberg, G. R. & Kemp, B. E. AMPK in health and disease. Physiol. Rev. 89, 1025–1078 (2009).
Witczak, C. A., Sharoff, C. G. & Goodyear, L. J. AMP-activated protein kinase in skeletal muscle: from structure and localization to its role as a master regulator of cellular metabolism. Cell. Mol. Life Sci. 65, 3737–3755 (2008).
Terkeltaub, R., Yang, B., Lotz, M. & Liu-Bryan, R. Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to inflammatory cytokines IL-1β and TNFα. Arthritis Rheum. 63, 1928–1937 (2011).
Petursson, F. et al. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Res. Ther. 15, R77 (2013).
Salminen, A. & Kaarniranta, K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev. 11, 230–241 (2012).
Dvir-Ginzberg, M. & Steinmeyer, J. Towards elucidating the role of SirT1 in osteoarthritis. Front. Biosci. 18, 343–355 (2013).
Gabay, O. et al. Sirtuin 1 enzymatic activity is required for cartilage homeostasis in vivo in a mouse model. Arthritis Rheum. 65, 159–166 (2013).
Dvir-Ginzberg, M., Gagarina, V., Lee, E. J. & Hall, D. J. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J. Biol. Chem. 283, 36300–36310 (2008).
Hong, E. H. et al. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J. Biol. Chem. 285, 1283–1295 (2010).
Takayama, K. et al. SIRT1 regulation of apoptosis of human chondrocytes. Arthritis Rheum. 60, 2731–2740 (2009).
Gagarina, V. et al. SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulin-like growth factor receptor pathway. Arthritis Rheum. 62, 1383–1392 (2010).
Gabay, O. et al. Increased apoptotic chondrocytes in articular cartilage from adult heterozygous SirT1 mice. Ann. Rheum. Dis. 71, 613–616 (2012).
Matsuzaki, T. et al. Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann. Rheum. Dis. 73, 1397–1404 (2014).
Moon, M. H. et al. SIRT1, a class III histone deacetylase, regulates TNF-α-induced inflammation in human chondrocytes. Osteoarthritis Cartilage 21, 470–480 (2013).
Matsushita, T. et al. The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin-1β in human chondrocytes. J. Orthop. Res. 31, 531–537 (2013).
Lei, M. et al. Resveratrol inhibits interleukin 1β-mediated inducible nitric oxide synthase expression in articular chondrocytes by activating SIRT1 and thereby suppressing nuclear factor-κB activity. Eur. J. Pharmacol. 674, 73–79 (2012).
Wang, J., Gao, J. S., Chen, J. W., Li, F. & Tian, J. Effect of resveratrol on cartilage protection and apoptosis inhibition in experimental osteoarthritis of rabbit. Rheumatol. Int. 32, 1541–1548 (2012).
Dave, M. et al. The antioxidant resveratrol protects against chondrocyte apoptosis via effects on mitochondrial polarization and ATP production. Arthritis Rheum. 58, 2786–2797 (2008).
Shakibaei, M., Csaki, C., Nebrich, S. & Mobasheri, A. Resveratrol suppresses interleukin-1β-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem. Pharmacol. 76, 1426–1439 (2008).
Csaki, C., Keshishzadeh, N., Fischer, K. & Shakibaei, M. Regulation of inflammation signalling by resveratrol in human chondrocytes in vitro. Biochem. Pharmacol. 75, 677–687 (2008).
Shakibaei, M., John, T., Seifarth, C. & Mobasheri, A. Resveratrol inhibits IL-1 β-induced stimulation of caspase-3 and cleavage of PARP in human articular chondrocytes in vitro. Ann. NY Acad. Sci. 1095, 554–563 (2007).
Liu, T. F. et al. Fueling the flame: bioenergy couples metabolism and inflammation. J. Leukoc. Biol. 92, 499–507 (2012).
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
Lotz, M. & Carames, B. Autophagy: a new therapeutic target in cartilage injury and osteoarthritis. J. Am. Acad. Orthop. Surg. 20, 261–262 (2012).
Husa, M., Petursson, F., Lotz, M., Terkeltaub, R. & Liu-Bryan, R. C/EBP homologous protein drives pro-catabolic responses in chondrocytes. Arthritis Res. Ther. 15, R218 (2013).
Colbert, R. A., Tran, T. M. & Layh-Schmitt, G. HLA-B27 misfolding and ankylosing spondylitis. Mol. Immunol. 57, 44–51 (2014).
Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).
Carneiro, L. A. & Travassos, L. H. The interplay between NLRs and autophagy in immunity and inflammation. Front. Immunol. 4, 361 (2013).
Arroyo, D. S. et al. Autophagy in inflammation, infection, neurodegeneration and cancer. Int. Immunopharmacol. 18, 55–65 (2014).
Claudio, N., Dalet, A., Gatti, E. & Pierre, P. Mapping the crossroads of immune activation and cellular stress response pathways. EMBO J. 32, 1214–1224 (2013).
Garg, A. D. et al. ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol. Med. 18, 589–598 (2012).
Liang, G. et al. Endoplasmic reticulum stress–unfolding protein response–apoptosis cascade causes chondrodysplasia in a col2a1 p.Gly1170Ser mutated mouse model. PLoS ONE 9, e86894 (2014).
Gualeni, B. et al. A novel transgenic mouse model of growth plate dysplasia reveals that decreased chondrocyte proliferation due to chronic ER stress is a key factor in reduced bone growth. Dis. Model. Mech. 6, 1414–1425 (2013).
Oliver, B. L., Cronin, C. G., Zhang-Benoit, Y., Goldring, M. B. & Tanzer, M. L. Divergent stress responses to IL-1β, nitric oxide, and tunicamycin by chondrocytes. J. Cell. Physiol. 204, 45–50 (2005).
Takada, K. et al. Enhanced apoptotic and reduced protective response in chondrocytes following endoplasmic reticulum stress in osteoarthritic cartilage. Int. J. Exp. Pathol. 92, 232–242 (2011).
Guo, F. J. et al. ATF6 upregulates XBP1S and inhibits ER stress-mediated apoptosis in osteoarthritis cartilage. Cell. Signal. 26, 332–342 (2014).
Liu, Y. et al. XBP1S associates with RUNX2 and regulates chondrocyte hypertrophy. J. Biol. Chem. 287, 34500–34513 (2012).
Martinon, F., Chen, X., Lee, A. H. & Glimcher, L. H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11, 411–418 (2010).
Uehara, Y. et al. Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein. Osteoarthritis Cartilage 22, 1007–1017 (2014).
Fukai, A. et al. Lack of a chondroprotective effect of cyclooxygenase 2 inhibition in a surgically induced model of osteoarthritis in mice. Arthritis Rheum. 64, 198–203 (2012).
Vincent, H. K. et al. Hyaluronic acid (HA) viscosupplementation on synovial fluid inflammation in knee osteoarthritis: a pilot study. Open Orthop. J. 7, 378–384 (2013).
Henrotin, Y., Lambert, C. & Richette, P. Importance of synovitis in osteoarthritis: evidence for the use of glycosaminoglycans against synovial inflammation. Semin. Arthritis Rheum. 43, 579–587 (2014).
Carames, B. et al. Glucosamine activates autophagy in vitro and in vivo. Arthritis Rheum. 65, 1843–1852 (2013).
Leong, D. J. et al. Nutraceuticals: potential for chondroprotection and molecular targeting of osteoarthritis. Int. J. Mol. Sci. 14, 23063–23085 (2013).
Messier, S. P. et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA 310, 1263–1273 (2013).
Srinivas, V., Bohensky, J. & Shapiro, I. M. Autophagy: a new phase in the maturation of growth plate chondrocytes is regulated by HIF, mTOR and AMP kinase. Cells Tissues Organs 189, 88–92 (2009).
Abou-Raya, A., Abou-Raya, S. & Khadrawe, T. Methotrexate in the treatment of symptomatic knee osteoarthritis: randomised placebo-controlled trial. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2013-204856.
Nasi, S. et al. Dispensable role of myeloid differentiation primary response gene 88 (MyD88) and MyD88-dependent Toll-like receptors (TLRs) in a murine model of osteoarthritis. Joint Bone Spine 81, 320–324 (2014).
Acknowledgements
The authors' work is supported by funding from the VA Research Service, Arthritis Foundation, and NIH (PAG07996, AI81881).
Author information
Authors and Affiliations
Contributions
Both authors contributed equally to researching the data for the article, providing a substantial contribution to discussions of the content, writing the article and review and/or editing of the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
R.T. declares he serves as a scientific advisory board member for Cardax. R.L. B. declares no competing interests
Rights and permissions
About this article
Cite this article
Liu-Bryan, R., Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol 11, 35–44 (2015). https://doi.org/10.1038/nrrheum.2014.162
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrrheum.2014.162
This article is cited by
-
Calycosin ameliorates osteoarthritis by regulating the imbalance between chondrocyte synthesis and catabolism
BMC Complementary Medicine and Therapies (2024)
-
Engineering exosomes derived from subcutaneous fat MSCs specially promote cartilage repair as miR-199a-3p delivery vehicles in Osteoarthritis
Journal of Nanobiotechnology (2023)
-
Analysis of proteins released from osteoarthritic cartilage by compressive loading
Scientific Reports (2023)
-
Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies
Nature Reviews Rheumatology (2023)
-
Low back pain and osteoarthritis pain: a perspective of estrogen
Bone Research (2023)