[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The far-reaching scope of neuroinflammation after traumatic brain injury

An Erratum to this article was published on 04 August 2017

This article has been updated

Key Points

  • Traumatic brain injury (TBI) is an important public health issue: the global incidence of TBI is on the rise, and mild, repetitive and blast injuries, in particular, are increasingly recognized in the popular press

  • Neuroinflammation, triggered by release of endogenous danger signals and innate immune activation, is crucial to recovery after TBI; however, a dysregulated immune response can result in secondary injury

  • After TBI, the activity of microglia and infiltrating macrophages and adaptive immune cells is driven by extracellular injury signals and intracellular molecular pathways that might represent novel therapeutic targets

  • Trials assessing immunomodulatory interventions should account for changes in neuroinflammation that occur over time, between injury type and severity, and across patient characteristics such as age, sex and genetic variability

  • Some individuals with TBI develop chronic neuroinflammation, which can last for years after the injury, and is being investigated as a link to accelerated neurodegeneration and chronic traumatic encephalopathy

Abstract

The 'silent epidemic' of traumatic brain injury (TBI) has been placed in the spotlight as a result of clinical investigations and popular press coverage of athletes and veterans with single or repetitive head injuries. Neuroinflammation can cause acute secondary injury after TBI, and has been linked to chronic neurodegenerative diseases; however, anti-inflammatory agents have failed to improve TBI outcomes in clinical trials. In this Review, we therefore propose a new framework of targeted immunomodulation after TBI for future exploration. Our framework incorporates factors such as the time from injury, mechanism of injury, and secondary insults in considering potential treatment options. Structuring our discussion around the dynamics of the immune response to TBI — from initial triggers to chronic neuroinflammation — we consider the ability of soluble and cellular inflammatory mediators to promote repair and regeneration versus secondary injury and neurodegeneration. We summarize both animal model and human studies, with clinical data explicitly defined throughout this Review. Recent advances in neuroimmunology and TBI-responsive neuroinflammation are incorporated, including concepts of inflammasomes, mechanisms of microglial polarization, and glymphatic clearance. Moreover, we highlight findings that could offer novel therapeutic targets for translational and clinical research, assimilate evidence from other brain injury models, and identify outstanding questions in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuroinflammation after traumatic brain injury.
Figure 2: Polarization of microglia and macrophages following TBI.
Figure 3: Novel TBI therapies targeting inflammation at different time points.
Figure 4: Effects of chronic neuroinflammation.

Similar content being viewed by others

Change history

  • 04 August 2017

    In the initially published version of this article, reference 194 was incorrectly cited as reference 193 in the Conclusions section. This error has been corrected in the HTML and PDF versions of the article.

References

  1. Roozenbeek, B., Maas, A. I. & Menon, D. K. Changing patterns in the epidemiology of traumatic brain injury. Nat. Rev. Neurol. 9, 231–236 (2013).

    Article  PubMed  Google Scholar 

  2. Feigin, V. L. et al. Incidence of traumatic brain injury in New Zealand: a population-based study. Lancet Neurol. 12, 53–64 (2013).

    PubMed  Google Scholar 

  3. Goldstein, L. E. et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl Med. 4, 134ra60 (2012).

    PubMed  PubMed Central  Google Scholar 

  4. Corps, K. N., Roth, T. L. & McGavern, D. B. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 72, 355–362 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Csuka, E. et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-α, TGF-β1 and blood–brain barrier function. J. Neuroimmunol. 101, 211–221 (1999).

    CAS  PubMed  Google Scholar 

  6. Frugier, T., Morganti-Kossmann, M. C., O'Reilly, D. & McLean, C. A. In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J. Neurotrauma 27, 497–507 (2010).

    PubMed  Google Scholar 

  7. Kossmann, T. et al. Interleukin-8 released into the cerebrospinal fluid after brain injury is associated with blood–brain barrier dysfunction and nerve growth factor production. J. Cereb. Blood Flow Metab. 17, 280–289 (1997).

    CAS  PubMed  Google Scholar 

  8. Semple, B. D., Kossmann, T. & Morganti-Kossmann, M. C. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J. Cereb. Blood Flow Metab. 30, 459–473 (2010). Excellent review on the several crucial roles of chemokines and their receptors in response to traumatic brain injury, with a focus on two of the best-studied chemokines, CCL2 and CXCL8.

    CAS  PubMed  Google Scholar 

  9. Ziebell, J. M. & Morganti-Kossmann, M. C. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7, 22–30 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Roberts, I. et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet 364, 1321–1328 (2004).

    PubMed  Google Scholar 

  11. Hutchison, J. S. et al. Hypothermia therapy after traumatic brain injury in children. N. Engl. J. Med. 358, 2447–2456 (2008).

    CAS  PubMed  Google Scholar 

  12. Xiong, Y., Mahmood, A. & Chopp, M. Animal models of traumatic brain injury. Nat. Rev. Neurosci. 14, 128–142 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Marklund, N. & Hillered, L. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br. J. Pharmacol. 164, 1207–1229 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sheikh, A. M. et al. Lysophosphatidylcholine induces glial cell activation: role of rho kinase. Glia 57, 898–907 (2009).

    PubMed  Google Scholar 

  15. Uchida, K. Redox-derived damage-associated molecular patterns: ligand function of lipid peroxidation adducts. Redox Biol. 1, 94–96 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ransohoff, R. M. & Brown, M. A. Innate immunity in the central nervous system. J. Clin. Invest. 122, 1164–1171 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Scherbel, U. et al. Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc. Natl Acad. Sci. USA 96, 8721–8726 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sinz, E. H. et al. Inducible nitric oxide synthase is an endogenous neuroprotectant after traumatic brain injury in rats and mice. J. Clin. Invest. 104, 647–656 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. You, Z. et al. Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J. Cereb. Blood Flow Metab. 28, 1564–1573 (2008).

    CAS  PubMed  Google Scholar 

  20. Laird, M. D. et al. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4. Glia 62, 26–38 (2014).

    PubMed  Google Scholar 

  21. Au, A. K. et al. Cerebrospinal fluid levels of high-mobility group box 1 and cytochrome C predict outcome after pediatric traumatic brain injury. J. Neurotrauma 29, 2013–2021 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. Frank, M. G., Weber, M. D., Watkins, L. R. & Maier, S. F. Stress sounds the alarmin: the role of the danger-associated molecular pattern HMGB1 in stress-induced neuroinflammatory priming. Brain Behav. Immun. 48, 1–7 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    CAS  PubMed  Google Scholar 

  24. de Rivero Vaccari, J. P. et al. Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J. Cereb. Blood Flow Metab. 29, 1251–1261 (2009).

    CAS  PubMed  Google Scholar 

  25. Adamczak, S. E. et al. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J. Cereb. Blood Flow Metab. 34, 621–629 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 9, 857–865 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, H. D. et al. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem. Res. 38, 2072–2083 (2013).

    CAS  PubMed  Google Scholar 

  28. de Rivero Vaccari, J. P., Lotocki, G., Marcillo, A. E., Dietrich, W. D. & Keane, R. W. A molecular platform in neurons regulates inflammation after spinal cord injury. J. Neurosci. 28, 3404–3414 (2008).

    PubMed  PubMed Central  Google Scholar 

  29. Lukens, J. R., Barr, M. J., Chaplin, D. D., Chi, H. & Kanneganti, T. D. Inflammasome-derived IL-1β regulates the production of GM-CSF by CD4+ T cells and γδ T cells. J. Immunol. 188, 3107–3115 (2012).

    CAS  PubMed  Google Scholar 

  30. Meissner, F., Molawi, K. & Zychlinsky, A. Mutant superoxide dismutase 1-induced IL-1β accelerates ALS pathogenesis. Proc. Natl Acad. Sci. USA 107, 13046–13050 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Palmer, A. M., Marion, D. W., Botscheller, M. L., Bowen, D. M. & DeKosky, S. T. Increased transmitter amino acid concentration in human ventricular CSF after brain trauma. Neuroreport 6, 153–156 (1994).

    CAS  PubMed  Google Scholar 

  32. Ruppel, R. A. et al. Excitatory amino acid concentrations in ventricular cerebrospinal fluid after severe traumatic brain injury in infants and children: the role of child abuse. J. Pediatr. 138, 18–25 (2001).

    CAS  PubMed  Google Scholar 

  33. Kochanek, P. M. et al. Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: lessons learned from the bedside. Pediatr. Crit. Care Med. 1, 4–19 (2000).

    PubMed  Google Scholar 

  34. Viviani, B., Boraso, M., Marchetti, N. & Marinovich, M. Perspectives on neuroinflammation and excitotoxicity: a neurotoxic conspiracy? Neurotoxicology 43, 10–20 (2014).

    CAS  PubMed  Google Scholar 

  35. Ikonomidou, C. & Turski, L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 1, 383–386 (2002).

    CAS  PubMed  Google Scholar 

  36. Verrier, J. D. et al. Expression of the 2′,3′-cAMP-adenosine pathway in astrocytes and microglia. J. Neurochem. 118, 979–987 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kochanek, P. M. et al. Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J. Cereb. Blood Flow Metab. 26, 565–575 (2006).

    CAS  PubMed  Google Scholar 

  38. Haselkorn, M. L. et al. Adenosine A1 receptor activation as a brake on the microglial response after experimental traumatic brain injury in mice. J. Neurotrauma 27, 901–910 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. Jackson, E. K., Boison, D., Schwarzschild, M. A. & Kochanek, P. M. Purines: forgotten mediators in traumatic brain injury. J. Neurochem. 137, 142–153 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Suliman, H. B. & Piantadosi, C. A. Mitochondrial quality control as a therapeutic target. Pharmacol. Rev. 68, 20–48 (2016).

    CAS  PubMed  Google Scholar 

  41. Chu, C. T., Ji, J. & Dagda, R. K. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Walko, T. D. III et al. Cerebrospinal fluid mitochondrial DNA: a novel DAMP in pediatric traumatic brain injury. Shock 41, 499–503 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Galluzzi, L., Kepp, O. & Kroemer, G. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 13, 780–788 (2012).

    CAS  PubMed  Google Scholar 

  45. Balasubramanian, K. et al. Dichotomous roles for externalized cardiolipin in extracellular signaling: promotion of phagocytosis and attenuation of innate immunity. Sci. Signal. 8, ra95 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. Fang, H. et al. CD36-mediated hematoma absorption following intracerebral hemorrhage: negative regulation by TLR4 signaling. J. Immunol. 192, 5984–5992 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wagner, K. R., Sharp, F. R., Ardizzone, T. D., Lu, A. & Clark, J. F. Heme and iron metabolism: role in cerebral hemorrhage. J. Cereb. Blood Flow Metab. 23, 629–652 (2003).

    CAS  PubMed  Google Scholar 

  48. Bellander, B. M., Singhrao, S. K., Ohlsson, M., Mattsson, P. & Svensson, M. Complement activation in the human brain after traumatic head injury. J. Neurotrauma 18, 1295–1311 (2001).

    CAS  PubMed  Google Scholar 

  49. Stahel, P. F. et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood–brain barrier dysfunction in patients with traumatic brain injury. J. Neurotrauma 18, 773–781 (2001).

    CAS  PubMed  Google Scholar 

  50. Stahel, P. F. et al. Absence of the complement regulatory molecule CD59a leads to exacerbated neuropathology after traumatic brain injury in mice. J. Neuroinflammation 6, 2 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. Brennan, F. H., Anderson, A. J., Taylor, S. M., Woodruff, T. M. & Ruitenberg, M. J. Complement activation in the injured central nervous system: another dual-edged sword? J. Neuroinflammation 9, 137 (2012). Review of complement activation and dysregulation after brain and spinal cord injury, including several complement-targeted therapeutics.

    PubMed  PubMed Central  Google Scholar 

  52. Rich, M. C. et al. Site-targeted complement inhibition by a complement receptor 2-conjugated inhibitor (mTT30) ameliorates post-injury neuropathology in mouse brains. Neurosci. Lett. 617, 188–194 (2016).

    CAS  PubMed  Google Scholar 

  53. Ruseva, M. M., Ramaglia, V., Morgan, B. P. & Harris, C. L. An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice. Proc. Natl Acad. Sci. USA 112, 14319–14324 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Z., Zhang, Z. Y., Wu, Y. & Schluesener, H. J. Lesional accumulation of CD163+ macrophages/microglia in rat traumatic brain injury. Brain Res. 1461, 102–110 (2012).

    CAS  PubMed  Google Scholar 

  55. Wang, X., Mori, T., Sumii, T. & Lo, E. H. Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: caspase activation and oxidative stress. Stroke 33, 1882–1888 (2002).

    CAS  PubMed  Google Scholar 

  56. Willmore, L. J. & Ueda, Y. Posttraumatic epilepsy: hemorrhage, free radicals and the molecular regulation of glutamate. Neurochem. Res. 34, 688–697 (2009).

    CAS  PubMed  Google Scholar 

  57. Newell, E. et al. Cerebrospinal fluid markers of macrophage and lymphocyte activation after traumatic brain injury in children. Pediatr. Crit. Care Med. 16, 549–557 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Kochanek, P. M. et al. Screening of biochemical and molecular mechanisms of secondary injury and repair in the brain after experimental blast-induced traumatic brain injury in rats. J. Neurotrauma 30, 920–937 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. Bandak, F. A., Ling, G., Bandak, A. & De Lanerolle, N. C. Injury biomechanics, neuropathology, and simplified physics of explosive blast and impact mild traumatic brain injury. Handb. Clin. Neurol. 127, 89–104 (2015).

    CAS  PubMed  Google Scholar 

  60. Kovesdi, E. et al. Acute minocycline treatment mitigates the symptoms of mild blast-induced traumatic brain injury. Front. Neurol. 3, 111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Clark, R. S., Schiding, J. K., Kaczorowski, S. L., Marion, D. W. & Kochanek, P. M. Neutrophil accumulation after traumatic brain injury in rats: comparison of weight drop and controlled cortical impact models. J. Neurotrauma 11, 499–506 (1994).

    CAS  PubMed  Google Scholar 

  62. Carlos, T. M., Clark, R. S., Franicola-Higgins, D., Schiding, J. K. & Kochanek, P. M. Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats. J. Leukoc. Biol. 61, 279–285 (1997).

    CAS  PubMed  Google Scholar 

  63. Bao, F. et al. A CD11d monoclonal antibody treatment reduces tissue injury and improves neurological outcome after fluid percussion brain injury in rats. J. Neurotrauma 29, 2375–2392 (2012).

    PubMed  Google Scholar 

  64. Weaver, L. C. et al. CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats. Exp. Neurol. 271, 409–422 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007).

    CAS  PubMed  Google Scholar 

  66. Hsieh, C. L. et al. Traumatic brain injury induces macrophage subsets in the brain. Eur. J. Immunol. 43, 2010–2022 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Morganti, J. M. et al. CCR2 antagonism alters brain macrophage polarization and ameliorates cognitive dysfunction induced by traumatic brain injury. J. Neurosci. 35, 748–760 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Jin, X., Ishii, H., Bai, Z., Itokazu, T. & Yamashita, T. Temporal changes in cell marker expression and cellular infiltration in a controlled cortical impact model in adult male C57BL/6 mice. PLoS ONE 7, e41892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. de Lanerolle, N. C., Lee, T. S. & Spencer, D. D. Astrocytes and epilepsy. Neurotherapeutics 7, 424–438 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Burda, J. E., Bernstein, A. M. & Sofroniew, M. V. Astrocyte roles in traumatic brain injury. Exp. Neurol. 275, 305–315 (2016). Excellent review of astrocyte function in health and after traumatic brain injury, including proinflammatory and anti-inflammatory roles and importance in repair and regeneration.

    CAS  PubMed  Google Scholar 

  71. Turtzo, L. C. et al. Macrophagic and microglial responses after focal traumatic brain injury in the female rat. J. Neuroinflammation 11, 82 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Loane, D. J. & Byrnes, K. R. Role of microglia in neurotrauma. Neurotherapeutics 7, 366–377 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Morganti-Kossmann, M. C., Rancan, M., Stahel, P. F. & Kossmann, T. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr. Opin. Crit. Care 8, 101–105 (2002).

    PubMed  Google Scholar 

  74. David, S. & Kroner, A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 12, 388–399 (2011).

    CAS  PubMed  Google Scholar 

  75. Kumar, A. & Loane, D. J. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav. Immun. 26, 1191–1201 (2012).

    PubMed  Google Scholar 

  76. Colton, C. A. Heterogeneity of microglial activation in the innate immune response in the brain. J. Neuroimmune Pharmacol. 4, 399–418 (2009).

    PubMed  PubMed Central  Google Scholar 

  77. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Loane, D. J., Kumar, A., Stoica, B. A., Cabatbat, R. & Faden, A. I. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J. Neuropathol. Exp. Neurol. 73, 14–29 (2014).

    CAS  PubMed  Google Scholar 

  79. Wang, G. et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J. Cereb. Blood Flow Metab. 33, 1864–1874 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Loane, D. J. & Kumar, A. Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp. Neurol. 275, 316–327 (2016).

    CAS  PubMed  Google Scholar 

  81. Fenn, A. M. et al. Immune activation promotes depression 1 month after diffuse brain injury: a role for primed microglia. Biol. Psychiatry 76, 575–584 (2014).

    CAS  PubMed  Google Scholar 

  82. Fenn, A. M. et al. Methylene blue attenuates traumatic brain injury-associated neuroinflammation and acute depressive-like behavior in mice. J. Neurotrauma 32, 127–138 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Lee, K. D. et al. FTY720 reduces inflammation and promotes functional recovery after spinal cord injury. J. Neurotrauma 26, 2335–2344 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. Zhang, J., Zhang, A., Sun, Y., Cao, X. & Zhang, N. Treatment with immunosuppressants FTY720 and tacrolimus promotes functional recovery after spinal cord injury in rats. Tohoku J. Exp. Med. 219, 295–302 (2009).

    CAS  PubMed  Google Scholar 

  85. Norimatsu, Y. et al. FTY720 improves functional recovery after spinal cord injury by primarily nonimmunomodulatory mechanisms. Am. J. Pathol. 180, 1625–1635 (2012).

    CAS  PubMed  Google Scholar 

  86. Walsh, J. T. et al. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4. J. Clin. Invest. 125, 699–714 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Kipnis, J. et al. Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc. Natl Acad. Sci. USA 99, 15620–15625 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Yoles, E. et al. Protective autoimmunity is a physiological response to CNS trauma. J. Neurosci. 21, 3740–3748 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hammarberg, H. et al. Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J. Neurosci. 20, 5283–5291 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Linker, R., Gold, R. & Luhder, F. Function of neurotrophic factors beyond the nervous system: inflammation and autoimmune demyelination. Crit. Rev. Immunol. 29, 43–68 (2009).

    CAS  PubMed  Google Scholar 

  91. Filiano, A. J., Gadani, S. P. & Kipnis, J. Interactions of innate and adaptive immunity in brain development and function. Brain Res. 1617, 18–27 (2015).

    CAS  PubMed  Google Scholar 

  92. Gadani, S. P., Walsh, J. T., Smirnov, I., Zheng, J. & Kipnis, J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 85, 703–709 (2015).

    CAS  PubMed  Google Scholar 

  93. Lohning, M. et al. T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc. Natl Acad. Sci. USA 95, 6930–6935 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kuswanto, W. et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44, 355–367 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Fletcher, J. M., Lalor, S. J., Sweeney, C. M., Tubridy, N. & Mills, K. H. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol. 162, 1–11 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Patel, D. D. & Kuchroo, V. K. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity 43, 1040–1051 (2015).

    CAS  PubMed  Google Scholar 

  99. Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing γδT cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950 (2009).

    CAS  PubMed  Google Scholar 

  100. Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 22, 516–523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kasper, L. H. The evolving role of the gut microbiome in human disease. FEBS Lett. 588, 4101 (2014).

    CAS  PubMed  Google Scholar 

  103. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    CAS  PubMed  Google Scholar 

  104. Kelly, J. R. et al. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci. 9, 392 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl Med. 4, 147ra111 (2012).

    PubMed  PubMed Central  Google Scholar 

  106. Lee, H. et al. The effect of body posture on brain glymphatic transport. J. Neurosci. 35, 11034–11044 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    CAS  PubMed  Google Scholar 

  108. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Plog, B. A. et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J. Neurosci. 35, 518–526 (2015).

    PubMed  PubMed Central  Google Scholar 

  111. Iliff, J. J., Chen, M. J., Plog, B. A., Zeppenfeld, D. M. & Soltero, M. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J. Neurosci. 34, 16180–16193 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. Tortella, F. C. & Leung, L. Y. Traumatic brain injury and polytrauma in theaters of combat: the case for neurotrauma resuscitation? Shock 44 (Suppl. 1), 17–26 (2015).

    PubMed  Google Scholar 

  113. Chesnut, R. M. et al. The role of secondary brain injury in determining outcome from severe head injury. J. Trauma 34, 216–222 (1993).

    CAS  PubMed  Google Scholar 

  114. Tisherman, S. A. et al. Detailed description of all deaths in both the shock and traumatic brain injury hypertonic saline trials of the Resuscitation Outcomes Consortium. Ann. Surg. 261, 586–590 (2015).

    PubMed  Google Scholar 

  115. Shein, S. et al. Hemorrhagic shock shifts the serum cytokine profile from pro-to anti-inflammatory after experimental traumatic brain injury in mice. J. Neurotrauma 31, 1386–1395 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Hemerka, J. N. et al. Severe brief pressure-controlled hemorrhagic shock after traumatic brain injury exacerbates functional deficits and long-term neuropathological damage in mice. J. Neurotrauma 29, 2192–2208 (2012).

    PubMed  PubMed Central  Google Scholar 

  117. Shiozaki, T. et al. Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock 23, 406–410 (2005).

    CAS  PubMed  Google Scholar 

  118. Kumar, R. G. et al. Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav. Immun. 45, 253–262 (2015).

    CAS  PubMed  Google Scholar 

  119. Simon, D. W., Vagni, V. M., Kochanek, P. M. & Clark, R. S. Combined neurotrauma models: experimental models combining traumatic brain injury and secondary insults. Methods Mol. Biol. 1462, 393–411 (2016).

    CAS  PubMed  Google Scholar 

  120. McDonald, S. J., Sun, M., Agoston, D. V. & Shultz, S. R. The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome. J. Neuroinflammation 13, 90 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. Shultz, S. R. et al. Tibial fracture exacerbates traumatic brain injury outcomes and neuroinflammation in a novel mouse model of multitrauma. J. Cereb. Blood Flow Metab. 35, 1339–1347 (2015).

    PubMed  PubMed Central  Google Scholar 

  122. Utagawa, A., Truettner, J. S., Dietrich, W. D. & Bramlett, H. M. Systemic inflammation exacerbates behavioral and histopathological consequences of isolated traumatic brain injury in rats. Exp. Neurol. 211, 283–291 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hang, C. H. et al. Effect of systemic LPS injection on cortical NF-κB activity and inflammatory response following traumatic brain injury in rats. Brain Res. 1026, 23–32 (2004).

    CAS  PubMed  Google Scholar 

  124. Titus, D. J., Furones, C., Atkins, C. M. & Dietrich, W. D. Emergence of cognitive deficits after mild traumatic brain injury due to hyperthermia. Exp. Neurol. 263, 254–262 (2015).

    PubMed  Google Scholar 

  125. Richardson, R. M., Sun, D. & Bullock, M. R. Neurogenesis after traumatic brain injury. Neurosurg. Clin. N. Am. 18, 169–181 (2007).

    PubMed  Google Scholar 

  126. Ekdahl, C. T., Claasen, J. H., Bonde, S., Kokaia, Z. & Lindvall, O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl Acad. Sci. USA 100, 13632–13637 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Whitney, N. P., Eidem, T. M., Peng, H., Huang, Y. & Zheng, J. C. Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J. Neurochem. 108, 1343–1359 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Monje, M. L., Toda, H. & Palmer, T. D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    CAS  PubMed  Google Scholar 

  129. Butovsky, O. et al. Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell. Neurosci. 31, 149–160 (2006).

    CAS  PubMed  Google Scholar 

  130. Piao, C. S. et al. Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiol. Dis. 54, 252–263 (2013).

    PubMed  PubMed Central  Google Scholar 

  131. Wang, B. & Jin, K. Current perspectives on the link between neuroinflammation and neurogenesis. Metab. Brain Dis. 30, 355–365 (2015).

    CAS  PubMed  Google Scholar 

  132. Bendlin, B. B. et al. Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage 42, 503–514 (2008).

    PubMed  Google Scholar 

  133. Trivedi, M. A. et al. Longitudinal changes in global brain volume between 79 and 409 days after traumatic brain injury: relationship with duration of coma. J. Neurotrauma 24, 766–771 (2007).

    PubMed  Google Scholar 

  134. Shaklai, S., Peretz, R., Spasser, R., Simantov, M. & Groswasser, Z. Long-term functional outcome after moderate-to-severe paediatric traumatic brain injury. Brain Inj. 28, 915–921 (2014).

    PubMed  Google Scholar 

  135. Ziebell, J. M., Adelson, P. D. & Lifshitz, J. Microglia: dismantling and rebuilding circuits after acute neurological injury. Metab. Brain Dis. 30, 393–400 (2015).

    PubMed  Google Scholar 

  136. Bellinger, F. P., Madamba, S. G., Campbell, I. L. & Siggins, G. R. Reduced long-term potentiation in the dentate gyrus of transgenic mice with cerebral overexpression of interleukin-6. Neurosci. Lett. 198, 95–98 (1995).

    CAS  PubMed  Google Scholar 

  137. Balschun, D. et al. Interleukin-6: a cytokine to forget. FASEB J. 18, 1788–1790 (2004).

    CAS  PubMed  Google Scholar 

  138. Boato, F. et al. Interleukin-1 beta and neurotrophin-3 synergistically promote neurite growth in vitro. J. Neuroinflammation 8, 183 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Aungst, S. L., Kabadi, S. V., Thompson, S. M., Stoica, B. A. & Faden, A. I. Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits. J. Cereb. Blood Flow Metab. 34, 1223–1232 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Thau-Zuchman, O., Shohami, E., Alexandrovich, A. G. & Leker, R. R. Combination of vascular endothelial and fibroblast growth factor 2 for induction of neurogenesis and angiogenesis after traumatic brain injury. J. Mol. Neurosci. 47, 166–172 (2012).

    CAS  PubMed  Google Scholar 

  142. Saul, T. G., Ducker, T. B., Salcman, M. & Carro, E. Steroids in severe head injury: a prospective randomized clinical trial. J. Neurosurg. 54, 596–600 (1981).

    CAS  PubMed  Google Scholar 

  143. Braakman, R., Schouten, H. J., Blaauw-van Dishoeck, M. & Minderhoud, J. M. Megadose steroids in severe head injury. Results of a prospective double-blind clinical trial. J. Neurosurg. 58, 326–330 (1983).

    CAS  PubMed  Google Scholar 

  144. Gaab, M. R. et al. “Ultrahigh” dexamethasone in acute brain injury. Results from a prospective randomized double-blind multicenter trial (GUDHIS). German Ultrahigh Dexamethasone Head Injury Study Group. Zentralbl. Neurochir. 55, 135–143 (1994).

    CAS  PubMed  Google Scholar 

  145. Marshall, L. F. et al. A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J. Neurosurg. 89, 519–525 (1998).

    CAS  PubMed  Google Scholar 

  146. Asehnoune, K. et al. Hydrocortisone and fludrocortisone for prevention of hospital-acquired pneumonia in patients with severe traumatic brain injury (Corti-TC): a double-blind, multicentre phase 3, randomised placebo-controlled trial. Lancet Respir. Med. 2, 706–716 (2014).

    CAS  PubMed  Google Scholar 

  147. Raub, T. J. et al. Use of a biophysical-kinetic model to understand the roles of protein binding and membrane partitioning on passive diffusion of highly lipophilic molecules across cellular barriers. J. Drug Target. 1, 269–286 (1993).

    CAS  PubMed  Google Scholar 

  148. Shakur, H. et al. The BRAIN TRIAL: a randomised, placebo controlled trial of a bradykinin B2 receptor antagonist (Anatibant) in patients with traumatic brain injury. Trials 10, 109 (2009).

    PubMed  PubMed Central  Google Scholar 

  149. Heard, S. O. et al. Effect of prophylactic administration of recombinant human granulocyte colony-stimulating factor (filgrastim) on the frequency of nosocomial infections in patients with acute traumatic brain injury or cerebral hemorrhage. The Filgrastim Study Group. Crit. Care Med. 26, 748–754 (1998).

    CAS  PubMed  Google Scholar 

  150. Casha, S. et al. Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 135, 1224–1236 (2012).

    PubMed  Google Scholar 

  151. Hanlon, L. A., Huh, J. W. & Raghupathi, R. Minocycline transiently reduces microglia/macrophage activation but exacerbates cognitive deficits following repetitive traumatic brain injury in the neonatal rat. J. Neuropathol. Exp. Neurol. 75, 214–226 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Satchell, M. A. et al. Cytochrome c, a biomarker of apoptosis, is increased in cerebrospinal fluid from infants with inflicted brain injury from child abuse. J. Cereb. Blood Flow Metab. 25, 919–927 (2005).

    CAS  PubMed  Google Scholar 

  153. Rosomoff, H. L. Protective effects of hypothermia against pathological processes of the nervous system. Ann. NY Acad. Sci. 80, 475–486 (1959).

    CAS  PubMed  Google Scholar 

  154. Marion, D. W. et al. Treatment of traumatic brain injury with moderate hypothermia. N. Engl. J. Med. 336, 540–546 (1997).

    CAS  PubMed  Google Scholar 

  155. Andrews, P. J. et al. Hypothermia for intracranial hypertension after traumatic brain injury. N. Engl. J. Med. 373, 2403–2412 (2015).

    CAS  PubMed  Google Scholar 

  156. Clifton, G. L. et al. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol. 10, 131–139 (2011).

    PubMed  Google Scholar 

  157. Adelson, P. D. et al. Comparison of hypothermia and normothermia after severe traumatic brain injury in children (Cool Kids): a phase 3, randomised controlled trial. Lancet Neurol. 12, 546–553 (2013).

    PubMed  Google Scholar 

  158. Deutsch, E. R. et al. Progesterone's role in neuroprotection, a review of the evidence. Brain Res. 1530, 82–105 (2013).

    CAS  PubMed  Google Scholar 

  159. Wright, D. W. et al. Very early administration of progesterone for acute traumatic brain injury. N. Engl. J. Med. 371, 2457–2466 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Skolnick, B. E. et al. A clinical trial of progesterone for severe traumatic brain injury. N. Engl. J. Med. 371, 2467–2476 (2014).

    PubMed  Google Scholar 

  161. Diamond, M. L. et al. IL-1β associations with posttraumatic epilepsy development: a genetics and biomarker cohort study. Epilepsia 56, 991–1001 (2015).

    CAS  PubMed  Google Scholar 

  162. Gentleman, S. M. et al. Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci. Int. 146, 97–104 (2004).

    CAS  PubMed  Google Scholar 

  163. Johnson, V. E. et al. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136, 28–42 (2013).

    PubMed  PubMed Central  Google Scholar 

  164. Ramlackhansingh, A. F. et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann. Neurol. 70, 374–383 (2011).

    PubMed  Google Scholar 

  165. Smith, D. H., Johnson, V. E. & Stewart, W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat. Rev. Neurol. 9, 211–221 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Smith, C. et al. The neuroinflammatory response in humans after traumatic brain injury. Neuropathol. Appl. Neurobiol. 39, 654–666 (2013).

    CAS  PubMed  Google Scholar 

  167. Coughlin, J. M. et al. Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiol. Dis. 74, 58–65 (2015).

    PubMed  Google Scholar 

  168. Juengst, S. B., Kumar, R. G., Arenth, P. M. & Wagner, A. K. Exploratory associations with tumor necrosis factor-alpha, disinhibition and suicidal endorsement after traumatic brain injury. Brain Behav. Immun. 41, 134–143 (2014).

    CAS  PubMed  Google Scholar 

  169. Nagamoto-Combs, K., McNeal, D. W., Morecraft, R. J. & Combs, C. K. Prolonged microgliosis in the rhesus monkey central nervous system after traumatic brain injury. J. Neurotrauma 24, 1719–1742 (2007).

    PubMed  Google Scholar 

  170. Mouzon, B. C. et al. Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann. Neurol. 75, 241–254 (2014).

    PubMed  Google Scholar 

  171. Loane, D. J. et al. Novel mGluR5 positive allosteric modulator improves functional recovery, attenuates neurodegeneration, and alters microglial polarization after experimental traumatic brain injury. Neurotherapeutics 11, 857–869 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Holmin, S. & Mathiesen, T. Long-term intracerebral inflammatory response after experimental focal brain injury in rat. Neuroreport 10, 1889–1891 (1999).

    CAS  PubMed  Google Scholar 

  173. Acosta, S. A. et al. Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model. PLoS ONE 8, e53376 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Shitaka, Y. et al. Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J. Neuropathol. Exp. Neurol. 70, 551–567 (2011).

    PubMed  Google Scholar 

  175. Petraglia, A. L. et al. The spectrum of neurobehavioral sequelae after repetitive mild traumatic brain injury: a novel mouse model of chronic traumatic encephalopathy. J. Neurotrauma 31, 1211–1224 (2014).

    PubMed  PubMed Central  Google Scholar 

  176. Petraglia, A. L. et al. The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg. Neurol. Int. 5, 184 (2014).

    PubMed  PubMed Central  Google Scholar 

  177. Winston, C. N. et al. Dendritic spine loss and chronic white matter inflammation in a mouse model of highly repetitive head trauma. Am. J. Pathol. 186, 552–567 (2016).

    PubMed  PubMed Central  Google Scholar 

  178. Byrnes, K. R. et al. Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia 57, 550–560 (2009).

    PubMed  PubMed Central  Google Scholar 

  179. Loane, D. J., Stoica, B. A., Byrnes, K. R., Jeong, W. & Faden, A. I. Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury. J. Neurotrauma 30, 403–412 (2013).

    PubMed  PubMed Central  Google Scholar 

  180. Byrnes, K. R., Loane, D. J., Stoica, B. A., Zhang, J. & Faden, A. I. Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury. J. Neuroinflammation 9, 43 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Rodgers, K. M. et al. Reversal of established traumatic brain injury-induced, anxiety-like behavior in rats after delayed, post-injury neuroimmune suppression. J. Neurotrauma 31, 487–497 (2014).

    PubMed  PubMed Central  Google Scholar 

  182. McKee, A. C. et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J. Neuropathol. Exp. Neurol. 68, 709–735 (2009).

    PubMed  Google Scholar 

  183. McKee, A. C. et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 136, 43–64 (2013).

    PubMed  Google Scholar 

  184. Gardner, R. C. et al. Dementia risk after traumatic brain injury versus nonbrain trauma: the role of age and severity. JAMA Neurol. 71, 1490–1497 (2014).

    PubMed  PubMed Central  Google Scholar 

  185. Heneka, M. T. et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 14, 388–405 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Perry, V. H., Nicoll, J. A. & Holmes, C. Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6, 193–201 (2010).

    PubMed  Google Scholar 

  187. McKee, A. C. et al. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J. Neuropathol. Exp. Neurol. 69, 918–929 (2010).

    CAS  PubMed  Google Scholar 

  188. Saing, T. et al. Frontal cortex neuropathology in dementia pugilistica. J. Neurotrauma 29, 1054–1070 (2012).

    PubMed  PubMed Central  Google Scholar 

  189. Cherry, J. D. et al. Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy. Acta Neuropathol. Commun. 4, 112 (2016).

    PubMed  PubMed Central  Google Scholar 

  190. Coughlin, J. M. et al. Imaging of glial cell activation and white matter integrity in brains of active and recently retired National Football League players. JAMA Neurol. 74, 67–74 (2016).

    Google Scholar 

  191. Webster, K. M. et al. Progesterone treatment reduces neuroinflammation, oxidative stress and brain damage and improves long-term outcomes in a rat model of repeated mild traumatic brain injury. J. Neuroinflammation 12, 238 (2015).

    PubMed  PubMed Central  Google Scholar 

  192. Hong, Y. T. et al. Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurol. 71, 23–31 (2014).

    PubMed  PubMed Central  Google Scholar 

  193. Barrio, J. R. et al. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc. Natl Acad. Sci. USA 112, E2039–E2047 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Kumar, R. G., Rubin, J. E., Berger, R. P., Kochanek, P. M. & Wagner, A. K. Principal components derived from CSF inflammatory profiles predict outcome in survivors after severe traumatic brain injury. Brain Behav. Immun. 53, 183–193 (2013).

    Google Scholar 

  195. Junger, W. G. et al. Prehospital hypertonic saline resuscitation attenuates the activation and promotes apoptosis of neutrophils in patients with severe traumatic brain injury. Shock 40, 366–374 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Pagowska-Klimek, I., Lewkowicz, P., Banasik, M., Krajewski, W. & Tchorzewski, H. Isolated head injury in children affects the neutrophil function and lymphocyte count. J. Trauma 63, 179–186 (2007).

    PubMed  Google Scholar 

  197. Hazeldine, J., Lord, J. M. & Belli, A. Traumatic brain injury and peripheral immune suppression: primer and prospectus. Front. Neurol. 6, 235 (2015). Excellent review of systemic immune suppression after traumatic brain injury, including future directions for research.

    PubMed  PubMed Central  Google Scholar 

  198. Hayakata, T. et al. Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock 22, 102–107 (2004).

    CAS  PubMed  Google Scholar 

  199. Maier, B. et al. Delayed elevation of soluble tumor necrosis factor receptors p75 and p55 in cerebrospinal fluid and plasma after traumatic brain injury. Shock 26, 122–127 (2006).

    CAS  PubMed  Google Scholar 

  200. Ross, S. A., Halliday, M. I., Campbell, G. C., Byrnes, D. P. & Rowlands, B. J. The presence of tumour necrosis factor in CSF and plasma after severe head injury. Br. J. Neurosurg. 8, 419–425 (1994).

    CAS  PubMed  Google Scholar 

  201. Yan, E. B. et al. Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J. Neurotrauma 31, 618–629 (2014).

    PubMed  PubMed Central  Google Scholar 

  202. Waters, R. J. et al. Cytokine gene polymorphisms and outcome after traumatic brain injury. J. Neurotrauma 30, 1710–1716 (2013).

    PubMed  PubMed Central  Google Scholar 

  203. Helmy, A., Carpenter, K. L., Menon, D. K., Pickard, J. D. & Hutchinson, P. J. The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J. Cereb. Blood Flow Metab. 31, 658–670 (2011).

    CAS  PubMed  Google Scholar 

  204. Buttram, S. D. et al. Multiplex assessment of cytokine and chemokine levels in cerebrospinal fluid following severe pediatric traumatic brain injury: effects of moderate hypothermia. J. Neurotrauma 24, 1707–1717 (2007).

    PubMed  Google Scholar 

  205. Chiaretti, A. et al. Interleukin 1β and interleukin 6 relationship with paediatric head trauma severity and outcome. Childs Nerv. Syst. 21, 185–193 (2005).

    PubMed  Google Scholar 

  206. Hadjigeorgiou, G. M. et al. IL-1RN and IL-1B gene polymorphisms and cerebral hemorrhagic events after traumatic brain injury. Neurology 65, 1077–1082 (2005).

    CAS  PubMed  Google Scholar 

  207. Helmy, A., Antoniades, C. A., Guilfoyle, M. R., Carpenter, K. L. & Hutchinson, P. J. Principal component analysis of the cytokine and chemokine response to human traumatic brain injury. PLoS ONE 7, e39677 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Mellergard, P., Aneman, O., Sjogren, F., Saberg, C. & Hillman, J. Differences in cerebral extracellular response of interleukin-1β, interleukin-6, and interleukin-10 after subarachnoid hemorrhage or severe head trauma in humans. Neurosurgery 68, 12–19 (2011).

    PubMed  Google Scholar 

  209. Perez-Barcena, J. et al. Lack of correlation among intracerebral cytokines, intracranial pressure, and brain tissue oxygenation in patients with traumatic brain injury and diffuse lesions. Crit. Care Med. 39, 533–540 (2011).

    CAS  PubMed  Google Scholar 

  210. Hutchinson, P. J. et al. Inflammation in human brain injury: intracerebral concentrations of IL-1α, IL-1β, and their endogenous inhibitor IL-1ra. J. Neurotrauma 24, 1545–1557 (2007).

    PubMed  Google Scholar 

  211. Bell, M. J. et al. Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J. Neurotrauma 14, 451–457 (1997).

    CAS  PubMed  Google Scholar 

  212. Kossmann, T., Hans, V., Imhof, H. G., Trentz, O. & Morganti-Kossmann, M. C. Interleukin-6 released in human cerebrospinal fluid following traumatic brain injury may trigger nerve growth factor production in astrocytes. Brain Res. 713, 143–152 (1996).

    CAS  PubMed  Google Scholar 

  213. Kossmann, T. et al. Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 4, 311–317 (1995).

    CAS  PubMed  Google Scholar 

  214. Maier, B. et al. Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury. Shock 15, 421–426 (2001).

    CAS  PubMed  Google Scholar 

  215. Shore, P. M. et al. Continuous versus intermittent cerebrospinal fluid drainage after severe traumatic brain injury in children: effect on biochemical markers. J. Neurotrauma 21, 1113–1122 (2004).

    PubMed  Google Scholar 

  216. Singhal, A. et al. Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury. J. Neurotrauma 19, 929–937 (2002).

    CAS  PubMed  Google Scholar 

  217. Winter, C. D., Pringle, A. K., Clough, G. F. & Church, M. K. Raised parenchymal interleukin-6 levels correlate with improved outcome after traumatic brain injury. Brain 127, 315–320 (2004).

    PubMed  Google Scholar 

  218. Kirchhoff, C. et al. Cerebrospinal IL-10 concentration is elevated in non-survivors as compared to survivors after severe traumatic brain injury. Eur. J. Med. Res. 13, 464–468 (2008).

    CAS  PubMed  Google Scholar 

  219. Yan, E. B., Hellewell, S. C., Bellander, B. M., Agyapomaa, D. A. & Morganti-Kossmann, M. C. Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J. Neuroinflammation 8, 147 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Morganti-Kossmann, M. C. et al. TGF-β is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood–brain barrier function. J. Neurotrauma 16, 617–628 (1999).

    CAS  PubMed  Google Scholar 

  221. Semple, B. D., Bye, N., Rancan, M., Ziebell, J. M. & Morganti-Kossmann, M. C. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J. Cereb. Blood Flow Metab. 30, 769–782 (2010).

    PubMed  Google Scholar 

  222. Stefini, R. et al. Chemokine detection in the cerebral tissue of patients with posttraumatic brain contusions. J. Neurosurgery 108, 958–962 (2008).

    CAS  Google Scholar 

  223. Whalen, M. J. et al. Interleukin-8 is increased in cerebrospinal fluid of children with severe head injury. Crit. Care Med. 28, 929–934 (2000).

    CAS  PubMed  Google Scholar 

  224. Engel, S. et al. Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol. 100, 313–322 (2000).

    CAS  PubMed  Google Scholar 

  225. Bonneh-Barkay, D. et al. YKL-40 expression in traumatic brain injury: an initial analysis. J. Neurotrauma 27, 1215–1223 (2010).

    PubMed  PubMed Central  Google Scholar 

  226. Zhang, Z. et al. Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS ONE 9, e92698 (2014).

    PubMed  PubMed Central  Google Scholar 

  227. Wagner, A. K. et al. Adenosine A1 receptor gene variants associated with post-traumatic seizures after severe TBI. Epilepsy Res. 90, 259–272 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Clark, R. S. et al. Cerebrospinal fluid adenosine concentration and uncoupling of cerebral blood flow and oxidative metabolism after severe head injury in humans. Neurosurgery 41, 1284–1292 (1997).

    CAS  PubMed  Google Scholar 

  229. Bell, M. J., Kochanek, P. M. & Jackson, E. K. Interstitial adenosine, inosine, and hypoxanthine are increased after experimental traumatic brain injury in the rat. J. Neurotrauma 15, 163–170 (1998).

    CAS  PubMed  Google Scholar 

  230. Kossmann, T., Stahel, P. F., Morganti-Kossmann, M. C., Jones, J. L. & Barnum, S. R. Elevated levels of the complement components C3 and factor B in ventricular cerebrospinal fluid of patients with traumatic brain injury. J. Neuroimmunol. 73, 63–69 (1997).

    CAS  PubMed  Google Scholar 

  231. Baker, A. J., Moulton, R. J., MacMillan, V. H. & Shedden, P. M. Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J. Neurosurg. 79, 369–372 (1993).

    CAS  PubMed  Google Scholar 

  232. Bullock, R. et al. Factors affecting excitatory amino acid release following severe human head injury. J. Neurosurg. 89, 507–518 (1998).

    CAS  PubMed  Google Scholar 

  233. Chamoun, R., Suki, D., Gopinath, S. P., Goodman, J. C. & Robertson, C. Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J. Neurosurg. 113, 564–570 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Gao, T. L. et al. Expression of HMGB1 and RAGE in rat and human brains after traumatic brain injury. J. Trauma Acute Care Surg. 72, 643–649 (2012).

    CAS  PubMed  Google Scholar 

  235. Adamczak, S. et al. Inflammasome proteins in cerebrospinal fluid of brain-injured patients as biomarkers of functional outcome: clinical article. J. Neurosurg. 117, 1119–1125 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Clark, R. S. et al. Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J. 13, 813–821 (1999).

    CAS  PubMed  Google Scholar 

  237. Mazzeo, A. T. et al. Severe human traumatic brain injury, but not cyclosporin a treatment, depresses activated T lymphocytes early after injury. J. Neurotrauma 23, 962–975 (2006).

    PubMed  Google Scholar 

  238. Maas, A. I. et al. Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol. 5, 38–45 (2006).

    CAS  PubMed  Google Scholar 

  239. Nichol, A. et al. Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet 386, 2499–2506 (2015).

    CAS  PubMed  Google Scholar 

  240. Robertson, C. S. et al. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. JAMA 312, 36–47 (2014).

    PubMed  PubMed Central  Google Scholar 

  241. Bulger, E. M. et al. Out-of-hospital hypertonic resuscitation following severe traumatic brain injury: a randomized controlled trial. JAMA 304, 1455–1464 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Adelson, P. D. et al. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents. Chapter 11. Use of hyperosmolar therapy in the management of severe pediatric traumatic brain injury. Pediatr. Crit. Care Med. 4, S40–S44 (2003).

    PubMed  Google Scholar 

  243. Helmy, A. et al. Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial. J. Cereb. Blood Flow Metab. 34, 845–851 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Helmy, A. et al. Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury. J. Cereb. Blood Flow Metab. 36, 1434–1448 (2016).

    CAS  PubMed  Google Scholar 

  245. Tan, M., Zhu, J. C., Du, J., Zhang, L. M. & Yin, H. H. Effects of probiotics on serum levels of Th1/Th2 cytokine and clinical outcomes in severe traumatic brain-injured patients: a prospective randomized pilot study. Crit. Care 15, R290 (2011).

    PubMed  PubMed Central  Google Scholar 

  246. Tapia-Perez, J. et al. Effect of rosuvastatin on amnesia and disorientation after traumatic brain injury (NCT003229758). J. Neurotrauma 25, 1011–1017 (2008).

    PubMed  Google Scholar 

  247. Sanchez-Aguilar, M. et al. Effect of rosuvastatin on cytokines after traumatic head injury. J. Neurosurg. 118, 669–675 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the following funding sources: NIH grants T32 HD40686 (D.W.S.) and R01 NS082308 (D.J.L.); National Institute of Child Health and Human Development grants R01 NS087978 (P.M.K.), NS061817 and NS076511 (H.B.); National Institute of Allergy and Infectious Diseases grant R01 AI110822-01 (M.J.M.); Department of Defense Grants W81XWH-10-1-0623 and W81XWH-14-2-0018 (P.M.K.); NIA Claude D. Pepper Older Americans Independence Center grant P30-AG028747 (D.J.L.); and Children's Hospital of Pittsburgh — Children's Trust (D.W.S.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Patrick M. Kochanek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Chronic traumatic encephalopathy

A progressive neurodegenerative disease associated with head trauma and characterized histologically by formation of neurofibrillary tangles, accumulation of phosphorylated TAR DNA-binding protein 43 (TDP-43) accumulation, and deposition of amyloid-β.

Damage-associated molecular patterns

Host-derived molecules that trigger and/or exacarbate the inflammatory response. Prominent examples include DNA and RNA, high mobility group protein B1 (HMGB1), S100 proteins, ATP, uric acid, lysophospholipids, and lipid peroxidation-derived carbonyl adducts of proteins.

CD11d/CD18 integrin

A pattern recognition receptor that is located on the surface of neutrophils and monocytes and is functionally important in recognition of complement, as well as cell–cell interactions and cellular adhesion.

Chemokine gradients

Concentration gradients of chemotactic cytokines with the ability to influence inflammatory cell migration and function. For example, C–C motif chemokine 2 (CCL2), a chemokine for monocytes, macrophages and microglia, and its receptor CCR2 interact to recruit these immune cells to injured tissue after traumatic brain injury.

Autoimmune T cells

Also called autoreactive T cells, these T lymphocytes react to self antigens and may cause autoimmune disease, but are also critical for normal brain function and repair.

TH17 cells

A subset of effector T-helper cells that produce IL-17 and other proinflammatory cytokines.

Glymphatic system

Astrocyte-regulated convective bulk flow of the cerebrospinal fluid from the paravascular space through interstitial fluid in an arterial–venous direction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, D., McGeachy, M., Bayır, H. et al. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 13, 171–191 (2017). https://doi.org/10.1038/nrneurol.2017.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing