[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rehabilitation and neuroplasticity in children with unilateral cerebral palsy

Key Points

  • Activity-based therapy is the main clinical rehabilitation strategy for children with unilateral cerebral palsy (UCP)

  • Therapies can be considered to be effective if they bring about improvements that transfer to daily activities and help children to meet their individual needs and goals

  • Current research suggests that motor impairments in children with UCP result from damage to the corticospinal tract, as well as from impairments of sensorimotor pathways and motor planning

  • A variety of tools and imaging modalities will enable the measurement of neuroplasticity in future clinical trials

  • Future therapies for UCP are likely to be multimodal, and to be derived from research into the neurobiology of the condition

Abstract

Cerebral palsy is a childhood-onset, lifelong neurological disorder that primarily impairs motor function. Unilateral cerebral palsy (UCP), which impairs use of one hand and perturbs bimanual co-ordination, is the most common form of the condition. The main contemporary upper limb rehabilitation strategies for UCP are constraint-induced movement therapy and bimanual intensive therapy. In this Review, we outline the factors that are crucial to the success of motor rehabilitation in children with UCP, including the dose of training, the relevance of training to daily life, the suitability of training to the age and goals of the child, and the ability of the child to maintain close attention to the tasks. Emerging evidence suggests that the first 2 years of life are a critical period during which interventions for UCP could be more effective than in later life. Abnormal brain organization in UCP, and the effects of development on rehabilitation, must also be understood to develop new effective interventions. Therefore, we also consider neuroimaging methods that can provide insight into the neurobiology of UCP and how the condition responds to existing therapies. We discuss how these methods could shape future rehabilitative strategies based on the neurobiology of UCP and the therapy-induced changes seen in the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The influence of periventricular lesions on corticospinal laterality.
Figure 2: An example of functional-MRI-guided diffusion MRI tractography.

Similar content being viewed by others

References

  1. Rosenbaum, P. et al. A report: the definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. Suppl. 109, 8–14 (2007).

    PubMed  Google Scholar 

  2. Boyd, R. N. et al. Australian Cerebral Palsy Child Study: protocol of a prospective population based study of motor and brain development of preschool aged children with cerebral palsy. BMC Neurol. 13, 57 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Parkinson, K. N., Gibson, L., Dickinson, H. O. & Colver, A. F. Pain in children with cerebral palsy: a cross-sectional multicentre European study. Acta Paediatr. 99, 446–451 (2010).

    CAS  PubMed  Google Scholar 

  4. Australian Cerebral Palsy Register Group. The Australian cerebral palsy register report 2013. CP Register [online], (2013).

  5. Towsley, K., Shevell, M. I., Dagenais, L. & REPACQ Consortium. Population-based study of neuroimaging findings in children with cerebral palsy. Eur. J. Paediatr. Neurol. 15, 29–35 (2011).

    PubMed  Google Scholar 

  6. Krägeloh-Mann, I. & Horber, V. The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: a systematic review. Dev. Med. Child Neurol. 49, 144–151 (2007).

    PubMed  Google Scholar 

  7. Bax, M., Tydeman, C. & Flodmark, O. Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. JAMA 296, 1602–1608 (2006).

    CAS  PubMed  Google Scholar 

  8. Eyre, J. A., Taylor, J. P., Villagra, F., Smith, M. & Miller, S. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology 57, 1543–1554 (2001).

    CAS  PubMed  Google Scholar 

  9. Holmefur, M. et al. Neuroradiology can predict the development of hand function in children with unilateral cerebral palsy. Neurorehabil. Neural Repair 27, 72–78 (2013).

    PubMed  Google Scholar 

  10. Novak, I., Hines, M., Goldsmith, S. & Barclay, R. Clinical prognostic messages from a systematic review on cerebral palsy. Pediatrics 130, e1285–e1312 (2012).

    PubMed  Google Scholar 

  11. Boyd, R. N. et al. COMBIT: protocol of a randomised comparison trial of COMbined modified constraint induced movement therapy and bimanual intensive training with distributed model of standard upper limb rehabilitation in children with congenital hemiplegia. BMC Neurol. 13, 68 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Sakzewski, L., Ziviani, J. & Boyd, R. N. Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis. Pediatrics 133, e175–e204 (2014).

    PubMed  Google Scholar 

  13. Boyd, R. N. et al. Move it to improve it (Mitii): study protocol of a randomised controlled trial of a novel web-based multimodal training program for children and adolescents with cerebral palsy. BMJ Open 3, e002853. (2013).

    PubMed  PubMed Central  Google Scholar 

  14. James, S., Ziviani, J., Ware, R. S. & Boyd, R. N. Randomized controlled trial of web-based multimodal therapy for unilateral cerebral palsy to improve occupational performance. Dev. Med. Child Neurol. 57, 530–538 (2015).

    PubMed  Google Scholar 

  15. Mitchell, L., Ziviani, J., Oftedal, S. & Boyd, R. The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Dev. Med. Child Neurol. 54, 667–671 (2012).

    PubMed  Google Scholar 

  16. Fasoli, S. E. et al. Upper limb robotic therapy for children with hemiplegia. Am. J. Phys. Med. Rehabil. 87, 929–936 (2008).

    PubMed  Google Scholar 

  17. Qiu, Q. et al. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility study. J. Neuroeng. Rehabil. 6, 40 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Fluet, G. G. et al. Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy. Dev. Neurorehabil. 13, 335–345 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Ladenheim, B. et al. The effect of random or sequential presentation of targets during robot-assisted therapy on children. NeuroRehabilitation 33, 25–31 (2013).

    PubMed  Google Scholar 

  20. Gilliaux, M. et al. Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial. Neurorehabil. Neural Repair 29, 183–192 (2015).

    PubMed  Google Scholar 

  21. Sakzewski, L. et al. Randomized trial of constraint-induced movement therapy and bimanual training on activity outcomes for children with congenital hemiplegia. Dev. Med. Child Neurol. 53, 313–320 (2011).

    PubMed  Google Scholar 

  22. Sakzewski, L., Ziviani, J. & Boyd, R. N. Delivering evidence-based upper limb rehabilitation for children with cerebral palsy: barriers and enablers identified by three pediatric teams. Phys. Occup. Ther. Pediatr. 34, 368–383 (2014).

    PubMed  Google Scholar 

  23. Sakzewski, L. et al. Randomized comparison trial of density and context of upper limb intensive group versus individualized occupational therapy for children with unilateral cerebral palsy. Dev. Med. Child Neurol. 57, 539–547 (2015).

    PubMed  Google Scholar 

  24. Miller, L., Ziviani, J., Ware, R. S. & Boyd, R. N. Mastery motivation in children with congenital hemiplegia: individual and environmental associations. Dev. Med. Child Neurol. 56, 267–274 (2014).

    PubMed  Google Scholar 

  25. Miller, L., Ziviani, J., Ware, R. S. & Boyd, R. N. Mastery motivation as a predictor of occupational performance following upper limb intervention for school-aged children with congenital hemiplegia. Dev. Med. Child Neurol. 56, 976–983 (2014).

    PubMed  Google Scholar 

  26. Taub, E., Ramey, S. L., DeLuca, S. & Echols, K. Efficacy of constraint-induced movement therapy for children with cerebral palsy with asymmetric motor impairment. Pediatrics 113, 305–312 (2004).

    PubMed  Google Scholar 

  27. Charles, J. R., Wolf, S. L., Schneider, J. A. & Gordon, A. M. Efficacy of a child-friendly form of constraint-induced movement therapy in hemiplegic cerebral palsy: a randomized control trial. Dev. Med. Child Neurol. 48, 635–642 (2006).

    PubMed  Google Scholar 

  28. Sakzewski, L. et al. Equivalent retention of gains at 1 year after training with constraint-induced or bimanual therapy in children with unilateral cerebral palsy. Neurorehabil. Neural Repair 25, 664–671 (2011).

    PubMed  Google Scholar 

  29. Yang, J. F. et al. Training to enhance walking in children with cerebral palsy: are we missing the window of opportunity? Semin. Pediatr. Neurol. 20, 106–115 (2013).

    PubMed  Google Scholar 

  30. Westerga, J. & Gramsbergen, A. Development of locomotion in the rat: the significance of early movements. Early Hum. Dev. 34, 89–100 (1993).

    CAS  PubMed  Google Scholar 

  31. Martin, J. H., Choy, M., Pullman, S. & Meng, Z. Corticospinal system development depends on motor experience. J. Neurosci. 24, 2122–2132 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Friel, K., Chakrabarty, S., Kuo, H. C. & Martin, J. Using motor behavior during an early critical period to restore skilled limb movement after damage to the corticospinal system during development. J. Neurosci. 32, 9265–9276 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Eyre, J. A. Corticospinal tract development and its plasticity after perinatal injury. Neurosci. Biobehav. Rev. 31, 1136–1149 (2007).

    CAS  PubMed  Google Scholar 

  34. Guzzetta, A. et al. UP-BEAT (Upper Limb Baby Early Action-observation Training): protocol of two parallel randomised controlled trials of action-observation training for typically developing infants and infants with asymmetric brain lesions. BMJ Open 3, e002512 (2013).

    PubMed  PubMed Central  Google Scholar 

  35. Eliasson, A. C., Sjöstrand, L., Ek, L., Krumlinde-Sundholm, L. & Tedroff, K. Efficacy of baby-CIMT: study protocol for a randomised controlled trial on infants below age 12 months, with clinical signs of unilateral CP. BMC Pediatr. 14, 141 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Taub, E. Harnessing brain plasticity through behavioral techniques to produce new treatments in neurorehabilitation. Am. Psychol. 59, 692–704 (2004).

    PubMed  Google Scholar 

  37. Andersen, S. L. Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci. Biobehav. Rev. 27, 3–18 (2003).

    PubMed  Google Scholar 

  38. Merzenich, M. M., Van Vleet, T. M. & Nahum, M. Brain plasticity-based therapeutics. Front. Hum. Neurosci. 8, 385 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Meunier, S., Russmann, H., Shamim, E., Lamy, J. C. & Hallett, M. Plasticity of cortical inhibition in dystonia is impaired after motor learning and paired-associative stimulation. Eur. J. Neurosci. 35, 975–986 (2012).

    PubMed  PubMed Central  Google Scholar 

  40. Kleim, J. A. & Jones, T. A. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 51, S225–S239 (2008).

    PubMed  Google Scholar 

  41. Gillick, B. T. et al. Primed low-frequency repetitive transcranial magnetic stimulation and constraint-induced movement therapy in pediatric hemiparesis: a randomized controlled trial. Dev. Med. Child Neurol. 56, 44–52 (2014).

    PubMed  Google Scholar 

  42. Murase, N., Duque, J., Mazzocchio, R. & Cohen, L. G. Influence of interhemispheric interactions on motor function in chronic stroke. Ann. Neurol. 55, 400–409 (2004).

    PubMed  Google Scholar 

  43. Marquez, J., van Vliet, P., McElduff, P., Lagopoulos, J. & Parsons, M. Transcranial direct current stimulation (tDCS): does it have merit in stroke rehabilitation? A systematic review. Int. J. Stroke 10, 306–316 (2015).

    PubMed  Google Scholar 

  44. Nair, D. G., Renga, V., Lindenberg, R., Zhu, L. & Schlaug, G. Optimizing recovery potential through simultaneous occupational therapy and non-invasive brain-stimulation using tDCS. Restor. Neurol. Neurosci. 29, 411–420 (2011).

    PubMed  PubMed Central  Google Scholar 

  45. Lindenberg, R., Renga, V., Zhu, L. L., Nair, D. & Schlaug, G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 75, 2176–2184 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fregni, F. et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 16, 1551–1555 (2005).

    PubMed  Google Scholar 

  47. Zimerman, M. et al. Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand. Stroke 43, 2185–2191 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Grecco, L. A. C. et al. Transcranial direct current stimulation during treadmill training in children with cerebral palsy: a randomized controlled double-blind clinical trial. Res. Dev. Disabil. 35, 2840–2848 (2014).

    PubMed  Google Scholar 

  49. Stefan, K., Kunesch, E., Cohen, L. G., Benecke, R. & Classen, J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123, 572–584 (2000).

    PubMed  Google Scholar 

  50. Damji, O., Kotsovsky, O. & Kirton, A. Evaluating developmental motor plasticity after perinatal stroke with paired associative stimulation [abstract P.136]. Stroke 43, e144–e145 (2012).

    Google Scholar 

  51. Rossini, P. M. et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr. Clin. Neurophysiol. 91, 79–92 (1994).

    CAS  PubMed  Google Scholar 

  52. Cioni, G., Sgandurra, G., Muzzini, S., Paolicelli, P. & Ferrari, A. in The Spastic Forms of Cerebral Palsy (eds Ferrari, A. & Cioni, G.) 331–356 (Springer Milan, 2010).

    Google Scholar 

  53. Kobayashi, M. & Pascual-Leone, A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2, 145–156 (2003).

    PubMed  Google Scholar 

  54. Rossini, P. M. & Rossi, S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 68, 484–488 (2007).

    PubMed  Google Scholar 

  55. Frye, R. E., Rotenberg, A., Ousley, M. & Pascual-Leone, A. Transcranial magnetic stimulation in child neurology: current and future directions. J. Child Neurol. 23, 79–96 (2008).

    PubMed  Google Scholar 

  56. Sohn, Y. H., Kaelin-Lang, A, Jung, H. Y. & Hallett, M. Effect of levetiracetam on human corticospinal excitability. Neurology 57, 858–863 (2001).

    CAS  PubMed  Google Scholar 

  57. Hadjipanayis, A., Hadjichristodoulou, C. & Youroukos, S. Epilepsy in patients with cerebral palsy. Dev. Med. Child Neurol. 39, 659–663 (1997).

    CAS  PubMed  Google Scholar 

  58. Gilbert, D. L. et al. Should transcranial magnetic stimulation research in children be considered minimal risk? Clin. Neurophysiol. 115, 1730–1739 (2004).

    PubMed  Google Scholar 

  59. Staudt, M. et al. Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain 125, 2222–2237 (2002).

    PubMed  Google Scholar 

  60. Staudt, M. et al. Reorganization in congenital hemiparesis acquired at different gestational ages. Ann. Neurol. 56, 854–863 (2004).

    PubMed  Google Scholar 

  61. Farmer, S. F., Harrison, L. M., Ingram, D. A. & Stephens, J. A. Plasticity of central motor pathways in children with hemiplegic cerebral palsy. Neurology 41, 1505–1510 (1991).

    CAS  PubMed  Google Scholar 

  62. Guzzetta, A. et al. Reorganisation of the somatosensory system after early brain damage. Clin. Neurophysiol. 118, 1110–1121 (2007).

    CAS  PubMed  Google Scholar 

  63. Jones, D. K. Studying connections in the living human brain with diffusion MRI. Cortex 44, 936–952 (2008).

    PubMed  Google Scholar 

  64. Raffelt, D. et al. Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage 59, 3976–3994 (2012).

    PubMed  Google Scholar 

  65. Pannek, K., Boyd, R. N., Fiori, S., Guzzetta, A. & Rose, S. E. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions. Neuroimage Clin. 5, 84–92 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Tsao, H., Pannek, K., Fiori, S., Boyd, R. N. & Rose, S. Reduced integrity of sensorimotor projections traversing the posterior limb of the internal capsule in children with congenital hemiparesis. Res. Dev. Disabil. 35, 250–260 (2014).

    PubMed  Google Scholar 

  67. Rose, S., Guzzetta, A., Pannek, K. & Boyd, R. MRI structural connectivity, disruption of primary sensorimotor pathways, and hand function in cerebral palsy. Brain Connect. 1, 309–316 (2011).

    PubMed  Google Scholar 

  68. Scholz, J., Klein, M. C., Behrens, T. E. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hoon, A. H. Jr et al. Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways. Dev. Med. Child Neurol. 51, 697–704 (2009).

    PubMed  Google Scholar 

  70. Nagae, L. M. et al. Diffusion tensor imaging in children with periventricular leukomalacia: variability of injuries to white matter tracts. AJNR Am. J. Neuroradiol. 28, 1213–1222 (2007).

    CAS  PubMed  Google Scholar 

  71. Staudt, M. et al. Developing somatosensory projections bypass periventricular brain lesions. Neurology 67, 522–525 (2006).

    CAS  PubMed  Google Scholar 

  72. Sakkalis, V. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 41, 1110–1117 (2011).

    CAS  PubMed  Google Scholar 

  73. Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J. & Lounasmaa, O. V. Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993).

    Google Scholar 

  74. Sharon, D., Hämäläinen, M. S., Tootell, R. B., Halgren, E. & Belliveau, J. W. The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex. Neuroimage 36, 1225–1235 (2007).

    PubMed  PubMed Central  Google Scholar 

  75. Papadelis, C. et al. Cortical somatosensory reorganization in children with spastic cerebral palsy: a multimodal neuroimaging study. Front. Hum. Neurosci. 8, 725 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Kurz, M. J., Becker, K. M., Heinrichs-Graham, E. & Wilson, T. W. Neurophysiological abnormalities in the sensorimotor cortices during the motor planning and movement execution stages of children with cerebral palsy. Dev. Med. Child Neurol. 56, 1072–1077 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Nyström, P. The infant mirror neuron system studied with high density EEG. Soc. Neurosci. 3, 334–347 (2008).

    PubMed  Google Scholar 

  78. Southgate, V., Johnson, M. H., Osborne, T. & Csibra, G. Predictive motor activation during action observation in human infants. Biol. Lett. 5, 769–772 (2009).

    PubMed  PubMed Central  Google Scholar 

  79. Southgate, V., Johnson, M. H., El Karoui, I. & Csibra, G. Motor system activation reveals infants' on-line prediction of others' goals. Psychol. Sci. 21, 355–359 (2010).

    PubMed  Google Scholar 

  80. Nyström, P., Ljunghammar, T., Rosander, K. & Von Hofsten, C. Using mu rhythm desynchronization to measure mirror neuron activity in infants. Dev. Sci. 14, 327–335 (2011).

    PubMed  Google Scholar 

  81. Ertelt, D. et al. Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage 36 (Suppl. 2), T164–T173 (2007).

    PubMed  Google Scholar 

  82. Burzi, V. et al. Brain representation of action observation in human infants. Dev. Med. Child Neurol. 57 (Suppl. 2), 26–30 (2015).

    PubMed  Google Scholar 

  83. Draganski, B. et al. Neuroplasticity: changes in grey matter induced by training. Nature 427, 311–312 (2004).

    CAS  PubMed  Google Scholar 

  84. Gauthier, L. V. et al. Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke. Stroke 39, 1520–1525 (2008).

    PubMed  PubMed Central  Google Scholar 

  85. Wilde, E. A. et al. Longitudinal changes in cortical thickness in children after traumatic brain injury and their relation to behavioral regulation and emotional control. Int. J. Dev. Neurosci. 30, 267–276 (2012).

    PubMed  PubMed Central  Google Scholar 

  86. Scheck, S. M., Pannek, K., Fiori, S., Boyd, R. N. & Rose, S. E. Quantitative comparison of cortical and deep grey matter in pathological subtypes of unilateral cerebral palsy. Dev. Med. Child Neurol. 56, 968–975 (2014).

    PubMed  Google Scholar 

  87. Sterling, C. et al. Structural neuroplastic change after constraint-induced movement therapy in children with cerebral palsy. Pediatrics 131, e1664–e1669 (2013).

    PubMed  Google Scholar 

  88. Zatorre, R. J., Fields, R. D. & Johansen-Berg, H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat. Neurosci. 15, 528–536 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lerch, J. P. et al. Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. Neuroimage 54, 2086–2095 (2011).

    PubMed  Google Scholar 

  90. Carp, J. The secret lives of experiments: methods reporting in the fMRI literature. Neuroimage 63, 289–300 (2012).

    PubMed  Google Scholar 

  91. Thirion, B. et al. Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage 35, 105–120 (2007).

    PubMed  Google Scholar 

  92. Boyd, R. et al. INCITE: a randomised trial comparing constraint induced movement therapy and bimanual training in children with congenital hemiplegia. BMC Neurol. 10, 4 (2010).

    PubMed  PubMed Central  Google Scholar 

  93. Heller, R., Stanley, D., Yekutieli, D., Rubin, N. & Benjamini, Y. Cluster-based analysis of FMRI data. Neuroimage 33, 599–608 (2006).

    PubMed  Google Scholar 

  94. Woo, C. W., Krishnan, A. & Wager, T. D. Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. Neuroimage 91, 412–419 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Golomb, M. R. et al. In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91, 1–8.e1 (2010).

    PubMed  Google Scholar 

  96. Sutcliffe, T. L., Logan, W. J. & Fehlings, D. L. Pediatric constraint-induced movement therapy is associated with increased contralateral cortical activity on functional magnetic resonance imaging. J. Child Neurol. 24, 1230–1235 (2009).

    PubMed  Google Scholar 

  97. Cope, S. M. et al. Upper limb function and brain reorganization after constraint-induced movement therapy in children with hemiplegia. Dev. Neurorehabil. 13, 19–30 (2010).

    PubMed  Google Scholar 

  98. Juenger, H. et al. Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study. Neuropediatrics 38, 130–136 (2007).

    CAS  PubMed  Google Scholar 

  99. Walther, M. et al. Motor cortex plasticity in ischemic perinatal stroke: a transcranial magnetic stimulation and functional MRI study. Pediatr. Neurol. 41, 171–178 (2009).

    PubMed  Google Scholar 

  100. Juenger, H. et al. Two types of exercise-induced neuroplasticity in congenital hemiparesis: a transcranial magnetic stimulation, functional MRI, and magnetoencephalography study. Dev. Med. Child Neurol. 55, 941–951 (2013).

    PubMed  Google Scholar 

  101. Gordon, A. M. To constrain or not to constrain, and other stories of intensive upper extremity training for children with unilateral cerebral palsy. Dev. Med. Child Neurol. 53 (Suppl. 4), 56–61 (2011).

    PubMed  Google Scholar 

  102. Gordon, A. M., Schneider, J. A., Chinnan, A. & Charles, J. R. Efficacy of a hand-arm bimanual intensive therapy (HABIT) in children with hemiplegic cerebral palsy: a randomized control trial. Dev. Med. Child Neurol. 49, 830–838 (2007).

    PubMed  Google Scholar 

  103. Volpe, B. T. et al. A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 54, 1938–1944 (2000).

    CAS  PubMed  Google Scholar 

  104. Liepert, J. et al. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci. Lett. 250, 5–8 (1998).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Roslyn N. Boyd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reid, L., Rose, S. & Boyd, R. Rehabilitation and neuroplasticity in children with unilateral cerebral palsy. Nat Rev Neurol 11, 390–400 (2015). https://doi.org/10.1038/nrneurol.2015.97

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.97

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing