Abstract
Chronic kidney disease (CKD) is characterized by irreversible pathological processes that result in the development of end-stage renal disease (ESRD). Accumulating evidence has emphasized the important role of chronic hypoxia in the tubulointerstitium in the final common pathway that leads to development of ESRD. The causes of chronic hypoxia in the tubulointerstitium are multifactorial and include mechanisms such as hemodynamic changes and disturbed oxygen metabolism of resident kidney cells. Epidemiological studies have revealed an association between CKD and systemically hypoxic conditions, such as chronic obstructive pulmonary disease and sleep apnea syndrome. In addition to tubulointerstitial hypoxia, glomerular hypoxia can occur and is a crucial factor in the development of glomerular disorders. Chemical compounds, polarographic sensors, and radiographical methods can be used to detect hypoxia. Therapeutic approaches that target chronic hypoxia in the kidney should be effective against a broad range of kidney diseases. Amelioration of hypoxia is one mechanism of inhibiting the renin–angiotensin system, the current gold standard of CKD therapy. Future therapeutic approaches include protection of the vascular endothelium and appropriate activation of hypoxia-inducible factor, a key transcription factor involved in adaptive responses against hypoxia.
Key Points
-
Tubulointerstitial hypoxia is a final step that is common to the development of end-stage renal disease (ESRD) in a variety of kidney diseases
-
A number of mechanisms are involved in the development of tubulointerstitial hypoxia
-
Chronic hypoxia mediates the progression of kidney injury even from the early stages of disease
-
Chronic hypoxia and tubulointerstitial injury form a vicious cycle that leads to ESRD
-
The development of tools to detect hypoxia in the human kidney is a matter of high priority
-
Therapeutic approaches that target hypoxia should be effective in a variety of kidney diseases
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Brenner, B. M., Meyer, T. W. & Hostetter, T. H. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 307, 652–659 (1982).
Bazzi, C. et al. Urinary excretion of IgG and α1-microglobulin predicts clinical course better than extent of proteinuria in membranous nephropathy. Am. J. Kidney Dis. 38, 240–248 (2001).
Bazzi, C. et al. Urinary N-acetyl-β-glucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol. Dial. Transplant. 17, 1890–1896 (2002).
Miyata, M., Eckardt, K. U. & Nangaku, M. (Eds) Studies on Renal Disorders: Oxidative Stress in Applied Basic Research and Clinical Practice 1st edn (Springer, Heidelberg, Germany, in press).
Leach, R. M. & Treacher, D. F. Oxygen transport—2. Tissue hypoxia. BMJ 317, 1370–1373 (1998).
Levy, M. N. & Sauceda, G. Diffusion of oxygen from arterial to venous segments of renal capillaries. Am. J. Physiol. 196, 1336–1339 (1959).
Schurek, H. J., Jost, U., Baumgärtl, H., Bertram, H. & Heckmann, U. Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex. Am. J. Physiol. 259, F910–F915 (1990).
Welch, W. J., Baumgärtl, H., Lübbers, D. & Wilcox, C. S. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int. 59, 230–237 (2001).
Evans, R. G., Gardiner, B. S., Smith, D. W. & O'Connor, P. M. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am. J. Physiol. Renal Physiol. 295, F1259–F1270 (2008).
Brezis, M., Rosen, S., Silva, P. & Epstein, F. H. Renal ischemia: a new perspective. Kidney Int. 26, 375–383 (1984).
Welch, W. J. Intrarenal oxygen and hypertension. Clin. Exp. Pharmacol. Physiol. 33, 1002–1005 (2006).
Johannes, T., Mik, E. G., Nohé, B., Unertl, K. E. & Ince, C. Acute decrease in renal microvascular pO2 during acute normovolemic hemodilution. Am. J. Physiol. Renal Physiol. 292, F796–F803 (2007).
Fine, L. G., Bandyopadhay, D. & Norman, J. T. Is there a common mechanism for the progression of different types of renal diseases other than proteinuria? Towards the unifying theme of chronic hypoxia. Kidney Int. 75 (Suppl.), S22–S26 (2000).
Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 17, 17–25 (2006).
Eckardt, K. U. et al. Role of hypoxia in the pathogenesis of renal disease. Kidney Int. Suppl. 99, S46–S51 (2005).
Kang, D. H. et al. Role of the microvascular endothelium in progressive renal disease. J. Am. Soc. Nephrol. 13, 806–816 (2002).
Eckardt, K. U., Rosenberger, C., Jürgensen, J. S. & Wiesener, M. S. Role of hypoxia in the pathogenesis of renal disease. Blood Purif. 21, 253–257 (2003).
Heyman, S. N., Khamaisi, M., Rosen, S. & Rosenberger, C. Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am. J. Nephrol. 28, 998–1006 (2008).
Epstein, F. H. Oxygen and renal metabolism. Kidney Int. 51, 381–385 (1997).
Heyman, S. N., Rosenberger, C. & Rosen, S. Experimental ischemia-reperfusion: biases and myths-the proximal vs. distal hypoxic tubular injury debate revisited. Kidney Int. 77, 9–16 (2010).
Norman, J. T., Clark, I. M. & Garcia, P. L. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int. 58, 2351–2366 (2000).
Rabelink, T. J., Wijewickrama, D. C. & de Koning, E. J. Peritubular endothelium: the Achilles heel of the kidney? Kidney Int. 72, 926–930 (2007).
Yuan, H. T., Li, X. Z., Pitera, J. E., Long, D. A. & Woolf, A. S. Peritubular capillary loss after mouse acute nephrotoxicity correlates with down-regulation of vascular endothelial growth factor-A and hypoxia-inducible factor-1 α. Am. J. Pathol. 163, 2289–2301 (2003).
Kairaitis, L. K., Wang, Y., Gassmann, M., Tay, Y. C. & Harris, D. C. HIF-1α expression follows microvascular loss in advanced murine adriamycin nephrosis. Am. J. Physiol. Renal Physiol. 288, F198–F206 (2005).
Ohashi, R. et al. Peritubular capillary regression during the progression of experimental obstructive nephropathy. J. Am. Soc. Nephrol. 13, 1795–1805 (2002).
Ohashi, R., Kitamura, H. & Yamanaka, N. Peritubular capillary injury during the progression of experimental glomerulonephritis in rats. J. Am. Soc. Nephrol. 11, 47–56 (2000).
Kang, D. H. et al. Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J. Am. Soc. Nephrol. 12, 1434–1447 (2001).
Basile, D. P., Donohoe, D., Roethe, K. & Osborn, J. L. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am. J. Physiol. Renal Physiol. 281, F887–F899 (2001).
Basile, D. P., Donohoe, D. L., Roethe, K. & Mattson, D. L. Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage. Am. J. Physiol. Renal Physiol. 284, F338–F348 (2003).
Norman, J. T. & Fine, L. G. Intrarenal oxygenation in chronic renal failure. Clin. Exp. Pharmacol. Physiol. 33, 989–996 (2006).
Matsumoto, M. et al. Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J. Am. Soc. Nephrol. 15, 1574–1581 (2004).
Körner, A., Eklöf, A. C., Celsi, G. & Aperia, A. Increased renal metabolism in diabetes. Mechanism and functional implications. Diabetes 43, 629–633 (1994).
Secin, F. P. Importance and limits of ischemia in renal partial surgery: experimental and clinical research. Adv. Urol. 102461 (2008).
Katavetin, P. et al. High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidative stress-regulated hypoxia-inducible factor/hypoxia-responsible element pathway. J. Am. Soc. Nephrol. 17, 1405–1413 (2006).
Banday, A. A. & Lokhandwala, M. F. Oxidative stress-induced renal angiotensin AT1 receptor upregulation causes increased stimulation of sodium transporters and hypertension. Am. J. Physiol. Renal Physiol. 295, F698–F706 (2008).
Friederich, M., Fasching, A., Hansell, P., Nordquist, L. & Palm, F. Diabetes-induced up-regulation of uncoupling protein-2 results in increased mitochondrial uncoupling in kidney proximal tubular cells. Biochim. Biophys. Acta 1777, 935–940 (2008).
Palm, F., Cederberg, J., Hansell, P., Liss, P. & Carlsson, P. O. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 46, 1153–1160 (2003).
Welch, W. J., Blau, J., Xie, H., Chabrashvili, T. & Wilcox, C. S. Angiotensin-induced defects in renal oxygenation: role of oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 288, H22–H28 (2005).
Adler, S., Huang, H., Wolin, M. S. & Kaminski, P. M. Oxidant stress leads to impaired regulation of renal cortical oxygen consumption by nitric oxide in the aging kidney. J. Am. Soc. Nephrol. 15, 52–60 (2004).
Iseki, K., Ikemiya, Y., Iseki, C. & Takishita, S. Haematocrit and the risk of developing end-stage renal disease. Nephrol. Dial. Transplant. 18, 899–905 (2003).
Mohanram, A. et al. Anemia and end-stage renal disease in patients with type 2 diabetes and nephropathy. Kidney Int. 66, 1131–1138 (2004).
Drüeke, T. B. et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355, 2071–2084 (2006).
Singh, A. K. et al. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 355, 2085–2098 (2006).
Pfeffer, M. A. et al. Trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 361, 2019–2032 (2009).
Evans, R. G. et al. Multiple mechanisms act to maintain kidney oxygenation during renal ischemia in anesthetized rabbits. Am. J. Physiol. Renal Physiol. 298, F1235–F1243 (2010).
Nangaku, M. & Eckardt, K. U. Hypoxia and the HIF system in kidney disease. J. Mol. Med. 85, 1325–1330 (2007).
Gunaratnam, L. & Bonventre, J. V. HIF in kidney disease and development. J. Am. Soc. Nephrol. 20, 1877–1887 (2009).
Miyata, T. & de Strihou, C. Y. Diabetic nephropathy: a disorder of oxygen metabolism? Nat. Rev. Nephrol. 6, 83–95 (2010).
Tanaka, T. & Nangaku, M. The role of hypoxia, increased oxygen consumption, and hypoxia-inducible factor-1α in progression of chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 19, 43–50 (2010).
Inagi, R. Endoplasmic reticulum stress as a progression factor for kidney injury. Curr. Opin. Pharmacol. 10, 156–165 (2010).
Manotham, K. et al. A biological role of HIF-1 in the renal medulla. Kidney Int. 67, 1428–1439 (2005).
Haase, V. H. Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int. 76, 492–499 (2009).
Kimura, K. et al. Stable expression of HIF-1α in tubular epithelial cells promotes interstitial fibrosis. Am. J. Physiol. Renal Physiol. 295, F1023–F1029 (2008).
Higgins, D. F. et al. Hypoxic induction of Ctgf is directly mediated by Hif-1. Am. J. Physiol. Renal Physiol. 287, F1223–F1232 (2004).
Kroening, S., Neubauer, E., Wessel, J., Wiesener, M. & Goppelt-Struebe, M. Hypoxia interferes with connective tissue growth factor (CTGF) gene expression in human proximal tubular cell lines. Nephrol. Dial. Transplant. 24, 3319–3325 (2009).
Kroening, S., Neubauer, E., Wullich, B., Aten J. & Goppelt-Struebe, M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am. J. Physiol. Renal Physiol. 298, F796–F806 (2010).
Ding, M. et al. Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat. Med. 12, 1081–1087 (2006).
Neusser, M. A. et al. Human nephrosclerosis triggers a hypoxia-related glomerulopathy. Am. J. Pathol. 176, 594–607 (2010).
Manotham, K. et al. Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int. 65, 871–880 (2004).
Tanaka, T. et al. Hypoxia induces apoptosis in SV40-immortalized rat proximal tubular cells through the mitochondrial pathways, devoid of HIF1-mediated upregulation of Bax. Biochem. Biophys. Res. Commun. 309, 222–231 (2003).
Tanaka, T. et al. Hypoxia-induced apoptosis in cultured glomerular endothelial cells: involvement of mitochondrial pathways. Kidney Int. 64, 2020–2032 (2003).
Khan, S., Cleveland, R. P., Koch, C. J. & Schelling, J. R. Hypoxia induces renal tubular epithelial cell apoptosis in chronic renal disease. Lab. Invest. 79, 1089–1099 (1999).
Norman, J. T., Orphanides, C., Garcia, P. & Fine, L. G. Hypoxia-induced changes in extracellular matrix metabolism in renal cells. Exp. Nephrol. 7, 463–469 (1999).
Norman, J. T., Clark, I. M. & Garcia, P. L. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int. 58, 2351–2366 (2000).
Zeisberg, M., Strutz, F. & Müller, G. A. Role of fibroblast activation in inducing interstitial fibrosis. J. Nephrol. 13 (Suppl. 3), S111–S120 (2000).
Juillard, L. et al. Blood oxygen level-dependent measurement of acute intra-renal ischemia. Kidney Int. 65, 944–950 (2004).
Fang, Y., Sullivan, R. & Graham, C. H. Confluence-dependent resistance to doxorubicin in human MDA-MB-231 breast carcinoma cells requires hypoxia-inducible factor-1 activity. Exp. Cell Res. 313, 867–877 (2007).
Tanaka, T. et al. Hypoxia and expression of hypoxia-inducible factor in the aging kidney. J. Gerontol. A Biol. Sci. Med. Sci. 61, 795–805 (2006).
Norman, J. T., Stidwill, R., Singer, M. & Fine, L. G. Angiotensin II blockade augments renal cortical microvascular pO2 indicating a novel, potentially renoprotective action. Nephron Physiol. 94, 39–46 (2003).
Ries, M. et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J. Magn. Reson. Imaging 17, 104–113 (2003).
Palm, F., Buerk, D. G., Carlsson, P. O., Hansell, P. & Liss, P. Reduced nitric oxide concentration in the renal cortex of streptozotocin-induced diabetic rats: effects on renal oxygen and microcirculation. Diabetes 54, 3282–3287 (2005).
Dos Santos, E. A., Li, L. P., Ji, L. & Prasad, P. V. Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging. Invest. Radiol. 42, 157–162 (2007).
Rosenberger, C. et al. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int. 73, 34–42 (2008).
Bernhardt, W. M. et al. Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am. J. Pathol. 170, 830–842 (2007).
Tanaka, T., Miyata, T., Inagi, R., Fujita, T. & Nangaku, M. Hypoxia in renal disease with proteinuria and/or glomerular hypertension. Am. J. Pathol. 165, 1979–1992 (2004).
Manotham, K. et al. Evidence of tubular hypoxia in the early phase in the remnant kidney model. J. Am. Soc. Nephrol. 15, 1277–1288 (2004).
Tanaka, T. et al. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab. Invest. 85, 1292–1307 (2005).
Cachat, F. et al. Ureteral obstruction in neonatal mice elicits segment-specific tubular cell responses leading to nephron loss. Kidney Int. 63, 564–575 (2003).
Zhang, G., Palmer, G. M., Dewhirst, M. W. & Fraser, C. L. A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat. Mater. 8, 747–751 (2009).
Safran, M. et al. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc. Natl Acad. Sci. USA 103, 105–110 (2006).
Vaidya, V. S., Ramirez, V., Ichimura, T., Bobadilla, N. A. & Bonventre, J. V. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am. J. Physiol. Renal Physiol. 290, F517–F529 (2006).
Mishra, J. et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J. Am. Soc. Nephrol. 14, 2534–2543 (2003).
Rajendran, J. G. et al. Tumor hypoxia imaging with [F-18]fluoromisonidazole positron emission tomography in head and neck cancer. Clin. Cancer Res. 12, 5435–5441 (2006).
Zhao, D., Jiang, L., Hahn, E. W. & Mason, R. P. Comparison of 1H blood oxygen level-dependent (BOLD) and 19F MRI to investigate tumor oxygenation. Magn. Reson. Med. 62, 357–364 (2009).
Li, L. P., Halter, S. & Prasad, P. V. Blood oxygen level-dependent MR imaging of the kidneys. Magn. Reson. Imaging Clin. N. Am. 16, 613–625 (2008).
Bohle, A., von Gise, H., Mackensen-Haen, S. & Stark-Jakob, B. The obliteration of the postglomerular capillaries and its influence upon the function of both glomeruli and tubuli. Functional interpretation of morphologic findings. Klin. Wochenschr. 59, 1043–1051 (1981).
Choi, Y. J. et al. Peritubular capillary loss is associated with chronic tubulointerstitial injury in human kidney: altered expression of vascular endothelial growth factor. Hum. Pathol. 31, 1491–1497 (2000).
Lindenmeyer, M. T. et al. Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy. J. Am. Soc. Nephrol. 18, 1765–1776 (2007).
Kaukinen, A., Lautenschlager, I., Helin, H., Karikoski, R. & Jalanko, H. Peritubular capillaries are rarefied in congenital nephrotic syndrome of the Finnish type. Kidney Int. 75, 1099–1108 (2009).
Eardley, K. S. et al. The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int. 74, 495–504 (2008).
Rudnicki, M. et al. Hypoxia response and VEGF-A expression in human proximal tubular epithelial cells in stable and progressive renal disease. Lab. Invest. 89, 337–346 (2009).
Schachinger, H., Klarhöfer, M., Linder, L., Drewe, J. & Scheffler, K. Angiotensin II decreases the renal MRI blood oxygenation level-dependent signal. Hypertension 47, 1062–1066 (2006).
Manotham, K. et al. Intrarenal hypoxia in CKD patients, a BOLD-MRI study [abstract]. J. Am. Soc. Nephrol. 17, 164A (2006).
Gloviczki, M. L. et al. Progressive loss of cortical volume and renal blood flow (RBF) during medical therapy in atherosclerotic renal artery stenosis (ARAS) [abstract F-PO1698]. J. Am. Soc. Nephrol. 20, 503A (2009).
Luks, A. M., Johnson, R. J. & Swenson, E. R. Chronic kidney disease at high altitude. J. Am. Soc. Nephrol. 19, 2262–2271 (2008).
Winkelmayer, W. C., Liu, J. & Brookhart, M. A. Altitude and all-cause mortality in incident dialysis patients. JAMA 301, 508–512 (2009).
Bratel, T., Ljungman, S., Runold, M. & Stenvinkel, P. Renal function in hypoxaemic chronic obstructive pulmonary disease: effects of long-term oxygen treatment. Respir. Med. 97, 308–316 (2003).
Gestel, Y. R. et al. Association between chronic obstructive pulmonary disease and chronic kidney disease in vascular surgery patients. Nephrol. Dial. Transplant. 24, 2763–2767 (2009).
Fleischmann, G., Fillafer, G., Matterer, H., Skrabal, F. & Kotanko, P. Prevalence of chronic kidney disease in patients with suspected sleep apnoea. Nephrol. Dial. Transplant. 25, 181–186 (2010).
Canales, M. T. et al. Reduced renal function and sleep-disordered breathing in community-dwelling elderly men. Sleep Med. 9, 637–645 (2008).
Canales, M. T. et al. Renal function and sleep-disordered breathing in older men. Nephrol. Dial. Transplant. 23, 3908–3914 (2008).
Agrawal, V. et al. Albuminuria and renal function in obese adults evaluated for obstructive sleep apnea. Nephron Clin. Pract. 113, c140–c147 (2009).
Iseki, K., Tohyama, K., Matsumoto, T. & Nakamura, H. High prevalence of chronic kidney disease among patients with sleep related breathing disorder (SRBD). Hypertens. Res. 31, 249–255 (2008).
Nangaku, M. et al. In a type 2 diabetic nephropathy rat model, the improvement of obesity by a low calorie diet reduces oxidative/carbonyl stress and prevents diabetic nephropathy. Nephrol. Dial. Transplant. 20, 2661–2669 (2005).
Welch, W. J., Baumgärtl, H., Lübbers, D. & Wilcox, C. S. Renal oxygenation defects in the spontaneously hypertensive rat: role of AT1 receptors. Kidney Int. 63, 202–208 (2003).
Deng, A. et al. Regulation of oxygen utilization by angiotensin II in chronic kidney disease. Kidney Int. 75, 197–204 (2009).
Watanabe, M. et al. Amelioration of diabetic nephropathy in OLETF rats by prostaglandin I2 analog, beraprost sodium. Am. J. Nephrol. 30, 1–11 (2009).
Yamashita, T. et al. Beraprost sodium, prostacyclin analogue, attenuates glomerular hyperfiltration and glomerular macrophage infiltration by modulating ecNOS expression in diabetic rats. Diabetes Res. Clin. Pract. 57, 149–161 (2002).
Fujita, T. et al. PGl2 analogue mitigates the progression rate of renal dysfunction improving renal blood flow without glomerular hyperfiltration in patients with chronic renal insufficiency. Prostaglandins Leukot. Essent. Fatty Acids 65, 223–227 (2001).
Sun, D., Feng, J. M., Zhao, Y. L., Jin, T. & Wang, L. N. Effects of prostaglandin E1 on the progression of aristolochic acid nephropathy. Chin. Med. Sci. J. 20, 67–69 (2005).
Taji, Y., Kuwahara, T., Shikata, S. & Morimoto, T. Meta-analysis of antiplatelet therapy for IgA nephropathy. Clin. Exp. Nephrol. 10, 268–273 (2006).
Zimmerman, S. W., Moorthy, A. V., Dreher, W. H., Friedman, A. & Varanasi, U. Prospective trial of warfarin and dipyridamole in patients with membranoproliferative glomerulonephritis. Am. J. Med. 75, 920–927 (1983).
Nolin, L. & Courteau, M. Management of IgA nephropathy: Evidence-based recommendations. Kidney Int. 55 (Suppl.), S56–S62 (1999).
Woo, K. T., Lee, G. S. & Pall, A. A. Dipyridamole and low-dose warfarin without cyclophosphamide in the management of IgA nephropathy. Kidney Int. 57, 348–349 (2000).
Heyman, S. N., Rosen, S., Epstein, F. H., Spokes, K. & Brezis, M. L. Loop diuretics reduce hypoxic damage to proximal tubules of the isolated perfused rat kidney. Kidney Int. 45, 981–985 (1994).
Epstein, F. H. & Prasad, P. Effects of furosemide on medullary oxygenation in younger and older subjects. Kidney Int. 57, 2080–2083 (2000).
Oppermann, M., Hansen, P. B., Castrop, H. & Schnermann, J. Vasodilatation of afferent arterioles and paradoxical increase of renal vascular resistance by furosemide in mice. Am. J. Physiol. Renal Physiol. 293, F279–F287 (2007).
Nangaku, M. & Fujita, T. Activation of the renin-angiotensin system and chronic hypoxia of the kidney. Hypertens. Res. 31, 175–184 (2008).
Izuhara, Y. et al. Renoprotective properties of angiotensin receptor blockers beyond blood pressure lowering. J. Am. Soc. Nephrol. 16, 3631–3641 (2005).
Nanayakkara, P. W. et al. Effect of a treatment strategy consisting of pravastatin, vitamin E, and homocysteine lowering on carotid intima-media thickness, endothelial function, and renal function in patients with mild to moderate chronic kidney disease: results from the Anti-Oxidant Therapy in Chronic Renal Insufficiency (ATIC) Study. Arch. Intern. Med. 167, 1262–1270 (2007).
Kang, D. H., Hughes, J., Mazzali, M., Schreiner, G. F. & Johnson, R. J. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J. Am. Soc. Nephrol. 12, 1448–1457 (2001).
Kang, D. H., Nakagawa, T., Feng, L. & Johnson, R. J. Nitric oxide modulates vascular disease in the remnant kidney model. Am. J. Pathol. 161, 239–248 (2002).
Kim, Y. G. et al. Vascular endothelial growth factor accelerates renal recovery in experimental thrombotic microangiopathy. Kidney Int. 58, 2390–2399 (2000).
Suga, S. et al. Vascular endothelial growth factor (VEGF121) protects rats from renal infarction in thrombotic microangiopathy. Kidney Int. 60, 1297–1308 (2001).
Eto, N. et al. Protection of endothelial cells by dextran sulfate in rats of thrombotic microangiopathy. J. Am. Soc. Nephrol. 16, 2997–3005 (2005).
Gardner, H. F. The use of cobaltous chloride in the anemia associates with chronic renal disease. J. Lab. Clin. Med. 41, 56–64 (1953).
Matsumoto, M. et al. Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J. Am. Soc. Nephrol. 14, 1825–1832 (2003).
Tanaka, T. et al. Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney Int. 68, 2714–2725 (2005).
Tanaka, T. et al. Hypoxia-inducible factor modulates tubular cell survival in cisplatin nephrotoxicity. Am. J. Physiol. Renal Physiol. 289, F1123–F1133 (2005).
Tanaka, T. & Nangaku, M. Drug discovery for overcoming chronic kidney disease (CKD): prolyl-hydroxylase inhibitors to activate hypoxia-inducible factor (HIF) as a novel therapeutic approach in CKD. J. Pharmacol. Sci. 109, 24–31 (2009).
Ortiz-Barahona, A., Villar, D., Pescador, N., Amigo, J. & Del Peso, L. Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction. Nucleic Acids Res. 38, 2332–2345 (2010).
Mole, D. R. et al. Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J. Biol. Chem. 284, 16767–16775 (2009).
Xia, X. et al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc. Natl Acad. Sci. USA 106, 4260–4265 (2009).
Mimura, I. et al. Genome-wide analysis of hypoxic inducible factor 1 binding sites in human endothelial cells under hypoxia [abstract F-FC187]. J. Am. Soc. Nephrol. 20, 44A (2009).
Rubinstein, I. et al. Hyperbaric oxygen treatment improves GFR in rats with ischaemia/reperfusion renal injury: a possible role for the antioxidant/oxidant balance in the ischaemic kidney. Nephrol. Dial. Transplant. 24, 428–436 (2009).
Sonmez, A. et al. Hyperbaric oxygen treatment augments the efficacy of cilazapril and simvastatin regimens in an experimental nephrotic syndrome model. Clin. Exp. Nephrol. 12, 110–118 (2008).
Yilmaz, M. I. et al. Hyperbaric oxygen treatment augments the efficacy of a losartan regime in an experimental nephrotic syndrome model. Nephron Exp. Nephrol. 104, e15–e22 (2006).
Rogers, N. M. & Coates, P. T. Calcific uraemic arteriolopathy: an update. Curr. Opin. Nephrol. Hypertens. 17, 629–634 (2008).
Acknowledgements
Studies described in this Review were supported by Grants-in-Aids for Scientific Research from the Japan Society for the Promotion of Science (2139,036) to M. Nangaku. We appreciate the invaluable advice from members of our group and our collaborators, particularly R. Inagi, T. Miyata and T. Tanaka. We thank A. Jo from our laboratory for drawing the original for Figure 5. Initial drafts of this manuscript were edited by G. Harris from Digital Medical Communications, Japan; this editorial assistance was funded by a government grant to M. Nangaku.
Author information
Authors and Affiliations
Contributions
I. Mimura and M. Nangaku contributed equally to all aspects of this manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Mimura, I., Nangaku, M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol 6, 667–678 (2010). https://doi.org/10.1038/nrneph.2010.124
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrneph.2010.124
This article is cited by
-
Chromatin remodeling factor, INO80, inhibits PMAIP1 in renal tubular cells via exchange of histone variant H2A.Z. for H2A
Scientific Reports (2023)
-
Emerging role of tumor suppressor p53 in acute and chronic kidney diseases
Cellular and Molecular Life Sciences (2022)
-
Fount, fate, features, and function of renal erythropoietin-producing cells
Pflügers Archiv - European Journal of Physiology (2022)
-
STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose
Journal of Translational Medicine (2021)
-
Coassembly of hypoxia-sensitive macrocyclic amphiphiles and extracellular vesicles for targeted kidney injury imaging and therapy
Journal of Nanobiotechnology (2021)