[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mobile DNA elements in the generation of diversity and complexity in the brain

Key Points

  • Retrotransposons are endogenous mobile elements that are capable of generating genomic diversity between cells (including neurons) within the same individual.

  • Somatic retrotransposition occurs during neural development in mice, humans and flies.

  • The increase in somatic retrotransposition that occurs during mammalian neural development involves the activation of transcription of long interspersed nuclear element 1 (LINE1) elements. In Drosophila melanogaster, increased somatic retrotransposition in the brain may be caused by a de-repression of mobile elements in mushroom body neurons.

  • By generating cells with unique genomes, somatic retrotransposition has the potential to alter the transcriptomes and cellular phenotypes of individual cells. Brain-specific mobile element insertions have been found in many genes, including those encoding dopamine receptors and neurotransmitters.

  • Misregulation of retrotransposition correlates with many neurological disorders, including neurodegeneration, ageing, Rett syndrome and schizophrenia.

Abstract

Mobile elements are DNA sequences that can change their position (retrotranspose) within the genome. Although its biological function is largely unappreciated, DNA derived from mobile elements comprises nearly half of the human genome. It has long been thought that neuronal genomes are invariable; however, recent studies have demonstrated that mobile elements actively retrotranspose during neurogenesis, thereby creating genomic diversity between neurons. In addition, mounting data demonstrate that mobile elements are misregulated in certain neurological disorders, including Rett syndrome and schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retrotransposons in humans.
Figure 2: Consequences of germline and somatic retrotransposition events.
Figure 3: Regulation of retrotransposition in neural progenitors.
Figure 4: Impact of mobile element insertions on the transcriptome.
Figure 5: Effects of somatic mosaicism in neurons.

Similar content being viewed by others

References

  1. Muotri, A. R. et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903–910 (2005). This article describes the first demonstration of somatic retrotransposition in the brain.

    Article  CAS  Google Scholar 

  2. McClintock, B. Chromosome organization and genic expression. Cold Spring Harb. Symp. Quant. Biol. 16, 13–47 (1951).

    Article  CAS  Google Scholar 

  3. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  4. Cordaux, R. & Batzer, M. A. The impact of retrotransposons on human genome evolution. Nature Rev. Genet. 10, 691–703 (2009).

    Article  CAS  Google Scholar 

  5. Goodier, J. L., Ostertag, E. M., Du, K. & Kazazian, H. H. Jr. A novel active L1 retrotransposon subfamily in the mouse. Genome Res. 11, 1677–1685 (2001).

    Article  CAS  Google Scholar 

  6. Martin, S. L. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol. Cell. Biol. 11, 4804–4807 (1991).

    Article  CAS  Google Scholar 

  7. Feng, Q., Moran, J. V., Kazazian, H. H. & Boeke, J. D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996).

    Article  CAS  Google Scholar 

  8. Mathias, S. L. et al. Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810 (1991).

    Article  CAS  Google Scholar 

  9. Dewannieux, M., Esnault, C. & Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nature Genet. 35, 41–48 (2003).

    Article  CAS  Google Scholar 

  10. Hancks, D. C., Goodier, J. L., Mandal, P. K., Cheung, L. E. & Kazazian, H. H. Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum. Mol. Genet. 20, 3386–3400 (2011).

    Article  CAS  Google Scholar 

  11. Beck, C. R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159–1170 (2010).

    Article  CAS  Google Scholar 

  12. Witherspoon, D. J. et al. Mobile element scanning (ME-Scan) by targeted high-throughput sequencing. BMC Genomics 11, 410 (2010).

    Article  Google Scholar 

  13. Stewart, C. et al. A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet. 7, e1002236 (2011).

    Article  CAS  Google Scholar 

  14. Ewing, A. D. & Kazazian, H. H. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res. 20, 1262–1270 (2010).

    Article  CAS  Google Scholar 

  15. Iskow, R. C. et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141, 1253–1261 (2010).

    Article  CAS  Google Scholar 

  16. Kazazian, H. H. Jr et al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 (1988).

    Article  CAS  Google Scholar 

  17. Wallace, M. R. et al. A de novo Alu insertion results in neurofibromatosis type 1. Nature 353, 864–866 (1991).

    Article  CAS  Google Scholar 

  18. Gilbert, N., Lutz-Prigge, S. & Moran, J. V. Genomic deletions created upon LINE-1 retrotransposition. Cell 110, 315–325 (2002).

    Article  CAS  Google Scholar 

  19. Evrony, G. D. et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151, 483–496 (2012). Along with reference 28, the authors use high-throughput sequencing to identify endogenous brain-specific LINE1 insertions in post-mortem human tissue.

    Article  CAS  Google Scholar 

  20. Perrat, P. N. et al. Transposition-driven genomic heterogeneity in the Drosophila brain. Science 340, 91–95 (2013). This work shows that somatic transposition in the brain is conserved in the fly. Also, specific types of mushroom body neurons have decreased levels of known retroelement repressors (Aub and Ago3), which correlates with increased expression of certain retroelements.

    Article  CAS  Google Scholar 

  21. Li, W. et al. Activation of transposable elements during aging and neuronal decline in Drosophila. Nature Neurosci. 16, 529–531 (2013). This study demonstrates that neuronal transposon mobilization accumulates in the ageing fly. Increasing retroelement expression by mutating Ago2 also results in accelerated cognitive decline, suggesting that transposons contribute to age-dependent cognitive decline.

    Article  CAS  Google Scholar 

  22. Coufal, N. G. et al. L1 retrotransposition in human neural progenitor cells. Nature 460, 1127–1131 (2009).

    Article  CAS  Google Scholar 

  23. Bundo, M. et al. Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81, 306–313 (2014). The authors use LINE1 copy number assays to demonstrate an increase in the number of LINE1 sequences in neurons from patients with schizophrenia.

    Article  CAS  Google Scholar 

  24. Moran, J. V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996).

    Article  CAS  Google Scholar 

  25. Muotri, A. R. et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443–446 (2010).

    Article  CAS  Google Scholar 

  26. Coufal, N. G. et al. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc. Natl Acad. Sci. USA 108, 20382–20387 (2011).

    Article  CAS  Google Scholar 

  27. Labrador, M., Sha, K., Li, A. & Corces, V. G. Insulator and Ovo proteins determine the frequency and specificity of insertion of the gypsy retrotransposon in Drosophila melanogaster. Genetics 180, 1367–1378 (2008).

    Article  CAS  Google Scholar 

  28. Baillie, J. K. et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479, 534–537 (2011). Along with reference 19, the authors use high-throughput sequencing to identify endogenous brain-specific LINE1 insertions in post-mortem human tissue.

    Article  CAS  Google Scholar 

  29. Muotri, A. R., Zhao, C., Marchetto, M. C. & Gage, F. H. Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19, 1002–1007 (2009).

    Article  CAS  Google Scholar 

  30. Reilly, M. T., Faulkner, G. J., Dubnau, J., Ponomarev, I. & Gage, F. H. The role of transposable elements in health and diseases of the central nervous system. J. Neurosci. 33, 17577–17586 (2013).

    Article  CAS  Google Scholar 

  31. Rehen, S. K. et al. Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc. Natl Acad. Sci. USA 98, 13361–13366 (2001).

    Article  CAS  Google Scholar 

  32. Kingsbury, M. A. et al. Aneuploid neurons are functionally active and integrated into brain circuitry. Proc. Natl Acad. Sci. USA 102, 6143–6147 (2005).

    Article  CAS  Google Scholar 

  33. McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).

    Article  CAS  Google Scholar 

  34. Belgnaoui, S. M., Gosden, R. G., Semmes, O. J. & Haoudi, A. Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells. Cancer Cell. Int. 6, 13 (2006).

    Article  Google Scholar 

  35. Gasior, S. L., Wakeman, T. P., Xu, B. & Deininger, P. L. The human LINE-1 retrotransposon creates DNA double-strand breaks. J. Mol. Biol. 357, 1383–1393 (2006).

    Article  CAS  Google Scholar 

  36. Gilbert, N., Lutz, S., Morrish, T. A. & Moran, J. V. Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol. Cell. Biol. 25, 7780–7795 (2005).

    Article  CAS  Google Scholar 

  37. Belancio, V. P., Roy-Engel, A. M. & Deininger, P. L. All y'all need to know 'bout retroelements in cancer. Semin. Cancer Biol. 20, 200–210 (2010).

    Article  CAS  Google Scholar 

  38. Tchenio, T., Casella, J. F. & Heidmann, T. Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res. 28, 411–415 (2000).

    Article  CAS  Google Scholar 

  39. Athanikar, J. N., Badge, R. M. & Moran, J. V. A YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucleic Acids Res. 32, 3846–3855 (2004).

    Article  CAS  Google Scholar 

  40. Yang, N., Zhang, L., Zhang, Y. & Kazazian, H. H. An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res. 31, 4929–4940 (2003).

    Article  CAS  Google Scholar 

  41. Kuwabara, T. et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nature Neurosci. 12, 1097–1105 (2009).

    Article  CAS  Google Scholar 

  42. Aravin, A. A. et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31, 785–799 (2008).

    Article  CAS  Google Scholar 

  43. Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503–514 (2007).

    Article  CAS  Google Scholar 

  44. Yang, N. & Kazazian, H. H. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nature Struct. Mol. Biol. 13, 763–771 (2006).

    Article  CAS  Google Scholar 

  45. Ciaudo, C. et al. RNAi-dependent and independent control of LINE1 accumulation and mobility in mouse embryonic stem cells. PLoS Genet. 9, e1003791 (2013).

    Article  Google Scholar 

  46. Heras, S. R. et al. The microprocessor controls the activity of mammalian retrotransposons. Nature Struct. Mol. Biol. 20, 1173–1181 (2013).

    Article  CAS  Google Scholar 

  47. Goodier, J. L., Cheung, L. E. & Kazazian, H. H. MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet. 8, e1002941 (2012).

    Article  CAS  Google Scholar 

  48. Koito, A. & Ikeda, T. Intrinsic restriction activity by AID/APOBEC family of enzymes against the mobility of retroelements. Mob. Genet. Elements 1, 197–202 (2011).

    Article  Google Scholar 

  49. Bogerd, H. P. et al. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc. Natl Acad. Sci. USA 103, 8780–8785 (2006).

    Article  CAS  Google Scholar 

  50. Morrish, T. A. et al. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nature 446, 208–212 (2007).

    Article  CAS  Google Scholar 

  51. Morrish, T. A. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nature Genet. 31, 159–165 (2002).

    Article  CAS  Google Scholar 

  52. Li, J. B. et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324, 1210–1213 (2009).

    Article  CAS  Google Scholar 

  53. Thomas, C. A., Paquola, A. & Muotri, A. R. LINE-1 retrotransposition in the nervous system. Annu. Rev. Cel Dev. Biol. 28, 555–573 (2012).

    Article  CAS  Google Scholar 

  54. Singer, T., McConnell, M. J., Marchetto, M. C., Coufal, N. G. & Gage, F. H. LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci. 33, 345–354 (2010).

    Article  CAS  Google Scholar 

  55. Muotri, A. R. & Gage, F. H. Generation of neuronal variability and complexity. Nature 441, 1087–1093 (2006).

    Article  CAS  Google Scholar 

  56. Ponomarev, I. Epigenetic control of gene expression in the alcoholic brain. Alcohol Res. 35, 69–76 (2013).

    PubMed  PubMed Central  Google Scholar 

  57. McClintock, B. The significance of responses of the genome to challenge. Science 226, 792–801 (1984).

    Article  CAS  Google Scholar 

  58. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999).

    Article  CAS  Google Scholar 

  59. Guy, J., Cheval, H., Selfridge, J. & Bird, A. The role of MeCP2 in the brain. Annu. Rev. Cell Dev. Biol. 27, 631–652 (2011).

    Article  CAS  Google Scholar 

  60. Li, Y. et al. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 13, 446–458 (2013).

    Article  Google Scholar 

  61. Yu, F., Zingler, N., Schumann, G. & Stratling, W. H. Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Res. 29, 4493–4501 (2001).

    Article  CAS  Google Scholar 

  62. Tropea, D. et al. Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc. Natl Acad. Sci. USA 106, 2029–2034 (2009).

    Article  CAS  Google Scholar 

  63. Luikenhuis, S., Giacometti, E., Beard, C. F. & Jaenisch, R. Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc. Natl Acad. Sci. USA 101, 6033–6038 (2004).

    Article  CAS  Google Scholar 

  64. Derecki, N. C. et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484, 105–109 (2012).

    Article  CAS  Google Scholar 

  65. Shiloh, Y. ATM and ATR: networking cellular responses to DNA damage. Curr. Opin. Genet. Dev. 11, 71–77 (2001).

    Article  CAS  Google Scholar 

  66. Suzuki, J. et al. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet. 5, e1000461 (2009).

    Article  Google Scholar 

  67. Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nature Neurosci. 14, 452–458 (2011).

    Article  CAS  Google Scholar 

  68. Ayala, Y. M. et al. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 30, 277–288 (2011).

    Article  CAS  Google Scholar 

  69. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neurosci. 14, 459–468 (2011).

    Article  CAS  Google Scholar 

  70. Li, W., Jin, Y., Prazak, L., Hammell, M. & Dubnau, J. Transposable elements in TDP-43-mediated neurodegenerative disorders. PLoS ONE 7, e44099 (2012).

    Article  CAS  Google Scholar 

  71. Ponomarev, I., Rau, V., Eger, E. I., Harris, R. A. & Fanselow, M. S. Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder. Neuropsychopharmacology 35, 1402–1411 (2010).

    Article  Google Scholar 

  72. Hunter, R. G. et al. Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc. Natl Acad. Sci. USA 109, 17657–17662 (2012).

    Article  CAS  Google Scholar 

  73. Ponomarev, I., Wang, S., Zhang, L., Harris, R. A. & Mayfield, R. D. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J. Neurosci. 32, 1884–1897 (2012).

    Article  CAS  Google Scholar 

  74. Deininger, P. L. Alu elements: know the SINEs. Genome Biol. 12, 236 (2011).

    Article  CAS  Google Scholar 

  75. Xiong, Y. & Eickbush, T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9, 3353–3362 (1990).

    Article  CAS  Google Scholar 

  76. Zhou, Y. H., Zheng, J. B., Gu, X., Saunders, G. F. & Yung, W. K. Novel PAX6 binding sites in the human genome and the role of repetitive elements in the evolution of gene regulation. Genome Res. 12, 1716–1722 (2002).

    Article  CAS  Google Scholar 

  77. Hormozdiari, F. et al. Rates and patterns of great ape retrotransposition. Proc. Natl Acad. Sci. USA 110, 13457–13462 (2013).

    Article  CAS  Google Scholar 

  78. Marchetto, M. C. et al. Differential L1 regulation in pluripotent stem cells of humans and apes. Nature 503, 525–529 (2013).

    Article  CAS  Google Scholar 

  79. Whitehead, H., Richerson, P. J. & Boyd, R. Cultural selection and genetic diversity in humans. Selection 3 2002, 115–125 (2002).

    Article  Google Scholar 

  80. Muotri, A. R., Marchetto, M. C., Coufal, N. G. & Gage, F. H. The necessary junk: new functions for transposable elements. Hum. Mol. Genet. 16, R159–R167 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. L. Gage for editorial comments. This work was supported by the G. Harold and Leila Y. Mathers Charitable Foundation, The Leona M. and Harry B. Helmsley Charitable Trust grant #2012-PG-MED002, and NIH TR01 MH095741.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred H. Gage.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Epigenetic regulation

A process that alters the state of gene expression through changes in chromatin structure (that is, DNA or histone modifications).

Alternative splicing

A process whereby different mRNAs can be produced from a single gene through the differential incorporation of exons into the mature transcript during splicing. Frequently, various mature proteins are generated from a single gene.

Stochastic mechanism

A mechanism that is governed by random effects.

Autonomous elements

Elements that mobilize by themselves and do not require any other transposable elements for mobilization.

Endonuclease

An enzyme that cleaves a polynucleotide chain.

Reverse transcriptase

An enzyme that generates complementary DNA from an RNA template.

Speciation

The evolutionary process by which new biological species arise.

Polymorphic insertions

Mobile element insertions into specific locations of the genome that are present in some individuals and absent in others.

Next-generation genome sequencing

Sequencing carried out using high-throughput sequencing technologies that are based on massively parallel pyrosequencing technology and that enable the discovery of rare sequences (for example, small RNAs).

Aneuploidy

A condition in which extra or missing chromosomes are present within a cell or organism.

Copy number variants

(CNVs). Changes in the normal number of copies of a given gene or locus. Usually, there are two copies of each locus, but if, for example, duplications or triplications occur the number of copies will increase.

Induced pluripotent stem cell

A cell that is created from differentiated cell types — for example, fibroblasts — and is reprogrammed by a cocktail of transcription factors (or other approaches) back to a pluripotent state. This cell can now be differentiated into cells of distinct lineages: for example, neurons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erwin, J., Marchetto, M. & Gage, F. Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci 15, 497–506 (2014). https://doi.org/10.1038/nrn3730

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3730

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing