Key Points
-
In contrast to cortical projection neurons, many cortical interneurons originate in the subcortical forebrain. The primary origins of cortical interneurons in rodents appear to be the caudal and medial ganglionic eminences.
-
Neurochemically and physiologically distinct subgroups of cortical interneurons appear to have distinct places of origin. This finding and other evidence suggest that key aspects of interneuron subgroup fate determination occur in their places of origin.
-
Additional regions that might contribute to the generation of cortical interneurons include the lateral ganglionic eminence, the rostral migratory stream and the septal region. Whether these regions generate specific interneuron subgroups is unknown.
-
In contrast to rodents and ferrets, humans might generate most cortical interneurons in the cortical subventricular zone.
-
The specification of medial ganglionic eminence-derived interneurons depends on the transcription factor Nkx2.1. The crucial maintenance of Nkx2.1 expression during the period of interneuron genesis requires sonic hedgehog signalling.
-
Dlx1 and Dlx2 function to promote the initial migration of cortical interneuron progenitors in the subcortical telencephalon. Postnatally, Dlx1 continues to be expressed in a subset of cortical interneuron subgroups, including those expressing calretinin, in which it is cell-autonomously required for their survival.
-
A number of mouse mutants show phenotypes that include cortical interneuron deficits and behavioural abnormalities, and the abnormal function of cortical interneurons has been implicated in various human neuropsychiatric disorders. Efforts to link the molecular control of interneuron fate determination with the control of interneuron function (connectivity and physiology) are poised to uncover new pathologies of and treatments for important human diseases.
Abstract
GABA-containing interneurons are crucial to both the development and function of the cerebral cortex. Unlike cortical projection neurons, which have a relatively conserved set of characteristics, interneurons include multiple phenotypes that vary on morphological, physiological and neurochemical axes. This diversity, and the relatively late, context-dependent maturation of defining features, has challenged efforts to uncover the transcriptional control of cortical interneuron development. Here, we discuss recent data that are beginning to illuminate the origins and specification of distinct subgroups of cortical interneurons.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£119.00 per year
only £9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Whittington, M. A. & Traub, R. D. Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends. Neurosci. 26, 676–682 (2003).
Wang, X. J., Tegner, J., Constantinidis, C. & Goldman-Rakic, P. S. Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proc. Natl Acad. Sci. USA 101, 1368–1373 (2004).
Owens, D. F. & Kriegstein, A. R. Is there more to GABA than synaptic inhibition? Nature Rev. Neurosci. 3, 715–727 (2002).
Hensch, T. K. Critical period plasticity in local cortical circuits. Nature Rev. Neurosci. 6, 877–888 (2005). An excellent review of the work of T. Hensch, M. Stryker and others that maturation of GABAergic interneurons plays a crucial role in the regulation of critical period plasticity.
Monyer, H. & Markram, H. Interneuron diversity series: molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci. 27, 90–97 (2004).
DeDiego, I., Smith-Fernandez, A. & Fairen, A. Cortical cells that migrate beyond area boundaries: characterization of an early neuronal population in the lower intermediate zone of prenatal rats. Eur. J. Neurosci. 6, 983–997 (1994).
de Carlos, J. A., López-Mascaraque, L. & Valverde, F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci. 16, 6146–6156 (1996).
Porteus, M. H., Bulfone, A., Liu, J. K., Lo, L. C. & Rubenstein, J. L. R. DLX-2, MASH-1, and MAP-2 expression and bromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain. J. Neurosci. 44, 6370–6383 (1994).
Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997). A combination of slice migration studies and the analysis of Dlx1/Dlx2 mutant mice was used to demonstrate that many cortical interneurons originate in the subcortical telencephalon.
Tamamaki, N., Fujimori, K. E. & Takauji, R. Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J. Neurosci. 17, 8313–8323 (1997).
Parnavelas, J. G. The origin and migration of cortical neurones: new vistas. Trends Neurosci. 23, 126–131 (2000).
Marin, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci. 2, 780–790 (2001).
Wichterle, H., Garcia-Verdugo, J. M., Herrera, D. G. & Alvarez-Buylla, A. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nature Neurosci. 2, 461–466 (1999). Pioneered the transplantation of cells from the MGE or LGE into the postnatal brain in vivo . The authors concluded that MGE progenitors give rise to most cortical interneurons, have a remarkable capacity for migration and survival within different tissues, and might be amenable for use in cell-based therapies.
Lavdas, A. A., Grigoriou, M., Pachnis, V. & Parnavelas, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).
Anderson, S. A., Kaznowski, C. E., Horn, C., Rubenstein, J. L. & McConnell, S. K. Distinct origins of neocortical projection neurons and interneurons in vivo. Cereb. Cortex 12, 702–709 (2002). Showed the capacity of progenitors from the MGE-like region (of ferrets) to migrate to the cortex and differentiate into interneurons, and the lack of interneuron generation by cortical progenitors at the same developmental stage, using an entirely in vivo labelling approach.
Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature 417, 645–649 (2002). In this remarkable study, human fetal slice cultures were used to demonstrate that whereas a subcortical to cortex interneuron migration occurs in humans, most interneurons in humans undergo their terminal mitosis in the cortical subventricular zone.
Metin, C., Baudoin, J. P., Rakic, S. & Parnavelas, J. G. Cell and molecular mechanisms involved in the migration of cortical interneurons. Eur. J. Neurosci. 23, 894–900 (2006).
Sussel, L., Marin, O., Kimura, S. & Rubenstein, J. L. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).
Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001).
Anderson, S. A., Marin, O., Horn, C., Jennings, K. & Rubenstein, J. L. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–363 (2001).
Butt, S. J. et al. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48, 591–604 (2005). Used the tremendous innovation of ultrasound-guided in utero transplantation of MGE or CGE progenitors (pioneered in reference 18) to demonstrate that neurochemically and physiologically distinct interneuron subgroups have distinct origins.
Valcanis, H. & Tan, S. S. Layer specification of transplanted interneurons in developing mouse neocortex. J. Neurosci. 23, 5113–5122 (2003).
Xu, Q., Cobos, I., De La Cruz, E., Rubenstein, J. L. & Anderson, S. A. Origins of cortical interneuron subtypes. J. Neurosci. 24, 2612–2622 (2004).
Gonchar, Y. & Burkhalter, A. Three distinct families of GABAergic neurons in rat visual cortex. Cereb. Cortex 7, 347–358 (1997).
Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).
Rogers, J. H. Immunohistochemical markers in rat cortex: co-localization of calretinin and calbindin-D28k with neuropeptides and GABA. Brain Res. 587, 147–157 (1992).
DeFelipe, J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J. Chem. Neuroanat. 14, 1–19 (1997).
Nery, S., Fishell, G. & Corbin, J. G. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nature Neurosci. 5, 1279–1287 (2002).
Nery, S., Corbin, J. G. & Fishell, G. Dlx2 progenitor migration in wild type and Nkx2. 1 mutant telencephalon. Cereb. Cortex 13, 895–903 (2003).
Corbin, J. G., Rutlin, M., Gaiano, N. & Fishell, G. Combinatorial function of the homeodomain proteins Nkx2. 1 and Gsh2 in ventral telencephalic patterning. Development 130, 4895–4906 (2003).
Stenman, J., Toresson, H. & Campbell, K. Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J. Neurosci. 23, 167–174 (2003).
Lopez-Bendito, G. et al. Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb. Cortex 14, 1122–1133 (2004).
Yozu, M., Tabata, H. & Nakajima, K. The caudal migratory stream: a novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J. Neurosci. 25, 7268–7277 (2005).
Wang, Y. et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J. Physiol. 561, 65–90 (2004). Combined intracellular recording and single-cell RT-PCR to correlate a neuron's transcriptosome with its physiological properties. This technique is becoming increasingly important to understanding the molecular basis for interneuron subtype function.
Jimenez, D., Lopez-Mascaraque, L. M., Valverde, F. & De Carlos, J. A. Tangential migration in neocortical development. Dev. Biol. 244, 155–169 (2002).
Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nature Neurosci. 9, 173–179 (2006).
Anderson, S., Mione, M., Yun, K. & Rubenstein, J. L. R. Differential origins of projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cerebral Cortex 9, 646–654 (1999).
Meyer, G., Soria, J. M., Martínez-Galán, J. R., Martín-Clemente, B. & Fairén, A. Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J. Comp. Neurol. 397, 493–518 (1998).
Zecevic, N. & Rakic, P. Development of layer I neurons in the primate cerebral cortex. J Neurosci. 21, 5607–5619 (2001).
Ang, E. S. Jr, Haydar, T. F., Gluncic, V. & Rakic, P. Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J. Neurosci. 23, 5805–5815 (2003).
Luzzati, F. et al. Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proc. Natl Acad. Sci. USA 100, 13036–13041 (2003).
Taglialatela, P., Soria, J. M., Caironi, V., Moiana, A. & Bertuzzi, S. Compromised generation of GABAergic interneurons in the brains of Vax1−/− mice. Development 131, 4239–4249 (2004).
Hevner, R. F., Daza, R. A., Englund, C., Kohtz, J. & Fink, A. Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration. Neuroscience 124, 605–618 (2004).
Götz, M., Williams, B. P., Bolz, J. & Price, J. The specification of neuronal fate: a common precursor for neurotransmitter subtypes in the rat cerebral cortex in vitro. Eur. J. Neurosci. 7, 889–898 (1995).
He, W., Ingraham, C., Rising, L., Goderie, S. & Temple, S. Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. J. Neurosci. 21, 8854–8862 (2001).
Gulacsi, A. & Lillien, L. Sonic hedgehog and bone morphogenetic protein regulate interneuron development from dorsal telencephalic progenitors in vitro. J. Neurosci. 23, 9862–9872 (2003).
Bellion, A., Wassef, M. & Metin, C. Early differences in axonal outgrowth, cell migration and GABAergic differentiation properties between the dorsal and lateral cortex. Cereb. Cortex 13, 203–214 (2003).
Rakic, S. & Zecevic, N. Early oligodendrocyte progenitor cells in the human fetal telencephalon. Glia 41, 117–127 (2003).
Dayer, A. G., Cleaver, K. M., Abouantoun, T. & Cameron, H. A. New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J. Cell Biol. 168, 415–427 (2005).
Aguirre, A. A., Chittajallu, R., Belachew, S. & Gallo, V. NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. J. Cell Biol. 165, 575–589 (2004).
Belachew, S. et al. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J. Cell Biol. 161, 169–186 (2003).
Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965).
Menezes, J. R., Smith, C. M., Nelson, K. C. & Luskin, M. B. The division of neuronal progenitor cells during migration in the neonatal mammalian forebrain. Mol. Cell. Neurosci. 6, 496–508 (1995).
Polleux, F., Whitford, K. L., Dijkhuizen, P. A., Vitalis, T. & Ghosh, A. Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development 129, 3147–3160 (2002).
Xu, Q., De La Cruz, E. & Anderson, S. A. Cortical interneuron fate determination: diverse sources for distinct subtypes? Cereb. Cortex 13, 670–676 (2003).
Xu, Q., Wonders, C. P. & Anderson, S. A. Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon. Development 132, 4987–4998 (2005). Showed that after patterning has been established, and independent of proliferation, the levels of the interneuron-specifying transcription factor Nkx2.1 are plastic within MGE progenitors depending on their activation by the signaling molecule sonic hedgehog.
Miller, M. W. Cogeneration of retrogradely labeled corticocortical projection and GABA-immunoreactive local circuit neurons in cerebral cortex. Brain Res. 355, 187–192 (1985).
Fairén, A., Cobas, A. & Fonseca, M. Times of generation of glutamic acid decarboxylase immunoreactive neurons in mouse somatosensory cortex. J. Comp. Neurol. 251, 67–83 (1986).
Peduzzi, J. D. Genesis of GABA-immunoreactive neurons in the ferret visual cortex. J. Neurosci. 8, 920–931 (1988).
Yozu, M., Tabata, H. & Nakajima, K. Birth-date dependent alignment of GABAergic neurons occurs in a different pattern from that of non-GABAergic neurons in the developing mouse visual cortex. Neurosci. Res. 49, 395–403 (2004).
Cavanagh, M. E. & Parnavelas, J. G. Development of somatostatin immunoreactive neurons in the rat occipital cortex: a combined immunocytochemical-autoradiographic study. J. Comp. Neurol. 268, 1–12 (1988).
Cavanagh, M. E. & Parnavelas, J. G. Development of vasoactive-intestinal-polypeptide-immunoreactive neurons in the rat occipital cortex: a combined immunohistochemical-autoradiographic study. J. Comp. Neurol. 284, 637–645 (1989).
Kubota, Y., Hattori, R. & Yui, Y. Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain. Res. 649, 159–173 (1994). Parcelled most interneurons of the frontal cortex into three neurochemically distinct subgroups, thereby laying important groundwork for subsequent studies on their origins and specification.
Porter, J. T. et al. Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex. Eur. J. Neurosci. 10, 3617–3628 (1998).
Lindvall, O. & Bjorklund, A. Intracerebral grafting of inhibitory neurons. A new strategy for seizure suppression in the central nervous system. Adv. Neurol. 57, 561–569 (1992).
Kimura, S. et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 10, 60–69 (1996).
Marin, O., Anderson, S. A. & Rubenstein, J. L. Origin and molecular specification of striatal interneurons. J. Neurosci. 20, 6063–6076 (2000).
Lupo, G., Harris, W. A. & Lewis, K. E. Mechanisms of ventral patterning in the vertebrate nervous system. Nature Rev. Neurosci. 7, 103–114 (2006).
Storm, E. E. et al. Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133, 1831–1844 (2006).
Kobayashi, D. et al. Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129, 83–93 (2002).
Anderson, R. M., Lawrence, A. R., Stottmann, R. W., Bachiller, D. & Klingensmith, J. Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 129, 4975–4687 (2002).
Kohtz, J. D., Baker, D. P., Corte, G. & Fishell, G. Regionalization within the mammalian telencephalon is mediated by changes in responsiveness to Sonic Hedgehog. Development 125, 5079–5089 (1998).
Fuccillo, M., Rallu, M., McMahon, A. P. & Fishell, G. Temporal requirement for hedgehog signaling in ventral telencephalic patterning. Development 131, 5031–5040 (2004).
Yung, S. Y. et al. Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc. Natl Acad. Sci. USA 99, 16273–16278 (2002).
Rallu, M. et al. Dorsoventral patterning is established in the telencephalon of mutants lacking both Gli3 and Hedgehog signaling. Development 129, 4963–4674 (2002).
Gulacsi, A. G. & Anderson, S. A. Shh maintains Nkx2.1 in the MGE by a Gli3-independent mechanism. Cereb Cortex (in the press).
Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2000).
Vallstedt, A., Klos, J. M. & Ericson, J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45, 55–67 (2005).
Stenman, J. M., Wang, B. & Campbell, K. Tlx controls proliferation and patterning of lateral telencephalic progenitor domains. J. Neurosci. 23, 10568–10576 (2003).
Tole, S., Ragsdale, C. W. & Grove, E. A. Dorsoventral patterning of the telencephalon is disrupted in the mouse mutant extra-toesJ. Dev. Biol. 217, 254–265 (2000).
Loulier, K., Ruat, M. & Traiffort, E. Analysis of hedgehog interacting protein in the brain and its expression in nitric oxide synthase-positive cells. Neuroreport 16, 1959–1962 (2005).
Chuang, P. T., Kawcak, T. & McMahon, A. P. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev. 17, 342–347 (2003).
Grigoriou, M., Tucker, A. S., Sharpe, P. T. & Pachnis, V. Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development 125, 2063–2074 (1998).
Sharma, K et al. LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95, 817–828 (1998).
Zhao, Y. et al. The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc. Natl Acad. Sci. USA 100, 9005–9010 (2003).
Fragkouli, A. et al. Loss of forebrain cholinergic neurons and impairment in spatial learning and memory in LHX7-deficient mice. Eur. J. Neurosci. 21, 2923–2938 (2005).
Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).
Cobos, I. et al. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nature Neurosci. 8, 1059–1068 (2005). This paper might be the first to study the transcriptional regulation of postnatal interneuron development by transplantation of interneuron progenitors from Dlx1 mutant mice into the neonatal cortical plate in vivo.
Alifragis, P., Liapi, A. & Parnavelas, J. G. Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. J. Neurosci. 24, 5643–5648 (2004).
Roessler, E. et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genet. 14, 357–360 (1996).
Odent, S. et al. Expression of the Sonic hedgehog (SHH) gene during early human development and phenotypic expression of new mutations causing holoprosencephaly. Hum. Mol. Genet. 8, 1683–1689 (1999).
Wallis, D. E. et al. Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nature Genet. 22, 196–198 (1999).
Heussler, H. S., Suri, M., Young, I. D. & Muenke, M. Extreme variability of expression of a Sonic Hedgehog mutation: attention difficulties and holoprosencephaly. Arch. Dis. Child. 86, 293–296 (2002).
Hamilton, S. P. et al. Analysis of four DLX homeobox genes in autistic probands. BMC Genet. 6, 52 (2005).
Cobos, I., Broccoli, V. & Rubenstein, J. L. The vertebrate ortholog of Aristaless is regulated by Dlx genes in the developing forebrain. J. Comp. Neurol. 483, 292–303 (2005).
Kitamura, K. et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nature Genet. 32, 359–369 (2002). An outstanding example of the power of mouse and human comparative genetics. Arx mutations result in severe abnormalities in interneuron development in mice and severe infantile seizures, therefore providing a rationale for more focused analysis of the human pathology.
Breedveld, G. J. et al. Mutations in TITF-1 are associated with benign hereditary chorea. Hum. Mol. Genet. 11, 971–979 (2002).
Kleiner-Fisman, G. et al. Alterations of striatal neurons in benign hereditary chorea. Mov. Disord. 20, 1353–1357 (2005).
Hussman, J. P. Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J. Autism Dev. Disord. 31, 247–248 (2001).
Levitt, P., Eagleson, K. L. & Powell, E. M. Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci. 27, 400–406 (2004).
Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).
Lewis, D. A. GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res. Brain Res. Rev. 31, 270–276 (2000). Although the literature on the neuropathology of schizophrenia is highly variable in terms of scientific rigour, this outstanding review makes an excellent case for the presence of specific abnormalities in interneuron connectivity in the prefrontal cortex of some schizophrenic individuals.
Benes, F. M. & Berretta, S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25, 1–27 (2001).
Jetty, P. V., Charney, D. S. & Goddard, A. W. Neurobiology of generalized anxiety disorder. Psychiatr. Clin. North. Am. 24, 75–97 (2001).
Stefansson, H. et al. Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet. 71, 877–892 (2002).
Erbel-Sieler, C. et al. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc. Natl Acad. Sci. USA 101, 13648–13653 (2004).
Pillai-Nair, N. et al. Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior. J. Neurosci. 25, 4659–4671 (2005).
Harrison, P. J. & Law, A. J. Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol. Psychiatry 60, 132–140 (2006).
Silberberg, G., Darvasi, A., Pinkas-Kramarski, R. & Navon, R. The involvement of ErbB4 with schizophrenia: association and expression studies. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141, 142–148 (2006).
Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. Nature Rev. Neurosci. 6, 312–324 (2005).
Ango, F. et al. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell 119, 257–272 (2004). Interneuron subtype function is a matter of connectivity and physiology. This seminal paper demonstrated a molecular basis for the targeting of basket interneuron axons in the cerebellum. Chandelier interneurons in the cerebral cortex are likely to use a similar mechanism.
Borrell, V., Yoshimura, Y. & Callaway, E. M. Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. J. Neurosci. Methods 143, 151–158 (2005).
Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neurosci. 9, 99–107 (2006).
Oliva, A. A. Jr, Jiang, M., Lam, T., Smith, K. L. & Swann, J. W. Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J. Neurosci. 20, 3354–3368 (2000).
Meyer, A. H., Katona, I., Blatow, M., Rozov, A. & Monyer, H. In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J. Neurosci. 22, 7055–7064 (2002).
Ma, Y., Hu, H., Berrebi, A. S., Mathers, P. H. & Agmon, A. Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J. Neurosci. 26, 5069–5082 (2006).
DeFelipe, J. & Jones, E. J. Cajal on the Cerebral Cortex (Oxford University Press, New York, 1988). This text provides an easily approachable but detailed venue into the timeless contributions made by Ramón y Cajal on the cellular composition of the cerebral cortex.
Markram, H. et al. Interneurons of the neocortical inhibitory system. Nature Rev. Neurosci. 5, 793–807 (2004).
Parra, P., Gulyas, A. I. & Miles, R. How many subtypes of inhibitory cells in the hippocampus? Neuron 20, 983–993 (1998).
Kawaguchi, Y., Karube, F. & Kubota, Y. Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. Cereb. Cortex 16, 696–711 (2006).
Bachy, I. & Retaux, S. GABAergic specification in the basal forebrain is controlled by the LIM-hd factor Lhx7. Dev. Biol. 291, 218–226 (2006).
Stuhmer, T., Anderson, S. A., Ekker, M. & Rubenstein, J. L. Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. Development 129, 245–252 (2002).
Fode, C. et al. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 14, 67–80 (2000).
Parras, C. M. et al. Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev. 16, 324–338 (2002).
Pleasure, S. J. et al. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28, 727–740 (2000).
Casarosa, S., Fode, C. & Guillemot, F. Mash1 regulates neurogenesis in the ventral telencephalon. Development 126, 525–534 (1999).
Chapouton, P., Gärtner, A. & Götz, M. The role of Pax6 in restricting cell migration between developing cortex and basal ganglia. Development 126, 5569–5579 (1999).
Kroll, T. T. & O'Leary, D. D. Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. Proc. Natl Acad. Sci. USA 102, 7374–7379 (2005).
Monaghan, A. P. et al. Defective limbic system in mice lacking the tailless gene. Nature 390, 515–517 (1997).
Muzio, L. et al. Conversion of cerebral cortex into basal ganglia in Emx2−/−Pax6Sey/Sey double-mutant mice. Nature Neurosci. 5, 737–745 (2002).
Acknowledgements
Our work is supported by grants from the National Institute of Mental Health, and the National Institute of Neurological Disorders and Stroke, National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- Fate-mapping approaches
-
Experiments that are designed to determine the relationship between the origin or genetic make-up of a cell and its differentiated fate.
- Telencephalon
-
The anterior-most region of the neural tube, consisting of the cerebral cortex, basal ganglia, hippocampus, septal nuclei and olfactory bulb.
- Subpallium
-
The regions of the telencephalon ventral to the cerebral cortex, including the basal ganglia.
- Parvalbumin
-
(PV). A calcium-binding protein that is localized to, and potentially acts as an endogenous buffer for, fast-spiking cortical interneurons.
- Somatostatin
-
(SST). A neuropeptide that is localized to a subset of cortical interneurons.
- Calretinin
-
(CR). A calcium-binding protein that is localized to a subset of cortical interneurons.
- S-phase of the cell cycle
-
The phase of the cell cycle during which DNA replication takes place.
- Bipolar cells
-
Small cells with narrow dendritic arborizations that extend vertically, often across the entire cortical thickness.
- Martinotti cells
-
Cells containing axons that project towards cortical layer I, and that primarily target the distal-most dendrites of pyramidal neurons.
- Holoprosencephaly
-
A developmental disorder caused by the failure of the forebrain to divide into bilateral hemispheres.
Rights and permissions
About this article
Cite this article
Wonders, C., Anderson, S. The origin and specification of cortical interneurons. Nat Rev Neurosci 7, 687–696 (2006). https://doi.org/10.1038/nrn1954
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn1954
This article is cited by
-
Cell-type-resolved mosaicism reveals clonal dynamics of the human forebrain
Nature (2024)
-
PAK3 activation promotes the tangential to radial migration switch of cortical interneurons by increasing leading process dynamics and disrupting cell polarity
Molecular Psychiatry (2024)
-
Shank3 deletion in PV neurons is associated with abnormal behaviors and neuronal functions that are rescued by increasing GABAergic signaling
Molecular Autism (2023)
-
Neocortex neurogenesis and maturation in the African greater cane rat
Neural Development (2023)
-
The plasticitome of cortical interneurons
Nature Reviews Neuroscience (2023)