[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exuberance in the development of cortical networks

Key Points

  • What is developmental exuberance? The exuberant development of neural circuits involves: the formation of long, transient axonal projections; the overproduction of short axonal branches and synapses, including polyinnervation and/or peaks of synaptic density; and the overproduction of dendritic branches and/or spines. In all cases, selection eventually leads to maintenance of some of the juvenile structures and elimination of others.

  • What function do exuberant structures have before their elimination? Some transient structures have important functions in constructing circuitry, but for others it is less clear whether the eliminated structures have important functions other than being substrates for the actions of selective mechanisms.

  • How general is the phenomenon? Development by exuberance is widespread during the formation of cerebral cortical circuits. It has been reported across different species and for different areas and projections, which suggests that it might have been a distinctive feature of mammalian development throughout evolution.

  • How are the projections eliminated? Two mechanisms can result in the elimination of the transient projections: neuronal death, or selective deletion of axons, axonal branches and/or synapses. The data available for the axonal pathways that interconnect cerebral cortical areas indicate a prevalent or exclusive role for the second mechanism.

  • What is the magnitude of elimination? The size of the elimination has been quantified for synapses and some long axonal tracts using electron microscopy. Less stringent quantification is available from experiments with axonal tracers. Studies show that some juvenile tracts are eliminated completely later in life.

  • Exuberant development of cortical connections occurs within boundaries established by the selective growth of axons from certain classes of neuron to specific targets, probably on the basis of selective molecular affinities. Once the axons have reached the proximity of their targets, selection occurs, particularly in the region of the cortical subplate.

  • The formation of the terminal axonal arbors in the targets is followed by continued exuberance and selection of axonal branches and synapses but within increasingly restricted topographical boundaries. The synaptic boutons are, from the onset, selectively distributed in the columnar and laminar dimensions, although their number exceeds that seen in adults.

  • Factors that control axonal selection include signals from the periphery (such as the retina), thyroid hormones, competition among axonal systems and/or between neurons for chemotrophic substances present in the target structure, and the expression of molecules that identify targets as appropriate to retain persistent innervation. This epigenetic control allows modification of the cortical networks in the light of changes in brain structure brought about by epigenetic or genetic changes.

  • The aetiology of neurological and psychiatric conditions such as dyslexia, attention deficit hyperactivity disorder and schizophrenia might involve abnormal growth and/or selection of cortical connections in the developing brain. Encouraging results for the study of cortical connectivity in the human brain have been provided by new developments in brain imaging and by tools for studying the dynamics of neuronal assemblies in the cerebral cortex.

Abstract

The cerebral cortex is the largest and most intricately connected part of the mammalian brain. Its size and complexity has increased during the course of evolution, allowing improvements in old functions and causing the emergence of new ones, such as language. This has expanded the behavioural and cognitive repertoire of different species and has determined their competitive success. To allow the relatively rapid emergence of large evolutionary changes in a structure of such importance and complexity, the mechanisms by which cortical circuitry develops must be flexible and yet robust against changes that could disrupt the normal functions of the networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exuberant projections into the corpus callosum from the visual areas of the cat.
Figure 2: Transient structures present during thalamocortical development.
Figure 3: Development of ipsilateral cortico-cortical connections from visual area 17 to area 18 in the cat.
Figure 4: Types of callosally projecting neuron in areas 17 and 18 of the cat visual cortex.
Figure 5: The growth of callosal axons into their site of termination is a multi-stage process.
Figure 6: Consequences of visual deprivation by bilateral eyelid suture on visual callosal axons originating near the area 17/18 border in the cat.

Similar content being viewed by others

References

  1. Innocenti, G. M., Fiore, L. & Caminiti, R. Exuberant projection into the corpus callosum from the visual cortex of newborn cats. Neurosci. Lett. 4, 237–242 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Innocenti, G. M. The development of projections from cerebral cortex. Prog. Sens. Physiol. 12, 65–114 (1991).

    Article  Google Scholar 

  3. O'Leary, D. D. M. Development of connectional diversity and specificity in the mammalian brain by the pruning of collateral projections. Curr. Opin. Neurobiol. 2, 70–77 (1992). An important review that complements this one, describing how the pruning of collateral projections first became recognized as a fundamental and widespread mechanism for the development of specific axonal connections.

    Article  CAS  PubMed  Google Scholar 

  4. Stanfield, B. B. The development of the corticospinal projection. Prog. Neurobiol. 38, 169–202 (1992). Another important review describing early studies of exuberance in the rodent's developing corticospinal system, which became established as a powerful model in this field.

    Article  CAS  PubMed  Google Scholar 

  5. Naegele, J. R., Jhaveri, S. & Schneider, G. E. Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster. J. Comp. Neurol. 277, 593–607 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Catalano, S. M., Robertson, R. T. & Killackey, H. P. Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. J. Comp. Neurol. 367, 36–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Rakic, P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261, 467–471 (1976).

    Article  CAS  PubMed  Google Scholar 

  8. LeVay, S., Stryker, M. P. & Shatz, C. Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J. Comp. Neurol. 179, 223–244 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Crowley, J. C. & Katz, L. C. Early development of ocular dominance columns. Science 290, 1321–1324 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Crair, M. C., Horton, J. C., Antonini, A. & Stryker, M. P. Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age. J. Comp. Neurol. 430, 235–249 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crowley, J. C. & Katz, L. C. Ocular dominance development revisited. Curr. Opin. Neurobiol. 12, 104–109 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Antonini, A. & Stryker, M. P. Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. J. Neurosci. 13, 3549–3573 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Innocenti, G. & Clarke, S. Bilateral transitory projection to visual areas from the auditory cortex in kittens. Dev. Brain Res. 14, 143–148 (1984).

    Article  Google Scholar 

  14. Price, D. J. & Blakemore, C. Regressive events in the postnatal development of association projections in the visual cortex. Nature 316, 721–724 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Webster, M. J., Ungerleider, L. G. & Bachevalier, J. Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J. Neurosci. 11, 1095–1116 (1991). This remains one of the most striking examples of exuberant cortical connections in the monkey.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Assal, F. & Innocenti, G. M. Transient intra-areal axons in developing cat visual cortex. Cereb. Cortex 3, 290–303 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Galuske, R. A. W. & Singer, W. The origin and topography of long-range intrinsic projections in cat visual cortex: a developmental study. Cereb. Cortex 6, 417–430 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Callaway, E. M. Prenatal development of layer-specific local circuits in primary visual cortex of the macaque monkey. J. Neurosci. 18, 1505–1527 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barone, P., Dehay, C., Berland, M. & Kennedy, H. Role of directed growth and target selection in the formation of cortical pathways: prenatal development of the projection of area V2 to area V4 in the monkey. J. Comp. Neurol. 374, 1–20 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Distel, H. & Holländer, H. Autoradiographic tracing of developing subcortical projections of the occipital region in fetal rabbits. J. Comp. Neurol. 192, 505–518 (1980).

    Article  CAS  PubMed  Google Scholar 

  21. Stanfield, B. B., O'Leary, D. D. M. & Fricks, C. Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature 298, 371–373 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Curfs, M. H. J. M., Gribnau, A. A. M. & Dederen, P. J. W. C. Selective elimination of transient corticospinal projections in the rat cervical spinal cord gray matter. Dev. Brain Res. 78, 182–190 (1994).

    Article  CAS  Google Scholar 

  23. Galea, M. P. & Darian-Smith, I. Postnatal maturation of the direct corticospinal projection in the macaque monkey. Cereb. Cortex 5, 518–540 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Murakami, F., Kobayashi, Y., Uratani, T. & Tamada, A. Individual corticorubral neurons project bilaterally during postnatal development and following early contralateral cortical lesions. Exp. Brain Res. 96, 181–193 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Del Caño, G. G., Gerrikagoitia, I., Goñi, O. & Martínez-Millán, L. Sprouting of the visual corticocollicular terminal field after removal of contralateral retinal inputs in neonatal rabbits. Exp. Brain Res. 117, 399–410 (1997).

    Article  Google Scholar 

  26. Metin, C. & Godement, P. The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons. J. Neurosci. 16, 3219–3235 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Molnar, Z., Adams, R. & Blakemore, C. Mechanisms underlying the early establishment of thalamocortical connections in the rat. J. Neurosci. 18, 5723–5745 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Braisted, J. E., Tuttle, R. & O'Leary, D. D. Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path. Dev. Biol. 208, 430–440 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Tuttle, R., Nakagawa, Y., Johnson, J. E. & O'Leary, D. D. Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice. Development 126, 1903–1916 (1999).

    CAS  PubMed  Google Scholar 

  30. Pratt, T. et al. Disruption of early events in thalamocortical tract formation in mice lacking the transcription factors Pax6 or Foxg1. J. Neurosci. 22, 8523–8531 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Allendoerfer, K. L. & Shatz, C. J. The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu. Rev. Neurosci. 17, 185–218 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Price, D. J., Aslam, S., Tasker, L. & Gillies, K. Fates of the earliest generated cells in the developing murine neocortex. J. Comp. Neurol. 377, 414–422 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Lopez-Bendito, G. & Molnar, Z. Thalamocortical development: how are we going to get there? Nature Rev. Neurosci. 4, 276–289 (2003).

    Article  CAS  Google Scholar 

  34. Friauf, E., McConnell, S. K. & Shatz, C. J. Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex. J. Neurosci. 10, 2601–2613 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herrmann, K., Antonini, A. & Shatz, C. J. Ultrastructural evidence for synaptic interactions between thalamocortical axons and subplate neurons. Eur. J. Neurosci. 6, 1729–1742 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Hanganu, I. L., Kilb, W. & Luhmann, H. J. Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J. Neurosci. 22, 7165–7176 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ghosh, A. & Shatz, C. J. Involvement of subplate neurons in the formation of ocular dominance columns. Science 255, 1441–1443 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Kanold, P. O., Kara, P., Reid, R. C. & Shatz, C. J. Role of subplate neurons in functional maturation of visual cortical columns. Science 301, 521–525 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Rakic, P., Bourgeois, J. -P., Eckenhoff, M. F., Zecevic, N. & Goldman-Rakic, P. S. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235 (1986). A seminal paper on exuberant and synchronous synaptogenesis in different cortical areas of the monkey.

    Article  CAS  PubMed  Google Scholar 

  40. Aggoun-Zouaoui, D., Kiper, D. C. & Innocenti, G. M. Growth of callosal terminal arbors in primary visual areas of the cat. Eur. J. Neurosci. 8, 1132–1148 (1996).

    Article  Google Scholar 

  41. Bressoud, R. & Innocenti, G. M. Topology, early differentiation and exuberant growth of a set of cortical axons. J. Comp. Neurol. 406, 87–108 (1999). Documents exuberant development of individual axonal arbors and ways in which exuberant development is constrained by what seems to be specific growth of different axonal types.

    Article  CAS  PubMed  Google Scholar 

  42. Luhmann, H. J., Greuel, J. M. & Singer, W. Horizontal interactions in cat striate cortex: III. Ectopic receptive fields and transient exuberance of tangential interactions. Eur. J. Neurosci. 2, 369–377 (1990).

    Article  PubMed  Google Scholar 

  43. Chen, B., Boukamel, K., Kao, J. P. Y. & Roerig, B. Spatial distribution of inhibitory synaptic connections during development of ferret primary visual cortex. Exp. Brain Res. 160, 496–509 (2005).

    Article  PubMed  Google Scholar 

  44. Curfs, M. H. J. M., Gribnau, A. A. M., Dederen, P. J. W. C. & Bergervoet-Vernooij, H. W. M. Transient functional connections between the developing corticospinal tract and cervical spinal interneurons as demonstrated by c-fos immunohistochemistry. Dev. Brain Res. 87, 214–219 (1995).

    Article  CAS  Google Scholar 

  45. Innocenti, G. M. Exuberant development of connections, and its possible permissive role in cortical evolution. Trends Neurosci. 18, 397–402 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Innocenti, G. M. Growth and reshaping of axons in the establishment of visual callosal connections. Science 212, 824–827 (1981).

    Article  CAS  PubMed  Google Scholar 

  47. Lotto, R. B., Asavaritikrai, P., Vali, L. & Price, D. J. Target-derived neurotrophic factors regulate the death of developing forebrain neurons after a change in their trophic requirements. J. Neurosci. 21, 3904–3910 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aggoun-Zouaoui, D. & Innocenti, G. M. Juvenile visual callosal axons in kittens display origin- and fate-related morphology and distribution of arbors. Eur. J. Neurosci. 6, 1846–1863 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Berbel, P. & Innocenti, G. M. The development of the corpus callosum in cats: a light- and electron-microscopic study. J. Comp. Neurol. 276, 132–156 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. LaMantia, A. -S. & Rakic, P. Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J. Neurosci. 10, 2156–2175 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kadhim, H. J., Bhide, P. G. & Frost, D. O. Transient axonal branching in the developing corpus callosum. Cereb. Cortex 3, 551–566 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Innocenti, G. M. & Clarke, S. The organization of immature callosal connections. J. Comp. Neurol. 230, 287–309 (1984).

    Article  CAS  PubMed  Google Scholar 

  53. Price, D. J., Ferrer, J. M., Blakemore, C. & Kato, N. Postnatal development and plasticity of corticocortical projections from area 17 to area 18 in the cat's visual cortex. J. Neurosci. 14, 2747–2762 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Caric, D. & Price, D. J. The organization of visual corticocortical connections in early postnatal kittens. Neuroscience 73, 817–829 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Innocenti, G. M., Berbel, P. & Clarke, S. Development of projections from auditory to visual areas in the cat. J. Comp. Neurol. 272, 242–259 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Kennedy, H., Bullier, J. & Dehay, C. Transient projection from the superior temporal sulcus to area 17 in the newborn macaque monkey. Proc. Natl Acad. Sci. USA 86, 8093–8097 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meissirel, C., Dehay, C., Berland, M. & Kennedy, H. Segregation of callosal and association pathways during development in the visual cortex of the primate. J. Neurosci. 11, 3297–3316 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Innocenti, G. M. & Clarke, S. Multiple sets of visual cortical neurons projecting transitorily through the corpus callosum. Neurosci. Lett. 41, 27–32 (1983).

    Article  CAS  PubMed  Google Scholar 

  59. Koester, S. E. & O'Leary, D. D. M. Connectional distinction between callosal and subcortical projecting cortical neurons is determined prior to axon extension. Dev. Biol. 160, 1–14 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Ding, S. -L. & Elberger, A. J. Confirmation of the existence of transitory corpus callosum axons in area 17 of neonatal cat: an anterograde tracing study using biotinylated dextran amine. Neurosci. Lett. 177, 66–70 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Kuang, R. Z. & Kalil, K. Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets. J. Comp. Neurol. 344, 270–282 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Woo, T. U., Pucak, M. L., Kye, C. M., Matus, C. V. & Lewis, D. A. Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex. Neuroscience 80, 1149–1158 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Riederer, B. M. & Innocenti, G. M. Differential distribution of Tau proteins in developing cat cerebral cortex and corpus callosum. Eur. J. Neurosci. 3, 1134–1145 (1991).

    Article  PubMed  Google Scholar 

  64. Riederer, B. M., Berbel, P. & Innocenti, G. M. Neurons in the corpus callosum of the cat during postnatal development. Eur. J. Neurosci. 19, 2039–2046 (2004).

    Article  PubMed  Google Scholar 

  65. Norris, C. R. & Kalil, K. Guidance of callosal axons by radial glia in the developing cerebral cortex. J. Neurosci. 11, 3481–3492 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shatz, C. J. Anatomy of interhemispheric connections in the visual system of Boston Siamese and ordinary cats. J. Comp. Neurol. 173, 497–518 (1977).

    Article  CAS  PubMed  Google Scholar 

  67. Tremblay, F., Ptito, M., Miceli, D. & Guillemot, J. -P. Distribution of visual callosal projection neurons in the siamese cat: an HRP study. J. Hirnforsch. 28, 491–503 (1987).

    CAS  PubMed  Google Scholar 

  68. Innocenti, G. M. & Frost, D. O. Effects of visual experience on the maturation of the efferent system to the corpus callosum. Nature 280, 231–234 (1979).

    Article  CAS  PubMed  Google Scholar 

  69. Innocenti, G. M. & Frost, D. O. The postnatal development of visual callosal connections in the absence of visual experience or of the eyes. Exp. Brain Res. 39, 365–375 (1980).

    Article  CAS  PubMed  Google Scholar 

  70. Frost, D. O. & Moy, Y. P. Effects of dark rearing on the development of visual callosal connections. Exp. Brain Res. 78, 203–213 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Boire, D., Morris, R., Ptito, M., Lepore, F. & Frost, D. O. Effects of neonatal splitting of the optic chiasm on the development of feline visual callosal connections. Exp. Brain Res. 104, 275–286 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Price, D. J., Ferrer, J. M. R., Blakemore, C. & Kato, N. Postnatal development and plasticity of corticocortical projections from area 17 to area 18 in the cat's visual cortex. J. Neurosci. 14, 2747–2762 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Caric, D. & Price, D. J. Evidence that the lateral geniculate nucleus regulates the normal development of visual corticocortical projections in the cat. Exp. Neurol. 156, 353–362 (1999). Obtained direct evidence from lesion experiments that showed the role of thalamocortical connections in the selection of cortico-cortical afferents from the initial exuberant stock.

    Article  CAS  PubMed  Google Scholar 

  74. Olavarria, J. F. & Van Sluyters, R. C. Overall pattern of callosal connections in visual cortex of normal and enucleated cats. J. Comp. Neurol. 363, 161–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Olavarria, J. F. The effect of visual deprivation on the number of callosal cells in the cat is less pronounced in extrastriate cortex than in the 17/18 border region. Neurosci. Lett. 195, 147–150 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Zufferey, P. D., Jin, F., Nakamura, H., Tettoni, L. & Innocenti, G. The role of pattern vision in the development of cortico-cortical connections. Eur. J. Neurosci. 11, 2669–2688 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Innocenti, G. M., Frost, D. O. & Illes, J. Maturation of visual callosal connections in visually deprived kittens: a challenging critical period. J. Neurosci. 5, 255–267 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Manger, P. R. et al. The representation of the visual field in three extrastriate areas of the ferret (Mustela putorius) and the relationship of retinotopy and field boundaries to callosal connectivity. Cereb. Cortex 12, 423–437 (2002).

    Article  PubMed  Google Scholar 

  79. Olavarria, J. F. Callosal connections correlate preferentially with ipsilateral cortical domains in cat area 17 and 18, and with contralateral domains in the 17/18 transition zone. J. Comp. Neurol. 433, 441–457 (2001). This work makes an important contribution to the concept that the topographic projections from the retina guide the establishment of callosal connections.

    Article  CAS  PubMed  Google Scholar 

  80. Restrepo, C. E., Manger, P. R., Spenger, C. & Innocenti, G. M. Immature cortex lesions alter retinotopic maps and interhemispheric connections. Ann. Neurol. 54, 51–65 (2003). A recent paper that confirms and extends the concept that competition among cortico-cortical axons is involved in shaping cortico-cortical networks.

    Article  PubMed  Google Scholar 

  81. Lotto, R. B., Asavaritikrai, P., Vali, L. & Price, D. J. Target-derived neurotrophic factors regulate the death of developing forebrain neurons after a change in their trophic requirements. J. Neurosci. 21, 3904–3910 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Webster, M. J., Ungerleider, L. G. & Bachevalier, J. Lesions of inferior temporal area TE in infant monkeys alter cortico-amygdalar projections. Neuroreport 2, 769–772 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Webster, M. J. & Bachevalier, J. in Emotion, Memory and Behavior (ed. Nakajima, T.) 3–15 (CRC, USA, 1995).

    Google Scholar 

  84. Gravel, C., Sasseville, R. & Hawkes, R. Maturation of the corpus callosum of the rat: II. Influence of thyroid hormones on the number and maturation of axons. J. Comp. Neurol. 291, 147–161 (1990).

    Article  CAS  PubMed  Google Scholar 

  85. Berbel, P. et al. Organization of auditory callosal connections in hypothyroid adult rats. Eur. J. Neurosci. 5, 1465–1478 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Li, C. -P., Olavarria, J. F. & Greger, B. E. Occipital cortico-pyramidal projection in hypothyroid rats. Dev. Brain Res. 89, 227–234 (1995).

    Article  CAS  Google Scholar 

  87. Miller, M. W., Astley, S. J. & Clarren, S. K. Number of axons in the corpus callosum of the mature Macaca nemestrina: increases caused by prenatal exposure to ethanol. J. Comp. Neurol. 412, 123–131 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Bishop, K. M., Goudreau, G. & O'Leary, D. D. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288, 344–349 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Bishop, K. M., Garel, S., Nakagawa, Y., Rubenstein, J. L. & O'Leary, D. D. Emx1 and Emx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. J. Comp. Neurol. 457, 345–360 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Huffman, K. J., Garel, S. & Rubenstein, J. L. R. Fgf8 regulates the development of intra-neocortical projections. J. Neurosci. 24, 8917–8923 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Clarke, S., Kraftsik, R., Van der Loos, H. & Innocenti, G. M. Forms and measures of adult and developing human corpus callosum: is there sexual dimorphism? J. Comp. Neurol. 280, 213–230 (1989).

    Article  CAS  PubMed  Google Scholar 

  92. DeLacoste-Utamsing, C. & Holloway, R. L. Sexual dimorphism in the human corpus callosum. Science 216, 1431–1432 (1982).

    Article  CAS  PubMed  Google Scholar 

  93. Kim, J. H. Y. & Juraska, J. M. Sex differences in the development of axon number in the splenium of the rat corpus callosum from postnatal day 15 through 60. Dev. Brain Res. 102, 77–85 (1997).

    Article  CAS  Google Scholar 

  94. Nunez, J. L., Nelson, J., Pych, J. C., Kim, J. H. Y. & Juraska, J. M. Myelination in the splenium of the corpus callosum in adult male and female rats. Dev. Brain Res. 120, 87–90 (2000).

    Article  CAS  Google Scholar 

  95. Bishop, K. M. & Wahlsten, D. Sex differences in the human corpus callosum: myth or reality? Neurosci. Biobehav. Rev. 21, 581–601 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Dubb, A., Gur, R., Avants, B. & Gee, J. Characterization of sexual dimorphism in the human corpus callosum. Neuroimage 20, 512–519 (2003).

    Article  PubMed  Google Scholar 

  97. Hwang, S. J. et al. Gender differences in the corpus callosum of neonates. Neuroreport 15, 1029–1032 (2004).

    Article  PubMed  Google Scholar 

  98. Witelson, S. F. The brain connection: the corpus callosum is larger in left-handers. Science 229, 665–668 (1985).

    Article  CAS  PubMed  Google Scholar 

  99. Witelson, S. F. & Goldsmith, C. H. The relationship of hand preference to anatomy of the corpus callosum in men. Brain Res. 545, 175–182 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Habib, M. et al. Effects of handedness and sex on the morphology of the corpus callosum: a study with brain magnetic resonance imaging. Brain Cogn. 16, 41–61 (1991).

    Article  CAS  PubMed  Google Scholar 

  101. Giedd, J. N. et al. Quantitative morphology of the corpus callosum in attention deficit hyperactivity disorder. Am. J. Psychiatry 151, 665–669 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Magara, F., Ricceri, L., Wolfer, D. P. & Lipp, H. -P. The acallosal mouse strain I/LnJ: a putative model of ADHD? Neurosci. Biobehav. Rev. 24, 45–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. von Plessen, K. et al. Less developed corpus callosum in dyslexic subjects—a structural MRI study. Neuropsychologia 40, 1035–1044 (2002).

    Article  PubMed  Google Scholar 

  104. Innocenti, G. M., Ansermet, F. & Parnas, J. Schizophrenia, neurodevelopment and corpus callosum. Mol. Psychiatry 8, 261–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Portera-Calliau, C., Weimer, R. W., De Paola, V., Caroni, P. & Svoboda, K. Diverse modes of axon elaboration in the developing neocortex. PLoS Biol. 3, e272 (2005).

    Article  CAS  Google Scholar 

  106. Bagri, A. Cheng, H. J., Yaron, A., Pleasure, S. J. & Tessier-Lavigne, M. Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphoring family. Cell 113, 285–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Ernst, A. F., Gallo, G., Letourneau, P. C. & McLoon, S. Stabilization of growing retinal axons by the combined signalling of nitric oxide and brain-derived neurotrophic factor. J. Neurosci. 20, 1458–1469 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. McLaughlin, T., Hindges, R., Yates, P. A. & O'Leary, D. D. M. Bifunctional action of ephrin-B1 as a repellent and attractant to control bidirectional branch extension in dorso-ventral retinotopic mapping. Development 130, 2407–2418 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. McLaughlin, T., Torborg, C. L., Feller, M. B. & O'Leary, D. D. M. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40, 1147–1160 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Muzio, L. & Mallamaci, A. Emx1, Emx2 and Pax6 in specification, regionalization and arealization of the cerebral cortex. Cereb. Cortex. 13, 641–647 (2003).

    Article  PubMed  Google Scholar 

  111. Nakayama, A. Y., Harms, M. B. & Luo, L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tettoni, L., Gheorghita-Baechler, F., Bressoud, R., Welker, E. & Innocenti, G. M. Constant and variable aspects of axonal phenotype in cerebral cortex. Cereb. Cortex 8, 543–552 (1998). Shows that, surprisingly, axons from different species, systems and those that form different types of connection share several common features and relatively few variations of a common 'Bauplan'.

    Article  CAS  PubMed  Google Scholar 

  113. Thomson, A. M. & Morris, O. T. Selectivity in the inter-laminar connections made by neocortical neurons. J. Neurocytol. 31, 239–246 (2002).

    Article  PubMed  Google Scholar 

  114. Lein, S. & Shatz, C. J. Rapid regulation of brain-derived neurotrophic factor mRNA within eye-specific circuits during ocular dominance column formation. J. Neurosci. 20, 1470–1483 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bengtsson, S. I. et al. Extensive piano practicing has regionally specific effects on white matter development. Nature Neurosci. 8, 1148–1150 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Shepherd, G. M. G., Stepanyants, A., Bureau, I., Chklovskii, D. & Svoboda, K. Geometric and functional organization of cortical circuits. Nature Neurosci. 8, 782–790 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Klingberg, T. et al. Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25, 493–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, J. et al. Mapping postnatal mouse brain development with diffusion tensor microimaging. Neuroimage 26, 1042–1051 (2005).

    Article  PubMed  Google Scholar 

  119. Snook, L., Paulson, L. A., Roy, D., Phillips, L. & Beaulieu, C. Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage 26, 1164–1173 (2005).

    Article  PubMed  Google Scholar 

  120. Saleem, K. S. et al. Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 34, 685–700 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Knyazeva, M. G. & Innocenti, G. M. EEG coherence studies in the normal brain and after early-onset cortical pathologies. Brain Res. Rev. 36, 119–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Carmeli, C., Knyazeva, M. G., Innocenti, G. & De Feo, O. Assessment of EEG synchronization based on state-space analysis. Neuroimage 25, 339–354 (2005).

    Article  PubMed  Google Scholar 

  123. Knyazeva, M. G., Fornari, E., Meuli, R., Innocenti, G. M. & Maeder, P. Imaging a synchronous neuronal assembly in the visual brain. Neuroimage 20 Sep 2005 [epub ahead of print].

  124. Innocenti, G. M., Maeder, P., Knyazeva, M., Fornari, E. & Deonna, T. Functional activation of microgyric visual cortex in man. Ann. Neurol. 50, 672–676 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Zesiger, P., Kiper, D., Deonna, T. & Innocenti, G. M. Preserved visual function in a case of occipito-parietal microgyria. Ann. Neurol. 52, 492–498 (2002).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio M. Innocenti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez Gene

BDNF

EMX2

FGF8

FOXG1

Id2

PAX6

Rzrβ

FURTHER INFORMATION

Genetic control of brain development

Price's laboratory

Glossary

TARGET

(of growing axons). The site, or structure, towards which an axon grows — ultimately one or more neurons.

OCULAR DOMINANCE

The neuronal property of responding preferentially to stimuli presented to one eye or the other.

TRACER

A tracer denotes a substance that is actively transported or diffuses along axons. Anterograde tracers move from neuronal cell bodies towards axon terminals, whereas retrograde tracers move from axon terminals (or damaged axons) towards neuronal cell bodies. Many tracers move in both directions.

TELENCEPHALON

One of the major components of the forebrain; thalamocortical axons grow through its ventral part to reach its dorsal part, where the cerebral cortex forms.

DIENCEPHALON

The component of the forebrain in which the thalamus develops.

PIONEER PROJECTIONS

(Or axons). Axons that precede the growth of others to a given target, and are thought to guide later-growing projections.

RECEPTIVE FIELD

A region in the periphery that, when stimulated in an appropriate way, produces a response in a particular sensory neuron.

GROWTH CONE

A highly dynamic structure at the growing end of an axon (or dendrite) that steers axonal (or dendritic) growth by decoding cues in the environment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innocenti, G., Price, D. Exuberance in the development of cortical networks. Nat Rev Neurosci 6, 955–965 (2005). https://doi.org/10.1038/nrn1790

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1790

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing