[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Visual objects in context

Key Points

  • Visual objects in the real world are seen in contextual scenes. These contexts are usually coherent in terms of their physical and semantic content, and they usually occur in typical configurations. Objects can be used to make predictions about probable contexts and about other objects that might be found in the same scene, and contexts can be used to inform the identification of individual objects. A full understanding of object recognition must include a consideration of contextual and associative influences.

  • 'Context frames' might be used as structures of prototypical contexts that represent information about the identity of, and relationships between, objects that are likely to be present in each context (for example, a prototypical bathroom would contain a sink and a mirror, with the mirror typically set above the sink).

  • These context frames can be viewed as sets of expectations that are derived from exposure to real-world scenes. During recognition, a single object can activate appropriate context frames, and context frames can activate representations of expected objects. Scenes and individual objects can facilitate identification of each other and of other objects that are expected to occur in the same context.

  • To be useful for facilitating object recognition, the gist of a scene must be extracted and rapidly processed. This rapid extraction might rely on global cues conveyed by low spatial frequencies in an image, with higher spatial frequencies providing details gradually and slowly.

  • Structures within the medial temporal lobe are thought to be important for associative processing. The prefrontal and retrosplenial cortex also seem to be important for processing contextual information. I propose that the parahippocampal cortex serves as a switchboard-like multiplexer that connects the representations of individual objects in the inferior temporal cortex, according to typical associations represented in context frames.

  • In the proposed model, a blurred, low-frequency representation of a scene is projected rapidly from the visual cortex to the parahippocampal areas, and a context frame is activated on the basis of an experience-based guess. This context frame activates associated representations of objects in the inferior temporal cortex. Simultaneously, the low-frequency image of a fixated object in the scene is also projected rapidly to the prefrontal cortex, which sensitizes the representations of objects that resemble the fixated object. In the inferior temporal cortex, these two sets of objects intersect and the object can be identified.

  • The proposed model accounts for many existing findings, and produces testable predictions about the contextual facilitation of object recognition.

Abstract

We see the world in scenes, where visual objects occur in rich surroundings, often embedded in a typical context with other related objects. How does the human brain analyse and use these common associations? This article reviews the knowledge that is available, proposes specific mechanisms for the contextual facilitation of object recognition, and highlights important open questions. Although much has already been revealed about the cognitive and cortical mechanisms that subserve recognition of individual objects, surprisingly little is known about the neural underpinnings of contextual analysis and scene perception. Building on previous findings, we now have the means to address the question of how the brain integrates individual elements to construct the visual experience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Some of the intricate object relations that are accommodated in the brain.
Figure 2: Resolution of ambiguous objects by context.
Figure 3: Cortical areas involved in processing context.
Figure 4: The proposed model of how information in the parahippocampal cortex might activate visual representations in the inferior temporal cortex in a flexible manner.
Figure 5: The proposed model for the contextual facilitation of object recognition.

Similar content being viewed by others

References

  1. Biederman, I., Mezzanotte, R. J. & Rabinowitz, J. C. Scene perception: detecting and judging objects undergoing relational violations. Cogn. Psychol. 14, 143–177 (1982). A seminal study that characterizes the rules that govern a scene's structure and their influence on perception.

    Article  CAS  PubMed  Google Scholar 

  2. Bar, M. & Ullman, S. Spatial context in recognition. Perception 25, 343–352 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Puce, A., Allison, T., Asgari, M., Gore, J. C. & McCarthy, G. Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J. Neurosci. 16, 5205–5215 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martin, A. et al. Neural correlates of category-specific knowledge. Nature 379, 649–652 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Ishai, A. et al. Distributed representation of objects in the human ventral visual pathway. Proc. Natl Acad. Sci. USA 96, 9379–9384 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grill-Spector, K., Kourtzi, Z. & Kanwisher, N. The lateral occipital complex and its role in object recognition. Vision Res. 41, 1409–1422 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Malach, R., Levy, I. & Hasson, U. The topography of high-order human object areas. Trends Cogn. Sci. 6, 176–184 (2002).

    Article  PubMed  Google Scholar 

  9. Tanaka, K. Neuronal mechanisms of object recognition. Science 262, 685–688 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Downing, P. E. et al. A cortical area selective for visual processing of the human body. Science 293, 2470–2473 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Bar, M. & Aminoff, E. Cortical analysis of visual context. Neuron 38, 347–358 (2003). Defines the cortical regions that are directly involved in the contextual analysis of visual objects.

    Article  CAS  PubMed  Google Scholar 

  13. Gabrieli, J. D., Poldrack, R. A. & Desmond, J. E. The role of left prefrontal cortex in language and memory. Proc. Natl Acad. Sci. USA 95, 906–913 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Biederman, I. et al. On the information extracted from a glance at a scene. J. Exp. Psychol. 103, 597–600 (1974).

    Article  CAS  PubMed  Google Scholar 

  15. Bartlett, F. C. Remembering: A Study in Experimental and Social Psychology (Cambridge Univ. Press, Cambridge, UK, 1932).

    Google Scholar 

  16. Mandler, J. M. in Memory Organization and Structure (ed. Puff, C. R.) 259–299 (Academic, New York, 1979).

    Google Scholar 

  17. Palmer, S. E. The effects of contextual scenes on the identification of objects. Mem. Cogn. 3, 519–526 (1975). One of the earliest and most compelling reports of contextual influences on object recognition.

    Article  CAS  Google Scholar 

  18. Piaget, J. The Child's Construction of Reality (Routledge & Kegan Paul, London, 1955).

    Google Scholar 

  19. Schank, R. C. in Theoretical Issues in Natural Language Processing (eds Schank, R. C. & Nash-Weber, B.) 117–121 (Tinlap, Arlington, Virginia, 1975).

    Google Scholar 

  20. Minsky, M. in The Psychology of Computer Vision (ed. Winston, P. H) 211–277 (McGraw-Hill, New York, 1975).

    Google Scholar 

  21. Friedman, A. Framing pictures: the role of knowledge in automatized encoding and memory for gist. J. Exp. Psychol. Gen. 108, 316–355 (1979). A thorough study of the concept of frames in contextual representations

    Article  CAS  PubMed  Google Scholar 

  22. Barsalou, L. W. in Frames, Fields, and Contrasts: New Essays in Semantic and Lexical Organization (eds Kittay, E. & Lehrer, A.) 21–74 (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1992).

    Google Scholar 

  23. Mandler, J. M. & Johnson, N. S. Some of the thousand words a picture is worth. J. Exp. Psychol. Hum. Learn. Mem. 2, 529–540 (1976).

    Article  CAS  Google Scholar 

  24. Intraub, H. et al. Boundary extension for briefly glimpsed photographs: do common perceptual processes result in unexpected memory distortions? J. Mem. Lang. 35, 118–134 (1996).

    Article  Google Scholar 

  25. Gottesman, C. V. & Intraub, H. Wide-angle memories of close-up scenes: a demonstration of boundary extension. Behav. Res. Methods Instrum. Comput. 31, 86–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Miller, M. B. & Gazzaniga, M. S. Creating false memories for visual scenes. Neuropsychologia 36, 513–520 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Hock, H. S. et al. Real-world schemata and scene recognition in adults and children. Mem. Cogn. 6, 423–431 (1978).

    Article  Google Scholar 

  28. Cutler, B. L. & Penrod, S. D. in Memory in Context: Context in Memory (eds Davies, G. M. & Thomson, D. M.) 231–244 (John Wiley & Sons Ltd, New York, 1988).

    Google Scholar 

  29. Oliva, A. & Torralba, A. Modeling the shape of a scene: a holistic representation of the spatial envelope. Int. J. Comput. Vision 42, 145–175 (2001). Provides computational demonstrations that low spatial frequencies are generally sufficient for scene categorization.

    Article  Google Scholar 

  30. Henderson, J. M. & Hollingworth, A. High-level scene perception. Annu. Rev. Psychol. 50, 243–271 (1999). A systematic review that elaborates on the opposition to the notion that context can facilitate object recognition.

    Article  CAS  PubMed  Google Scholar 

  31. Chun, M. M. Contextual cueing of visual attention. Trends Cogn. Sci. 4, 170–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Intraub, H. The representation of visual scenes. Trends Cogn. Sci. 1, 217–222 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Palmer, S. E. Vision Science. Photons to Phenomenology (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  34. Lowe, D. G. Perceptual Organization and Visual Recognition (Kluwer, Boston, 1985).

    Book  Google Scholar 

  35. Ullman, S. Aligning pictorial descriptions: an approach to object recognition. Cognition 32, 193–254 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Murphy, G. L. & Wisniewski, E. J. Categorizing objects in isolation and in scenes: what a superordinate is good for. J. Exp. Psychol. Learn. Mem. Cogn. 15, 572–586 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Davenport, J. L. & Potter, M. C. Scene consistency in object and background perception. Psychol. Sci. 15, 559–564 (2004).

    Article  PubMed  Google Scholar 

  38. Boyce, S. J., Pollatsek, A. & Rayner, K. Effect of background information on object identification. J. Exp. Psychol. Hum. Percept. Perform. 15, 556–566 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Metzger, R. L. & Antes, J. R. The nature of processing early in picture perception. Psychol. Res. 45, 267–274 (1983).

    Article  CAS  PubMed  Google Scholar 

  40. Bar, M. A cortical mechanism for triggering top–down facilitation in visual object recognition. J. Cogn. Neurosci. 15, 600–609 (2003). Describes some of the conceptual bases for the model of contextual facilitation that is proposed in this review.

    Article  PubMed  Google Scholar 

  41. Kosslyn, S. M. Image and Brain (MIT Press, Cambridge, Massachusetts, 1994).

    Google Scholar 

  42. de Graef, P., de Troy, A. & d'Ydewalle, G. Local and global contextual constraints on the identification of objects in scenes. Can. J. Psychol. 46, 489–508 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Hollingworth, A. & Henderson, J. M. Does consistent scene context facilitate object perception? J. Exp. Psychol. Gen. 127, 398–415 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Auckland, M., Cave, K. R. & Donnelly, N. Perceptual errors in object recognition are reduced by the presence of context objects. Abstr. Psychon. Soc. 8, 109 (2003).

    Google Scholar 

  45. VanRullen, R. & Thorpe, S. J. The time course of visual processing: from early perception to decision-making. J. Cogn. Neurosci. 13, 454–461 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Potter, M. C. & Faulconer, B. A. Time to understand pictures and words. Nature 253, 437–438 (1975). This paper reports evidence for the speed with which a scene can be comprehended.

    Article  CAS  PubMed  Google Scholar 

  47. Ullman, S. High-Level Vision (MIT Press, Cambridge, Massachusetts, 1996).

    Book  Google Scholar 

  48. Gibson, J. J. The Ecological Approach to Visual Perception (Houghton Mifflin, Boston, 1979).

    Google Scholar 

  49. Moores, E., Laiti, L. & Chelazzi, L. Associative knowledge controls deployment of visual selective attention. Nature Neurosci. 6, 182–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Rumelhart, D. E., McClelland, J. E. & The PDP Research Group. Parallel Distributed Processing: Explorations in the Microstructure of Cognition Vol. 1 (MIT Press, Cambridge, Massachusetts, 1986).

    Google Scholar 

  51. Sigman, M. et al. On a common circle: natural scenes and Gestalt rules. Proc. Natl Acad. Sci. USA 98, 1935–1940 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McCauley, C. et al. Early extraction of meaning from pictures and its relation to conscious identification. J. Exp. Psychol. Hum. Percept. Perform. 6, 265–276 (1980).

    Article  CAS  PubMed  Google Scholar 

  53. Carr, T. H. et al. Words, pictures, and priming: on semantic activation, conscious identification, and the automaticity of information processing. J. Exp. Psychol. Hum. Percept. Perform. 8, 757–777 (1982).

    Article  CAS  PubMed  Google Scholar 

  54. Bar, M. & Biederman, I. Subliminal visual priming. Psychol. Sci. 9, 464–469 (1998).

    Article  Google Scholar 

  55. Potter, M. C. Short-term conceptual memory for pictures. J. Exp. Psychol. Hum. Learn. Mem. 2, 509–522 (1976).

    Article  CAS  Google Scholar 

  56. Intraub, H. Rapid conceptual identification of sequentially presented pictures. J. Exp. Psychol. Learn. Mem. Cogn. 10, 115–125 (1981).

    Article  Google Scholar 

  57. Loftus, G. R. in Eye Movements and Psychological Processes (eds Senders, J. & Monty, R.) 499–513 (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1976).

    Google Scholar 

  58. Schyns, P. G. & Oliva, A. Flexible, diagnosticity-driven, rather than fixed, perceptually determined scale selection in scene and face recognition. Perception 26, 1027–1038 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Schyns, P. G. & Oliva, A. From blobs to boundary edges: evidence for time- and spatial- dependent scene recognition. Psychol. Sci. 5, 195–200 (1994). An elegant study showing that observers can categorize a scene briefly on the basis of the low-spatial-frequency content in the image.

    Article  Google Scholar 

  60. Chun, M. M. & Jiang, Y. Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cogn. Psychol. 36, 28–71 (1998). A convincing demonstration that contextual information can be learned without awareness.

    Article  CAS  PubMed  Google Scholar 

  61. Chun, M. M. & Phelps, E. A. Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neurosci. 2, 844–847 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Good, M., de Hoz, L. & Morris, R. G. Contingent versus incidental context processing during conditioning: dissociation after excitotoxic hippocampal plus dentate gyrus lesions. Hippocampus 8, 147–159 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Li, F. F. et al. Rapid natural scene categorization in the near absence of attention. Proc. Natl Acad. Sci. USA 99, 9596–9601 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mathis, K. M. Semantic interference from objects both in and out of a scene context. J. Exp. Psychol. Learn. Mem. Cogn. 28, 171–182 (2002).

    Article  PubMed  Google Scholar 

  65. Kouider, S. & Dupoux, E. Partial awareness creates the 'illusion' of subliminal semantic priming. Psychol. Sci. 15, 75–81 (2004).

    Article  PubMed  Google Scholar 

  66. Tsivilis, D., Otten, L. J. & Rugg, M. D. Context effects on the neural correlates of recognition memory: an electrophysiological study. Neuron 31, 497–505 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Olson, I. R., Chun, M. M. & Allison, T. Contextual guidance of attention: human intracranial event-related potential evidence for feedback modulation in anatomically early temporally late stages of visual processing. Brain 124, 1417–1425 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Kassam, K. S., Aminoff, E. & Bar, M. Spatial-temporal cortical processing of contextual associations. Soc. Neurosci. Abstr. 128.8 (2003).

  69. Squire, L. R., Stark, C. E. L. & Clark, R. E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004). A clear and thorough review of the controversy surrounding the functional distinction of the various sub-regions within the medial temporal lobe.

    Article  CAS  PubMed  Google Scholar 

  70. Brown, M. W. & Aggleton, J. P. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nature Rev. Neurosci. 2, 51–61 (2001).

    Article  CAS  Google Scholar 

  71. Eichenbaum, H. The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav. Brain Res. 127, 199–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Schacter, D. L. & Wagner, A. D. Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus 9, 7–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Giovanello, K. S., Verfaellie, M. & Keane, M. M. Disproportionate deficit in associative recognition relative to item recognition in global amnesia. Cogn. Affect. Behav. Neurosci. 3, 186–194 (2003).

    Article  PubMed  Google Scholar 

  74. Stark, C. E. & Squire, L. R. Simple and associative recognition memory in the hippocampal region. Learn. Mem. 8, 190–197 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aguirre, G. K. et al. The parahippocampus subserves topographical learning in man. Cereb. Cortex 6, 823–829 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998). This paper coined the term 'parahippocampal place area' (PPA).

    Article  CAS  PubMed  Google Scholar 

  77. Maguire, E. A. et al. Knowing where things are: parahippocampal involvement in encoding object locations in virtual large-scale space. J. Cogn. Neurosci. 10, 61–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Epstein, R., Graham, K. S. & Downing, P. E. Viewpoint-specific scene representations in human parahippocampal cortex. Neuron 37, 865–876 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Sanocki, T. & Epstein, W. Priming spatial layout of scenes. Psychol. Sci. 8, 374–378 (1997).

    Article  Google Scholar 

  80. Christou, C. G. & Bülthoff, H. H. View dependence in scene recognition after active learning. Mem. Cogn. 27, 996–1007 (1999).

    Article  CAS  Google Scholar 

  81. Levy, I. et al. Center-periphery organization of human object areas. Nature Neurosci. 4, 533–539 (2001). Provides a systematic alternative view of the organization of the visual cortex.

    Article  CAS  PubMed  Google Scholar 

  82. Epstein, R. A. The cortical basis of visual scene processing. Visual Cogn. (in the press).

  83. Nakamura, K. et al. Functional delineation of the human occipito-temporal areas related to face and scene processing. A PET study. Brain 123, 1903–1912 (2000).

    Article  PubMed  Google Scholar 

  84. Stern, C. E. et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc. Natl Acad. Sci. USA 93, 8660–8665 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gaffan, D. Scene-specific memory for objects: a model of episodic memory impairment in monkeys with fornix transection. J. Cogn. Neurosci. 6, 305–320 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Bartels, A. & Zeki, S. Functional brain mapping during free viewing of natural scenes. Hum. Brain Mapp. 21, 75–85 (2004).

    Article  PubMed  Google Scholar 

  87. Bar, M. et al. Cortical mechanisms of explicit visual object recognition. Neuron 29, 529–535 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Kutas, M. & Hillyard, S. A. Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207, 203–205 (1980).

    Article  CAS  PubMed  Google Scholar 

  89. Ganis, G. & Kutas, M. An electrophysiological study of scene effects on object identification. Brain Res. Cogn. Brain Res. 16, 123–144 (2003). Reports interesting observations about the temporal dynamics of contextual analysis in scene recognition.

    Article  PubMed  Google Scholar 

  90. Smith, M. E., Stapleton, J. M. & Halgren, E. Human medial temporal lobe potentials evoked in memory and language tasks. Electroencephalogr. Clin. Neurophysiol. 63, 145–159 (1986).

    Article  CAS  PubMed  Google Scholar 

  91. McCarthy, G. et al. Language-related field potentials in the anterior-medial temporal lobe: I. Intracranial distribution and neural generators. J. Neurosci. 15, 1080–1089 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Paivio, A. Imagery and Verbal Processes (Holt, Reinhart, & Winston, New York, 1971).

    Google Scholar 

  93. Paivio, A. Dual coding theory: retrospect and current status. Can. J. Psychol. 45, 255–287 (1991).

    Article  Google Scholar 

  94. Glaser, W. R. Picture naming. Cognition 42, 61–105 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Riddoch, M. J. et al. Semantic systems or system? Neuropsychological evidence re-examined. Cogn. Neuropsychol. 5, 3–25 (1988).

    Article  Google Scholar 

  96. Holcomb, P. J. & McPherson, W. B. Event-related brain potentials reflect semantic priming in an object decision task. Brain Cogn. 24, 259–276 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. West, W. C. & Holcomb, P. J. Imaginal, semantic, and surface-level processing of concrete and abstract words: an electrophysiological investigation. J. Cogn. Neurosci. 12, 1024–1037 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Federmeier, K. D. & Kutas, M. Meaning and modality: influences of context, semantic memory organization, and perceptual predictability on picture processing. J. Exp. Psychol. Learn. Mem. Cogn. 27, 202–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Vandenberghe, R. et al. Functional anatomy of a common semantic system for words and pictures. Nature 383, 254–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Smith, M. C. & Magee, L. E. Tracing the time course of picture — word processing. J. Exp. Psychol. Gen. 109, 373–392 (1980).

    Article  CAS  PubMed  Google Scholar 

  101. Glaser, W. R. & Dungelhoff, F. J. The time course of picture-word interference. J. Exp. Psychol. Hum. Percept. Perform. 10, 640–654 (1984).

    Article  CAS  PubMed  Google Scholar 

  102. Marinkovic, K. et al. Spatiotemporal dynamics of modality-specific and supramodal word processing. Neuron 38, 487–497 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sperling, R. et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage 20, 1400–1410 (2003).

    Article  PubMed  Google Scholar 

  104. Halgren, E. et al. Spatio-temporal stages in face and word processing. 2. Depth-recorded potentials in the human frontal and Rolandic cortices. J. Physiol. (Paris) 88, 51–80 (1994).

    Article  CAS  Google Scholar 

  105. Dale, A. M. et al. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26, 55–67 (2000). One of the best demonstrations of high-resolution spatiotemporal imaging, with a clear description of the theoretical background.

    Article  CAS  PubMed  Google Scholar 

  106. Kuperberg, G. R. et al. Distinct patterns of neural modulation during the processing of conceptual and syntactic anomalies. J. Cogn. Neurosci. 15, 272–293 (2003).

    Article  PubMed  Google Scholar 

  107. Burgess, N. et al. A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. Neuroimage 14, 439–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Simons, J. S. & Spiers, H. J. Prefrontal and medial temporal lobe interactions in long-term memory. Nature Rev. Neurosci. 4, 637–648 (2003).

    Article  CAS  Google Scholar 

  109. Maguire, E. A. The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand. J. Psychol. 42, 225–238 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Cooper, B. G. & Mizumori, S. J. Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. J. Neurosci. 21, 3986–4001 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vann, S. D. & Aggleton, J. P. Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. Behav. Neurosci. 116, 85–94 (2002).

    Article  PubMed  Google Scholar 

  112. Düzel, E. et al. Human hippocampal and parahippocampal activity during visual associative recognition memory for spatial and nonspatial stimulus configurations. J. Neurosci. 23, 9439–9444 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Burwell, R. D. et al. Corticohippocampal contributions to spatial and contextual learning. J. Neurosci. 24, 3826–3836 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mendez, M. F. & Cherrier, M. M. Agnosia for scenes in topographagnosia. Neuropsychologia 41, 1387–1395 (2003).

    Article  PubMed  Google Scholar 

  115. Henke, K. et al. Human hippocampus associates information in memory. Proc. Natl Acad. Sci. USA 96, 5884–5889 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jackson, O. & Schacter, D. L. Encoding activity in anterior medial temporal lobe supports subsequent associative recognition. Neuroimage 21, 456–462 (2004).

    Article  PubMed  Google Scholar 

  117. Hayes, S. M. et al. An fMRI study of episodic memory: retrieval of object, spatial, and temporal order information. Behav. Neurosci. (in the press).

  118. Buckley, M. J. & Gaffan, D. Perirhinal cortex ablation impairs configural learning and paired-associate learning equally. Neuropsychologia 36, 535–546 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Insausti, R., Amaral, D. G. & Cowan, W. M. The entorhinal cortex of the monkey: II. Cortical afferents. J. Comp. Neurol. 264, 356–395 (1987).

    Article  CAS  PubMed  Google Scholar 

  120. Ranganath, C. & D'Esposito, M. Medial temporal lobe activity associated with active maintenance of novel information. Neuron 31, 865–873 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Valenstein, E. et al. Retrosplenial amnesia. Brain 110, 1631–1646 (1987).

    Article  PubMed  Google Scholar 

  122. Hirsh, R. The hippocampus and contextual retrieval of information from memory: a theory. Behav. Psychol. 12, 421–444 (1974).

    CAS  Google Scholar 

  123. Redish, A. D. The hippocampal debate: are we asking the right questions? Behav. Brain Res. 127, 81–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Miller, R. Cortico-Hippocampal Interplay and the Representation of Contexts in the Brain. Studies of Brain Function. Vol. 17 (Springer, Berlin, 1991).

    Book  Google Scholar 

  125. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, 1978).

    Google Scholar 

  126. O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  CAS  PubMed  Google Scholar 

  127. Naya, Y., Yoshida, M. & Miyashita, Y. Forward processing of long-term associative memory in monkey inferotemporal cortex. J. Neurosci. 23, 2861–2871 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Naya, Y., Yoshida, M. & Miyashita, Y. Backward spreading of memory-retrieval signal in the primate temporal cortex. Science 291, 661–664 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Higuchi, S. & Miyashita, Y. Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions. Proc. Natl Acad. Sci. USA 93, 739–743 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cox, D., Meyers, E. & Sinha, P. Contextually evoked object-specific responses in human visual cortex. Science 304, 115–117 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Torralba, A. Contextual priming for object detection. Int. J. Comput. Vision 53, 153–167 (2003).

    Article  Google Scholar 

  132. Kersten, D., Mamassian, P. & Yuille, A. Object perception as Bayesian inference. Annu. Rev. Psychol. 55, 271–304 (2004).

    Article  PubMed  Google Scholar 

  133. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  134. Dudai, Y. The Neurobiology of Memory (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

  135. McClelland, J. L. & Rumelhart, D. E. An interactive activation model of context effects in letter perception: part 1. An account of basic findings. Psychol. Rev. 88, 375–407 (1981).

    Article  Google Scholar 

  136. Felleman, D. J. & Van Essen, V. C. Distributed hierarchical processing in primate visual cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  PubMed  Google Scholar 

  137. Rempel-Clower, N. L. & Barbas, H. The laminar pattern of connections between prefrontal and anterior temporal cortices in the rhesus monkey is related to cortical structure and function. Cereb. Cortex 10, 851–865 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Ullman, S. Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. Cereb. Cortex 1, 1–11 (1995). Provides a theory and compelling demonstrations for the existence and role of bidirectional processes in the cortex.

    Article  Google Scholar 

  139. Grossberg, S. How does a brain build a cognitive code? Psychol. Rev. 87, 1–51 (1980).

    Article  CAS  PubMed  Google Scholar 

  140. Graboi, D. & Lisman, J. Recognition by top–down and bottom–up processing in cortex: the control of selective attention. J. Neurophysiol. 90, 798–810 (2003).

    Article  PubMed  Google Scholar 

  141. Merigan, W. H. & Maunsell, J. H. How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16, 369–402 (1993).

    Article  CAS  PubMed  Google Scholar 

  142. Bullier, J. & Nowak, L. G. Parallel versus serial processing: new vistas on the distributed organization of the visual system. Curr. Opin. Neurobiol. 5, 497–503 (1995).

    Article  CAS  PubMed  Google Scholar 

  143. Schmid, A. M. & Bar, M. Selective involvement of prefrontal cortex in visual object recognition. Soc. Neurosci. Abstr. 161.8 (2002).

  144. Schmid, A. M. & Bar, M. Activation of multiple candidate object representations during top–down facilitation of visual recognition. Soc. Neurosci. Abstr. 128.5 (2003).

  145. Pandya, D. N., Seltzer, B. & Barbas, H. in Comparative Primate Biology, Vol. IV: Neurosciences (eds Staklis, H. D. & Erwin, J.) 39–80 (Alan R. Liss, New York, 1988).

    Google Scholar 

  146. Mannan, S. K., Ruddock, K. H. & Wooding, D. S. Fixation patterns made during brief examination of two-dimensional images. Perception 26, 1059–1072 (1997).

    Article  CAS  PubMed  Google Scholar 

  147. Tamura, H. & Tanaka, K. Visual response properties of cells in the ventral and dorsal parts of the macaque inferotemporal cortex. Cereb. Cortex 11, 384–399 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Sugase, Y. et al. Global and fine information coded by single neurons in the temporal visual cortex. Nature 400, 869–873 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Antes, J. R. Recognizing and localizing features in brief picture presentations. Mem. Cogn. 5, 155–161 (1977).

    Article  CAS  Google Scholar 

  150. Nowak, L. G. & Bullier, J. in Cerebral Cortex: Extrastriate Cortex in Primate (eds Rockland, K., Kaas, J. & Peters, A.) 205–241 (Plenum, New York, 1997).

    Book  Google Scholar 

  151. Torralba, A. & Oliva, A. Statistics of natural image categories. Network 14, 391–412 (2003).

    Article  PubMed  Google Scholar 

  152. Rensink, R., O'Regan, J. & Clark, J. To see or not to see: the need for attention to perceive changes in scenes. Psychol. Sci. 8, 368–373 (1997).

    Article  Google Scholar 

  153. Simons, D. J. & Levin, D. T. Change blindness. Trends Cogn. Sci. 1, 261–267 (1997).

    Article  CAS  PubMed  Google Scholar 

  154. Haber, R. N. & Schindler, R. M. Errors in proofreading: evidence of syntactic control of letter processing. J. Exp. Psychol. Hum. Percept. Perf. 7, 573–579 (1981).

    Article  Google Scholar 

  155. Morris, A. L. & Harris, C. L. Sentence context, word recognition, and repetition blindness. J. Exp. Psychol. Learn. Mem. Cogn. 28, 962–982 (2002).

    Article  PubMed  Google Scholar 

  156. Kanwisher, N. G. Repetition blindness: type recognition without token individuation. Cognition 27, 117–143 (1987).

    Article  CAS  PubMed  Google Scholar 

  157. Green, R. T. & Courtis, M. C. Information theory and figure perception: the metaphor that failed. Acta Psychol. (Amst.) 25, 12–35 (1966).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank members of my lab, E. Aminoff, H. Boshyan, M. Fenske, A. Ghuman, N. Gronau and K. Kassam, as well as A. Torralba, N. Donnelly, M. Chun, B. Rosen and A. Oliva for help with this article. Supported by the National Institute of Neurological Disorders and Stroke, the James S. McDonnell Foundation (21st Century Science Research Award in Bridging Brain, Mind and Behavior) and the MIND Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Bar laboratory

Glossary

BASIC-LEVEL CONCEPTS

The level of abstraction that carries the most information, and at which objects are typically named most readily. For example, subjects would recognize an Australian Shepherd as a dog (that is, basic-level) more easily than as an animal (that is, superordinate-level) or as an Australian Shepherd (that is, subordinate-level).

PRIMING

An experience-based facilitation in perceiving a physical stimulus. In a typical object priming experiment, subjects are presented with stimuli (the primes) and their performance in object naming is recorded. Subsequently, subjects are presented with either the same stimuli or stimuli that have some defined relationship to the primes. Any stimulus-specific difference in performance is taken as a measure of priming.

MAGNETOENCEPHALOGRAPHY

(MEG). A non-invasive technology for functional brain mapping, which provides superior millisecond temporal resolution. It measures magnetic fields generated by electric currents from active neurons in the brain. By localizing the sources of these currents, MEG is used to reveal cortical function.

THE N400 SIGNAL

Originally described as a negative deflection in the event-related potential waveform occurring approximately 400 ms following the onset of contextually incongruent words in a sentence. It has consistently been linked to semantic processing. Although it is probably one of the best neural signatures of contextual processing, its exact functional significance has yet to be elucidated.

BAYESIAN METHODS

Use a priori probability distributions derived from experience to infer optimal expectations. They are based on Bayes' theorem, which can be seen as a rule for taking into account history information to produce a number representing the probability that a certain hypothesis is true.

HEBBIAN LEARNING

Builds on Hebb's learning rule that the connections between two neurons will strengthen if the neurons fire simultaneously. The original Hebbian rule has serious limitations, but it is used as the basis for more powerful learning rules. From a neurophysiological perspective, Hebbian learning can be described as a mechanism that increases synaptic efficacy as a function of synchrony between pre- and postsynaptic activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar, M. Visual objects in context. Nat Rev Neurosci 5, 617–629 (2004). https://doi.org/10.1038/nrn1476

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing