[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Phenol-soluble modulins and staphylococcal infection

A Corrigendum to this article was published on 16 October 2013

This article has been updated

Abstract

Staphylococcus aureus is an important human pathogen and a leading cause of death worldwide. Phenol-soluble modulins (PSMs) have recently emerged as a novel toxin family defining the virulence potential of highly aggressive S. aureus isolates. PSMs have multiple roles in staphylococcal pathogenesis, causing lysis of red and white blood cells, stimulating inflammatory responses and contributing to biofilm development and the dissemination of biofilm-associated infections. Moreover, the pronounced capacity of PSMs to kill human neutrophils after phagocytosis might explain failures in the development of anti-staphylococcal vaccines. Here, we discuss recent progress made in our understanding of the biochemical and genetic properties of PSMs and their role in S. aureus pathogenesis, and suggest potential avenues to target PSMs for the development of anti-staphylococcal drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenol-soluble modulin genes, amino acid sequences and structure.
Figure 2: Regulation of phenol-soluble modulins.
Figure 3: Export of phenol-soluble modulins.
Figure 4: Overview of phenol-soluble modulin activities.

Similar content being viewed by others

Change history

  • 16 October 2013

    In Figure 1 of the above article, the amino acid sequences for PSMα4 in part b and PSM-mec in part c were transposed, and the amino acid sequences of δ-toxin and PSMβ2 in part b contained minor errors. The figure has now been corrected online and the authors apologize to readers for any confusion caused.

References

  1. Wertheim, H. F. et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 5, 751–762 (2005).

    Article  Google Scholar 

  2. Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

    Article  CAS  Google Scholar 

  3. Klevens, R. M. et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298, 1763–1771 (2007).

    Article  CAS  Google Scholar 

  4. Otto, M. Staphylococcus epidermidis — the 'accidental' pathogen. Nature Rev. Microbiol. 7, 555–567 (2009).

    Article  CAS  Google Scholar 

  5. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  Google Scholar 

  6. Foster, T. J. Immune evasion by staphylococci. Nature Rev. Microbiol. 3, 948–958 (2005).

    Article  CAS  Google Scholar 

  7. Wang, R. et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nature Med. 13, 1510–1514 (2007).

    Article  CAS  Google Scholar 

  8. Kobayashi, S. D. et al. Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J. Infect. Dis. 204, 937–941 (2011).

    Article  CAS  Google Scholar 

  9. Mehlin, C., Headley, C. M. & Klebanoff, S. J. An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J. Exp. Med. 189, 907–918 (1999).

    Article  CAS  Google Scholar 

  10. McKevitt, A. I., Bjornson, G. L., Mauracher, C. A. & Scheifele, D. W. Amino acid sequence of a deltalike toxin from Staphylococcus epidermidis. Infect. Immun. 58, 1473–1475 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kretschmer, D. et al. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe 7, 463–473 (2010).

    Article  CAS  Google Scholar 

  12. Hajjar, A. M. et al. Cutting edge: functional interactions between Toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166, 15–19 (2001).

    Article  CAS  Google Scholar 

  13. Liles, W. C., Thomsen, A. R., O'Mahony, D. S. & Klebanoff, S. J. Stimulation of human neutrophils and monocytes by staphylococcal phenol-soluble modulin. J. Leukoc. Biol. 70, 96–102 (2001).

    CAS  PubMed  Google Scholar 

  14. Otto, M., O'Mahoney, D. S., Guina, T. & Klebanoff, S. J. Activity of Staphylococcus epidermidis phenol-soluble modulin peptides expressed in Staphylococcus carnosus. J. Infect. Dis. 190, 748–755 (2004).

    Article  CAS  Google Scholar 

  15. Periasamy, S., Chatterjee, S. S., Cheung, G. Y. & Otto, M. Phenol-soluble modulins in staphylococci: What are they originally for? Commun. Integr. Biol. 5, 275–277 (2012).

    Article  CAS  Google Scholar 

  16. Cheung, G. Y. et al. Staphylococcus epidermidis strategies to avoid killing by human neutrophils. PLoS Pathog. 6, e1001133 (2010).

    Article  Google Scholar 

  17. Rautenberg, M., Joo, H. S., Otto, M. & Peschel, A. Neutrophil responses to staphylococcal pathogens and commensals via the formyl peptide receptor 2 relates to phenol-soluble modulin release and virulence. Faseb J. 25, 1254–1263 (2011).

    Article  CAS  Google Scholar 

  18. Kornblum, J., Kreiswirth, B., Projan, S. J., Ross, H. & Novick, R. P. in Molecular Biology of the Staphylococci (ed. Novick, R. P.) 373–402 (VCH Publishers, 1990).

    Google Scholar 

  19. Vuong, C. et al. Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell. Microbiol. 6, 753–759 (2004).

    Article  CAS  Google Scholar 

  20. Yao, Y., Sturdevant, D. E. & Otto, M. Genomewide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms. J. Infect. Dis. 191, 289–298 (2005).

    Article  CAS  Google Scholar 

  21. Tsompanidou, E. et al. Distinct roles of phenol-soluble modulins in spreading of Staphylococcus aureus on wet surfaces. Appl. Environ. Microbiol. 79, 886–895 (2013).

    Article  CAS  Google Scholar 

  22. Periasamy, S. et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc. Natl Acad. Sci. USA 109, 1281–1286 (2012).

    Article  CAS  Google Scholar 

  23. Wang, R. et al. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J. Clin. Invest. 121, 238–248 (2011).

    Article  CAS  Google Scholar 

  24. Donvito, B. et al. Synergistic hemolytic activity of Staphylococcus lugdunensis is mediated by three peptides encoded by a non-agr genetic locus. Infect. Immun. 65, 95–100 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Watson, D. C., Yaguchi, M., Bisaillon, J. G., Beaudet, R. & Morosoli, R. The amino acid sequence of a gonococcal growth inhibitor from Staphylococcus haemolyticus. Biochem. J. 252, 87–93 (1988).

    Article  CAS  Google Scholar 

  26. Cheung, G. Y., Wang, R., Khan, B. A., Sturdevant, D. E. & Otto, M. Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect. Immun. 79, 1927–1935 (2011).

    Article  CAS  Google Scholar 

  27. Kretschmer, D., Nikola, N., Durr, M., Otto, M. & Peschel, A. The virulence regulator Agr controls the staphylococcal capacity to activate human neutrophils via the formyl peptide receptor 2. J. Innate Immun. 4, 201–212 (2012).

    Article  CAS  Google Scholar 

  28. Queck, S. Y. et al. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol. Cell 32, 150–158 (2008).

    Article  CAS  Google Scholar 

  29. Queck, S. Y. et al. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog. 5, e1000533 (2009).

    Article  Google Scholar 

  30. Chatterjee, S. S. et al. Distribution and regulation of the mobile genetic element-encoded phenol-soluble modulin PSM-mec in methicillin-resistant Staphylococcus aureus. PLoS ONE 6, e28781 (2011).

    Article  CAS  Google Scholar 

  31. Kaito, C. et al. Transcription and translation products of the cytolysin gene psm-mec on the mobile genetic element SCCmec regulate Staphylococcus aureus virulence. PLoS Pathog. 7, e1001267 (2011).

    Article  CAS  Google Scholar 

  32. Kaito, C. et al. Mobile genetic element SCCmec-encoded psm-mec RNA suppresses translation of agrA and attenuates MRSA virulence. PLoS Pathog. 9, e1003269 (2013).

    Article  CAS  Google Scholar 

  33. Somerville, G. A. et al. Synthesis and deformylation of Staphylococcus aureus δ-toxin are linked to tricarboxylic acid cycle activity. J. Bacteriol. 185, 6686–6694 (2003).

    Article  CAS  Google Scholar 

  34. Chatterjee, S. S. et al. Essential Staphylococcus aureus toxin export system. Nature Med. 19, 346–347 (2013).

    Article  Google Scholar 

  35. Otto, M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu. Rev. Microbiol. 64, 143–162 (2010).

    Article  CAS  Google Scholar 

  36. Loffler, B. et al. Staphylococcus aureus Panton-Valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog. 6, e1000715 (2010).

    Article  Google Scholar 

  37. Cheung, G. Y., Duong, A. C. & Otto, M. Direct and synergistic hemolysis caused by Staphylococcus phenol-soluble modulins: implications for diagnosis and pathogenesis. Microbes Infect. 14, 380–386 (2012).

    Article  CAS  Google Scholar 

  38. Li, M. et al. Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA 106, 5883–5888 (2009).

    Article  CAS  Google Scholar 

  39. Rasigade, J. P. et al. PSMs of hypervirulent Staphylococcus aureus act as intracellular toxins that kill infected osteoblasts. PLoS ONE 8, e63176 (2013).

    Article  CAS  Google Scholar 

  40. Surewaard, B. G. et al. Inactivation of staphylococcal phenol soluble modulins by serum lipoprotein particles. PLoS Pathog. 8, e1002606 (2012).

    Article  CAS  Google Scholar 

  41. Surewaard, B. et al. Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell. Microbiol. 15, 1427–1437 (2013).

    Article  CAS  Google Scholar 

  42. Geiger, T. et al. The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression. PLoS Pathog. 8, e1003016 (2012).

    Article  CAS  Google Scholar 

  43. Carnes, E. C. et al. Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nature Chem. Biol. 6, 41–45 (2010).

    Article  CAS  Google Scholar 

  44. DeLeo, F. R. & Otto, M. An antidote for Staphylococcus aureus pneumonia? J. Exp. Med. 205, 271–274 (2008).

    Article  CAS  Google Scholar 

  45. O'Toole, G. A. To build a biofilm. J. Bacteriol. 185, 2687–2689 (2003).

    Article  CAS  Google Scholar 

  46. Vuong, C., Gerke, C., Somerville, G. A., Fischer, E. R. & Otto, M. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J. Infect. Dis. 188, 706–718 (2003).

    Article  CAS  Google Scholar 

  47. Vuong, C., Kocianova, S., Yao, Y., Carmody, A. B. & Otto, M. Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J. Infect. Dis. 190, 1498–1505 (2004).

    Article  Google Scholar 

  48. Vuong, C., Saenz, H. L., Gotz, F. & Otto, M. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J. Infect. Dis. 182, 1688–1693 (2000).

    Article  CAS  Google Scholar 

  49. Yarwood, J. M., Bartels, D. J., Volper, E. M. & Greenberg, E. P. Quorum sensing in Staphylococcus aureus biofilms. J. Bacteriol. 186, 1838–1850 (2004).

    Article  CAS  Google Scholar 

  50. Schwartz, K., Syed, A. K., Stephenson, R. E., Rickard, A. H. & Boles, B. R. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 8, e1002744 (2012).

    Article  CAS  Google Scholar 

  51. Cogen, A. L. et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J. Invest. Dermatol. 130, 192–200 (2010).

    Article  CAS  Google Scholar 

  52. Joo, H. S., Cheung, G. Y. & Otto, M. Antimicrobial activity of community-associated methicillin-resistant Staphylococcus aureus is caused by phenol-soluble modulin derivatives. J. Biol. Chem. 286, 8933–8940 (2011).

    Article  CAS  Google Scholar 

  53. Ye, R. D. et al. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol. Rev. 61, 119–161 (2009).

    Article  CAS  Google Scholar 

  54. Bloes, D. A., Otto, M., Peschel, A. & Kretschmer, D. Enterococcus faecium stimulates human neutrophils via the formyl-peptide receptor 2. PLoS ONE 7, e39910 (2012).

    Article  CAS  Google Scholar 

  55. Liu, M. et al. Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes. Sci. Rep. 2, 786 (2012).

    Article  Google Scholar 

  56. Schreiner, J. et al. Staphylococcus aureus phenol-soluble modulin peptides modulate dendritic cell functions and increase in vitro priming of regulatory T cells. J. Immunol. 190, 3417–3426 (2013).

    Article  CAS  Google Scholar 

  57. Prat, C., Bestebroer, J., de Haas, C. J., van Strijp, J. A. & van Kessel, K. P. A new staphylococcal anti-inflammatory protein that antagonizes the formyl peptide receptor-like 1. J. Immunol. 177, 8017–8026 (2006).

    Article  CAS  Google Scholar 

  58. Prat, C. et al. A homolog of formyl peptide receptor-like 1 (FPRL1) inhibitor from Staphylococcus aureus (FPRL1 inhibitory protein) that inhibits FPRL1 and FPR. J. Immunol. 183, 6569–6578 (2009).

    Article  CAS  Google Scholar 

  59. Romano, M. Lipoxin and aspirin-triggered lipoxins. ScientificWorldJournal 10, 1048–1064 (2010).

    Article  CAS  Google Scholar 

  60. Forsman, H., Christenson, K., Bylund, J. & Dahlgren, C. Receptor-dependent and -independent immunomodulatory effects of phenol-soluble modulin peptides from Staphylococcus aureus on human neutrophils are abrogated through peptide inactivation by reactive oxygen species. Infect. Immun. 80, 1987–1995 (2012).

    Article  CAS  Google Scholar 

  61. Kennedy, A. D. et al. Targeting of α-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J. Infect. Dis. 202, 1050–1058 (2010).

    Article  Google Scholar 

  62. Anderson, A. S. et al. Staphylococcus aureus manganese transport protein C is a highly conserved cell surface protein that elicits protective immunity against S. aureus and Staphylococcus epidermidis. J. Infect. Dis. 205, 1688–1696 (2012).

    Article  CAS  Google Scholar 

  63. Burnie, J. P. et al. Identification of an immunodominant ABC transporter in methicillin-resistant Staphylococcus aureus infections. Infect. Immun. 68, 3200–3209 (2000).

    Article  CAS  Google Scholar 

  64. Otto, M. Novel targeted immunotherapy approaches for staphylococcal infection. Expert Opin. Biol. Ther. 10, 1049–1059 (2010).

    Article  CAS  Google Scholar 

  65. Doshi, R., Gutmann, D. A., Khoo, Y. S., Fagg, L. A. & van Veen, H. W. The choreography of multidrug export. Biochem. Soc. Trans. 39, 807–811 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, US National Institutes of Health (to M.O.) and by the German Research Council (grants SFB685 and TRR34 to A.P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Otto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peschel, A., Otto, M. Phenol-soluble modulins and staphylococcal infection. Nat Rev Microbiol 11, 667–673 (2013). https://doi.org/10.1038/nrmicro3110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3110

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology