[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The N-end rule pathway: emerging functions and molecular principles of substrate recognition

Key Points

  • The N-end rule defines the destabilizing activity of a given amino-terminal residue and its post-translational modification. Recognition components (N-recognins) of the N-end rule pathway recognize destabilizing N-terminal amino acids as an essential element of specific N-terminal degrons (N-degrons).

  • A functional N-degron is typically composed of a destabilizing N-terminal residue, an internal Lys residue (the site of polyubiquitylation) and an unstructured N-terminal extension. N-degrons can be generated through endoproteolytic cleavage of polypeptides, which exposes embedded N-degrons at the N termini of C-terminal fragments, or through the post-translational modification of pro-N-degrons, including their deamidation, oxidation, arginylation and acetylation.

  • In mammals, N-recognins characterized by the UBR box bind N-degrons and subsequently induce ubiquitylation and proteasomal degradation, whereas N-recognins in bacteria mediate proteolysis without ubiquitin-like molecules.

  • UBR1 (ubiquitin ligase N-recognin 1)-type N-recognins recognize type 1 and type 2 N-degrons through two distinct sites, the UBR box and the N-domain. The UBR box is a zinc-finger domain that binds a positively charged type 1 residue through a negatively charged, shallow groove. The N-domain appears to have evolutionarily originated from the bacterial N-recognin ClpS which binds a bulky hydrophobic type 2 residue through a deep hydrophobic pocket, within which the N-terminal side chain of the substrate is completely buried.

  • In Saccharomyces cerevisiae, Ubr1 of the N-end rule pathway and ubiquitin-fusion degradation 4 (Ufd4) of the UFD pathway form a complex and synergistically mediate ubiquitylation for both pathways. In complex with Ubr1, Ufd4 functions as an E4-like processivity-enhancing cofactor for Lys48-linked ubiquitylation by Ubr1 after Ubr1 recognizes a substrate.

  • In S. cerevisiae, an acetylated N-terminal residue, including the retained initiator Met, can act as an N-degron, thereby functioning as an alternative signal to initiate the N-end rule pathway. The Doa10 E3 ligase, in concert with the ubiquitin carrier 6 (Ubc6) or Ubc7 E2 enzymes, functions as a new type of N-recognin that mediates the polyubiquitylation of acetylated N-degrons.

Abstract

The N-end rule defines the protein-destabilizing activity of a given amino-terminal residue and its post-translational modification. Since its discovery 25 years ago, the pathway involved in the N-end rule has been thought to target only a limited set of specific substrates of the ubiquitin–proteasome system. Recent studies have provided insights into the components, substrates, functions and structural basis of substrate recognition. The N-end rule pathway is now emerging as a major cellular proteolytic system, in which the majority of proteins are born with or acquire specific N-terminal degradation determinants through protein-specific or global post-translational modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hierarchical structures of the N-end rule pathway.
Figure 2: Cooperative targeting by the N-end rule pathway and the UFD pathway.
Figure 3: Structures of N-recognins.
Figure 4: Post-translational modifications that generate N-degrons.
Figure 5: A broad range of substrates and functions.

Similar content being viewed by others

References

  1. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986). Identifies a proteolytic system, termed the N-end rule pathway, which relates the in vivo half-life of a protein to the identity of its N-terminal residue.

    CAS  PubMed  Google Scholar 

  2. Gonda, D. K. et al. Universality and structure of the N-end rule. J. Biol. Chem. 264, 16700–16712 (1989).

    CAS  PubMed  Google Scholar 

  3. Tasaki, T. & Kwon, Y. T. The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem. Sci. 32, 520–528 (2007).

    CAS  PubMed  Google Scholar 

  4. Graciet, E. et al. The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development. Proc. Natl Acad. Sci. USA 106, 13618–13623 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Potuschak, T. et al. PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc. Natl Acad. Sci. USA 95, 7904–7908 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stary, S. et al. PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues. Plant Physiol. 133, 1360–1366 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tobias, J. W., Shrader, T. E., Rocap, G. & Varshavsky, A. The N-end rule in bacteria. Science 254, 1374–1377 (1991). Provides evidence for the N-end rule pathway operating in bacteria, which do not have the UPS.

    CAS  PubMed  Google Scholar 

  8. Varshavsky, A. The N-end rule: functions, mysteries, uses. Proc. Natl Acad. Sci. USA 93, 12142–12149 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Varshavsky, A. The N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298–1345 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mogk, A., Schmidt, R. & Bukau, B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol. 17, 165–172 (2007).

    CAS  PubMed  Google Scholar 

  11. Shrader, T. E., Tobias, J. W. & Varshavsky, A. The N-end rule in Escherichia coli: cloning and analysis of the leucyl, phenylalanyl-tRNA-protein transferase gene aat. J. Bacteriol. 175, 4364–4374 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bachmair, A. & Varshavsky, A. The degradation signal in a short-lived protein. Cell 56, 1019–1032 (1989).

    CAS  PubMed  Google Scholar 

  13. Ravid, T. & Hochstrasser, M. Diversity of degradation signals in the ubiquitin–proteasome system. Nature Rev. Mol. Cell Biol. 9, 679–690 (2008).

    CAS  Google Scholar 

  14. Prakash, S., Tian, L., Ratliff, K. S., Lehotzky, R. E. & Matouschek, A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nature Struct. Mol. Biol. 11, 830–837 (2004).

    CAS  Google Scholar 

  15. Suzuki, T. & Varshavsky, A. Degradation signals in the lysine-asparagine sequence space. EMBO J. 18, 6017–6026 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Baker, R. T. & Varshavsky, A. Yeast N-terminal amidase. A new enzyme and component of the N-end rule pathway. J. Biol. Chem. 270, 12065–12074 (1995).

    CAS  PubMed  Google Scholar 

  17. Balzi, E., Choder, M., Chen, W. N., Varshavsky, A. & Goffeau, A. Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae. J. Biol. Chem. 265, 7464–7471 (1990).

    CAS  PubMed  Google Scholar 

  18. Li, J. & Pickart, C. M. Binding of phenylarsenoxide to Arg-tRNA protein transferase is independent of vicinal thiols. Biochemistry 34, 15829–15837 (1995).

    CAS  PubMed  Google Scholar 

  19. Bartel, B., Wunning, I. & Varshavsky, A. The recognition component of the N-end rule pathway. EMBO J. 9, 3179–3189 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dohmen, R. J., Madura, K., Bartel, B. & Varshavsky, A. The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme. Proc. Natl Acad. Sci. USA 88, 7351–7355 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Byrd, C., Turner, G. C. & Varshavsky, A. The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor. EMBO J. 17, 269–277 (1998). Shows that the S. cerevisiae N-recognin Ubr1 controls peptide import through the degradation of Cup9, a transcriptional repressor of the peptide transporter Ptr2, as part of a feedback loop in peptide import.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Du, F., Navarro-Garcia, F., Xia, Z., Tasaki, T. & Varshavsky, A. Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain. Proc. Natl Acad. Sci. USA 99, 14110–14115 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Alagramam, K., Naider, F. & Becker, J. M. A recognition component of the ubiquitin system is required for peptide transport in Saccharomyces cerevisiae. Mol. Microbiol. 15, 225–234 (1995).

    CAS  PubMed  Google Scholar 

  24. Turner, G. C., Du, F. & Varshavsky, A. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 405, 579–583 (2000). Reveals that the degradation of Cup9, a transcriptional repressor of Ptr2, is allosterically activated by dipeptides with destabilizing N-terminal residues as part of a feedback mechanism that controls peptide import.

    CAS  PubMed  Google Scholar 

  25. Madura, K. & Varshavsky, A. Degradation of Gα by the N-end rule pathway. Science 265, 1454–1458 (1994).

    CAS  PubMed  Google Scholar 

  26. Hwang, C. S., Shemorry, A. & Varshavsky, A. Two proteolytic pathways regulate DNA repair by cotargeting the Mgt1 alkylguanine transferase. Proc. Natl Acad. Sci. USA 106, 2142–2147 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Eisele, F. & Wolf, D. H. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett. 582, 4143–4146 (2008).

    CAS  PubMed  Google Scholar 

  28. Heck, J. W., Cheung, S. K. & Hampton, R. Y. Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc. Natl Acad. Sci. USA 107, 1106–1111 (2010).

    CAS  PubMed  Google Scholar 

  29. Grigoryev, S. et al. A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway. J. Biol. Chem. 271, 28521–28532 (1996).

    CAS  PubMed  Google Scholar 

  30. Kwon, Y. T. et al. Altered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway. Mol. Cell. Biol. 20, 4135–4148 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, H., Piatkov, K. I., Brower, C. S. & Varshavsky, A. Glutamine-specific N-terminal amidase, a component of the N-end rule pathway. Mol. Cell 34, 686–695 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu, R. G. et al. Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms. J. Biol. Chem. 281, 32559–32573 (2006).

    CAS  PubMed  Google Scholar 

  33. Kaji, H., Novelli, G. D. & Kaji, A. A soluble amino acid-incorporating system from rat liver. Biochim. Biophys. Acta 76, 474–477 (1963).

    CAS  PubMed  Google Scholar 

  34. Kwon, Y. T., Kashina, A. S. & Varshavsky, A. Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway. Mol. Cell. Biol. 19, 182–193 (1999). Identifies the mammalian ATE1 genes encoding R-transferase isoforms, which mediate arginylation of N-terminal Asp, Glu and Cys.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rai, R. & Kashina, A. Identification of mammalian arginyltransferases that modify a specific subset of protein substrates. Proc. Natl Acad. Sci. USA 102, 10123–10128 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferber, S. & Ciechanover, A. Role of arginine-tRNA in protein degradation by the ubiquitin pathway. Nature 326, 808–811 (1987).

    CAS  PubMed  Google Scholar 

  37. Hu, R. G. et al. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 437, 981–986 (2005). Reports that the oxidation of N-terminal Cys in a set of GPCR regulators (RGS4, RGS5 and RGS16) is essential for its arginylation, which is inhibited by the depletion of oxygen or nitric oxide.

    CAS  PubMed  Google Scholar 

  38. Kwon, Y. T. et al. An essential role of N-terminal arginylation in cardiovascular development. Science 297, 96–99 (2002). Shows that mouse embryos deficient in arginylation die of defects in cardiac development and angiogenesis.

    CAS  PubMed  Google Scholar 

  39. Lee, M. J. et al. RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc. Natl Acad. Sci. USA 102, 15030–15035 (2005). Provides evidence for a set of GPCR regulators (RGS4, RGS5 and RGS16) being targeted by the N-end rule pathway through oxidation of their N-terminal Cys residue, which is required for their arginylation-dependent degradation.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kwon, Y. T. et al. The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc. Natl Acad. Sci. USA 95, 7898–7903 (1998). Describes cloning of mammalian genes encoding UBR1, the recognition E3 component of the N-end rule pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kwon, Y. T. et al. Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway. Mol. Cell. Biol. 23, 8255–8271 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwon, Y. T., Xia, Z., Davydov, I. V., Lecker, S. H. & Varshavsky, A. Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3α) of the N-end rule pathway. Mol. Cell. Biol. 21, 8007–8021 (2001). Shows that the mammalian N-end rule pathway is mediated by multiple N-recognins with redundant functions.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tasaki, T. et al. A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol. Cell. Biol. 25, 7120–7136 (2005). Identifies the UBR box-containing N-recognin family of the N-end rule pathway, including UBR1, UBR2, UBR4 and UBR5.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Choi, W. S. et al. Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nature Struct. Mol. Biol. 17, 1175–1181 (2010).

    CAS  Google Scholar 

  45. Matta-Camacho, E., Kozlov, G., Li, F. F. & Gehring, K. Structural basis of substrate recognition and specificity in the N-end rule pathway. Nature Struct. Mol. Biol. 17, 1182–1187 (2010).

    CAS  Google Scholar 

  46. Sriram, S. M. & Kwon, Y. T. The molecular principles of N-end rule recognition. Nature Struct. Mol. Biol. 17, 1164–1165 (2010). References 45 and 46 report the structures of UBR boxes from mammalian and S. cerevisiae N-recognins.

    CAS  Google Scholar 

  47. Tasaki, T. et al. The substrate recognition domains of the N-end rule pathway. J. Biol. Chem. 284, 1884–1895 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Xia, Z. et al. Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J. Biol. Chem. 283, 24011–24028 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tasaki, T. et al. Biochemical and genetic studies of UBR3, a ubiquitin ligase with a function in olfactory and other sensory systems. J. Biol. Chem. 282, 18510–18520 (2007).

    CAS  PubMed  Google Scholar 

  50. Sasaki, T. et al. Spatiotemporal regulation of c-Fos by ERK5 and the E3 ubiquitin ligase UBR1, and its biological role. Mol. Cell 24, 63–75 (2006).

    CAS  PubMed  Google Scholar 

  51. An, J. Y. et al. UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc. Natl Acad. Sci. USA 107, 1912–1917 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Graciet, E. & Wellmer, F. The plant N-end rule pathway: structure and functions. Trends Plant Sci. 15, 447–453 (2010).

    CAS  PubMed  Google Scholar 

  53. Garzon, M. et al. PRT6/At5g02310 encodes an Arabidopsis ubiquitin ligase of the N-end rule pathway with arginine specificity and is not the CER3 locus. FEBS Lett. 581, 3189–3196 (2007).

    CAS  PubMed  Google Scholar 

  54. Peltier, J. B. et al. Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J. Biol. Chem. 279, 4768–4781 (2004).

    CAS  PubMed  Google Scholar 

  55. Leibowitz, M. J. & Soffer, R. L. Enzymatic modification of proteins. VII. Substrate specificity of leucyl, phenylalanyl-transfer ribonucleic acid-protein transferase. J. Biol. Chem. 246, 5207–5212 (1971).

    CAS  PubMed  Google Scholar 

  56. Ninnis, R. L., Spall, S. K., Talbo, G. H., Truscott, K. N. & Dougan, D. A. Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli. EMBO J. 28, 1732–1744 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Watanabe, K. et al. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Nature 449, 867–871 (2007).

    CAS  PubMed  Google Scholar 

  58. Erbse, A. et al. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439, 753–756 (2006). Identifies E. coli ClpS, an adaptor for the ClpAP protease complex that is the recognition component for the N-end rule pathway.

    CAS  PubMed  Google Scholar 

  59. Roman-Hernandez, G., Grant, R. A., Sauer, R. T. & Baker, T. A. Molecular basis of substrate selection by the N-end rule adaptor protein ClpS. Proc. Natl Acad. Sci. USA 106, 8888–8893 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schmidt, R., Zahn, R., Bukau, B. & Mogk, A. ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Mol. Microbiol. 72, 506–517 (2009).

    CAS  PubMed  Google Scholar 

  61. Johnson, E. S., Bartel, B., Seufert, W. & Varshavsky, A. Ubiquitin as a degradation signal. EMBO J. 11, 497–505 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Johnson, E. S., Ma, P. C., Ota, I. M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995). Identifies components of the UFD pathway, including the Ufd4 E3 ligase, which acts as the recognition component.

    CAS  PubMed  Google Scholar 

  63. Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).

    CAS  PubMed  Google Scholar 

  64. Hwang, C. S., Shemorry, A., Auerbach, D. & Varshavsky, A. The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases. Nature Cell Biol. 12, 1177–1185 (2010). Shows that, in S. cerevisiae , the Ubr1 E3 ligase of the N-end rule pathway and the Ufd4 E3 ligase of the UFD pathway form a complex to accelerate the processivity for both types of substrates.

    CAS  PubMed  Google Scholar 

  65. Park, Y., Yoon, S. K. & Yoon, J. B. The HECT domain of TRIP12 ubiquitinates substrates of the ubiquitin fusion degradation pathway. J. Biol. Chem. 284, 1540–1549 (2009).

    CAS  PubMed  Google Scholar 

  66. Pegg, A. E. & Byers, T. L. Repair of DNA containing O6-alkylguanine. FASEB J. 6, 2302–2310 (1992).

    CAS  PubMed  Google Scholar 

  67. Turner, G. C. & Varshavsky, A. Detecting and measuring cotranslational protein degradation in vivo. Science 289, 2117–2120 (2000).

    CAS  PubMed  Google Scholar 

  68. Moran, U., Phillips, R. & Milo, R. SnapShot: key numbers in biology. Cell 141, 1262–1262.e1 (2010).

    PubMed  Google Scholar 

  69. Wang, K. H., Roman-Hernandez, G., Grant, R. A., Sauer, R. T. & Baker, T. A. The molecular basis of N-end rule recognition. Mol. Cell 32, 406–414 (2008). Details crystallography of the bacterial N-recognin ClpS and evidence that it recognizes a destabilizing N-terminal residue through a deep hydrophobic pocket.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zeth, K. et al. Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA. Nature Struct. Biol. 9, 906–911 (2002).

    CAS  PubMed  Google Scholar 

  71. Schuenemann, V. J. et al. Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS. EMBO Rep. 10, 508–514 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, K. H., Oakes, E. S., Sauer, R. T. & Baker, T. A. Tuning the strength of a bacterial N-end rule degradation signal. J. Biol. Chem. 283, 24600–24607 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dougan, D. A., Reid, B. G., Horwich, A. L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002).

    CAS  PubMed  Google Scholar 

  74. Dougan, D. A., Truscott, K. N. & Zeth, K. The bacterial N-end rule pathway: expect the unexpected. Mol. Microbiol. 76, 545–558 (2010).

    CAS  PubMed  Google Scholar 

  75. Guo, F., Esser, L., Singh, S. K., Maurizi, M. R. & Xia, D. Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+ chaperone, ClpA. J. Biol. Chem. 277, 46753–46762 (2002).

    CAS  PubMed  Google Scholar 

  76. Varshavsky, A. The N-end rule at atomic resolution. Nature Struct. Mol. Biol. 15, 1238–1240 (2008).

    CAS  Google Scholar 

  77. Arnesen, T. Towards a functional understanding of protein N-terminal acetylation. PLoS Biol. 9, e1001074 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Forte, G. M., Pool, M. R. & Stirling, C. J. N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol. 9, e1001073 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gautschi, M. et al. The yeast Nα-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol. Cell. Biol. 23, 7403–7414 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Polevoda, B. & Sherman, F. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J. Mol. Biol. 325, 595–622 (2003).

    CAS  PubMed  Google Scholar 

  81. Frottin, F. et al. The proteomics of N-terminal methionine cleavage. Mol. Cell. Proteomics 5, 2336–2349 (2006).

    CAS  PubMed  Google Scholar 

  82. Narita, K. Isolation of acetylpeptide from enzymic digests of TMV-protein. Biochim. Biophys. Acta 28, 184–191 (1958).

    CAS  PubMed  Google Scholar 

  83. Jornvall, H. Acetylation of protein N-terminal amino groups structural observations on α-amino acetylated proteins. J. Theor. Biol. 55, 1–12 (1975).

    CAS  PubMed  Google Scholar 

  84. Persson, B., Flinta, C., von Heijne, G. & Jornvall, H. Structures of N-terminally acetylated proteins. Eur. J. Biochem. 152, 523–527 (1985).

    CAS  PubMed  Google Scholar 

  85. Mayer, A., Siegel, N. R., Schwartz, A. L. & Ciechanover, A. Degradation of proteins with acetylated amino termini by the ubiquitin system. Science 244, 1480–1483 (1989).

    CAS  PubMed  Google Scholar 

  86. Hwang, C. S., Shemorry, A. & Varshavsky, A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973–977 (2010). Reports that acetylated N-terminal amino acids define a new class of N-degrons that are recognized by the Doa10 E3 ligase.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Deng, M. & Hochstrasser, M. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature 443, 827–831 (2006).

    CAS  PubMed  Google Scholar 

  88. Ravid, T., Kreft, S. G. & Hochstrasser, M. Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J. 25, 533–543 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Swanson, R., Locher, M. & Hochstrasser, M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation. Genes Dev. 15, 2660–2674 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Vembar, S. S. & Brodsky, J. L. One step at a time: endoplasmic reticulum-associated degradation. Nature Rev. Mol. Cell Biol. 9, 944–957 (2008).

    CAS  Google Scholar 

  91. Arfin, S. M. & Bradshaw, R. A. Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry 27, 7979–7984 (1988).

    CAS  PubMed  Google Scholar 

  92. Kendall, R. L. & Bradshaw, R. A. Isolation and characterization of the methionine aminopeptidase from porcine liver responsible for the co-translational processing of proteins. J. Biol. Chem. 267, 20667–20673 (1992).

    CAS  PubMed  Google Scholar 

  93. D'Angelo, D. D. et al. Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc. Natl Acad. Sci. USA 94, 8121–8126 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hamzah, J. et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453, 410–414 (2008).

    CAS  PubMed  Google Scholar 

  95. Decca, M. B. et al. Protein arginylation in rat brain cytosol: a proteomic analysis. Neurochem. Res. 31, 401–409 (2006).

    CAS  PubMed  Google Scholar 

  96. Karakozova, M. et al. Arginylation of b-actin regulates actin cytoskeleton and cell motility. Science 313, 192–196 (2006).

    CAS  PubMed  Google Scholar 

  97. Wong, C. C. et al. Global analysis of posttranslational protein arginylation. PLoS Biol. 5, e258 (2007).

    PubMed  PubMed Central  Google Scholar 

  98. Hennessey, E. S., Drummond, D. R. & Sparrow, J. C. Post-translational processing of the amino terminus affects actin function. Eur. J. Biochem. 197, 345–352 (1991).

    CAS  PubMed  Google Scholar 

  99. Martin, D. J. & Rubenstein, P. A. Alternate pathways for removal of the class II actin initiator methionine. J. Biol. Chem. 262, 6350–6356 (1987).

    CAS  PubMed  Google Scholar 

  100. Rubenstein, P. A. & Martin, D. J. NH2-terminal processing of Drosophila melanogaster actin. Sequential removal of two amino acids. J. Biol. Chem. 258, 11354–11360 (1983).

    CAS  PubMed  Google Scholar 

  101. Schmitz, S. et al. Drosophila ACT88F indirect flight muscle-specific actin is not N-terminally acetylated: a mutation in N-terminal processing affects actin function. J. Mol. Biol. 295, 1201–1210 (2000).

    CAS  PubMed  Google Scholar 

  102. Sheff, D. R. & Rubenstein, P. A. Identification of N-acetylmethionine as the product released during the NH2-terminal processing of a pseudo-class I actin. J. Biol. Chem. 264, 11491–11496 (1989).

    CAS  PubMed  Google Scholar 

  103. Zhang, F., Saha, S., Shabalina, S. A. & Kashina, A. Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation. Science 329, 1534–1537 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Rao, H., Uhlmann, F., Nasmyth, K. & Varshavsky, A. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410, 955–959 (2001). Shows that S. cerevisiae Scc1, a subunit of the cohesin complex, is degraded by the N-end rule pathway.

    CAS  PubMed  Google Scholar 

  105. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999).

    CAS  PubMed  Google Scholar 

  106. Hauf, S., Waizenegger, I. C. & Peters, J. M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293, 1320–1323 (2001).

    CAS  PubMed  Google Scholar 

  107. Ditzel, M. et al. Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nature Cell Biol. 5, 467–473 (2003).

    CAS  PubMed  Google Scholar 

  108. Sickmann, A. et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl Acad. Sci. USA 100, 13207–13212 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gavel, Y. & von Heijne, G. Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng. 4, 33–37 (1990).

    CAS  PubMed  Google Scholar 

  110. Neupert, W. & Herrmann, J. M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723–749 (2007).

    CAS  PubMed  Google Scholar 

  111. Gakh, O., Cavadini, P. & Isaya, G. Mitochondrial processing peptidases. Biochim. Biophys. Acta 1592, 63–77 (2002).

    CAS  PubMed  Google Scholar 

  112. Vogtle, F. N. et al. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139, 428–439 (2009).

    PubMed  Google Scholar 

  113. Vogtle, F. N. et al. Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 22, 2135–2143 (2011).

    PubMed  PubMed Central  Google Scholar 

  114. Hartl, F. U., Schmidt, B., Wachter, E., Weiss, H. & Neupert, W. Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol-cytochrome c reductase. Cell 47, 939–951 (1986).

    CAS  PubMed  Google Scholar 

  115. Hendrick, J. P., Hodges, P. E. & Rosenberg, L. E. Survey of amino-terminal proteolytic cleavage sites in mitochondrial precursor proteins: leader peptides cleaved by two matrix proteases share a three-amino acid motif. Proc. Natl Acad. Sci. USA 86, 4056–4060 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Decca, M. B. et al. Post-translational arginylation of calreticulin: a new isospecies of calreticulin component of stress granules. J. Biol. Chem. 282, 8237–8245 (2007).

    CAS  PubMed  Google Scholar 

  117. Corbett, E. F. & Michalak, M. Calcium, a signaling molecule in the endoplasmic reticulum? Trends Biochem. Sci. 25, 307–311 (2000).

    CAS  PubMed  Google Scholar 

  118. Carpio, M. A., Lopez Sambrooks, C., Durand, E. S. & Hallak, M. E. The arginylation-dependent association of calreticulin with stress granules is regulated by calcium. Biochem. J. 429, 63–72 (2010).

    CAS  PubMed  Google Scholar 

  119. Bray, M. et al. A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. Proc. Natl Acad. Sci. USA 91, 1256–1260 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Mulder, L. C. & Muesing, M. A. Degradation of HIV-1 integrase by the N-end rule pathway. J. Biol. Chem. 275, 29749–29753 (2000).

    CAS  PubMed  Google Scholar 

  121. de Groot, R. J., Rumenapf, T., Kuhn, R. J., Strauss, E. G. & Strauss, J. H. Sindbis virus RNA polymerase is degraded by the N-end rule pathway. Proc. Natl Acad. Sci. USA 88, 8967–8971 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lee, M. J. et al. Synthetic heterovalent inhibitors targeting recognition E3 components of the N-end rule pathway. Proc. Natl Acad. Sci. USA 105, 100–105 (2008).

    CAS  PubMed  Google Scholar 

  123. Sriram, S. M., Banerjee, R., Kane, R. S. & Kwon, Y. T. Multivalency-assisted control of intracellular signaling pathways: application for ubiquitin- dependent N-end rule pathway. Chem. Biol. 16, 121–131 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Sriram, S. M., Han, D. H. & Kim, S. T. Partners in crime: ubiquitin-mediated degradation and autophagy. Sci. Signal. 4, jc4 (2011).

    CAS  PubMed  Google Scholar 

  125. Graciet, E. et al. Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen. Proc. Natl Acad. Sci. USA 103, 3078–3083 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Storr, S. J., Carragher, N. O., Frame, M. C., Parr, T. & Martin, S. G. The calpain system and cancer. Nature Rev. Cancer 11, 364–374 (2011).

    CAS  Google Scholar 

  127. Varshavsky, A. The N-end rule and regulation of apoptosis. Nature Cell Biol. 5, 373–376 (2003).

    CAS  PubMed  Google Scholar 

  128. Hamilton, M. H., Cook, L. A., McRackan, T. R., Schey, K. L. & Hildebrandt, J. D. γ2 subunit of G protein heterotrimer is an N-end rule ubiquitylation substrate. Proc. Natl Acad. Sci. USA 100, 5081–5086 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Davydov, I. V. & Varshavsky, A. RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J. Biol. Chem. 275, 22931–22941 (2000).

    CAS  PubMed  Google Scholar 

  130. Schnupf, P., Zhou, J., Varshavsky, A. & Portnoy, D. A. Listeriolysin O secreted by Listeria monocytogenes into the host cell cytosol is degraded by the N-end rule pathway. Infect. Immun. 75, 5135–5147 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Tasaki for his help throughout the preparation of the manuscript, D. H. Han for editorial assistance, K. Gehring and H. K. Song for critical reading the manuscript, and K. A. Kim for discussions about the N-end rule pathway in the endoplasmic reticulum. Work in the authors' laboratories was supported by grants from the US National Institutes of Health (HL083365 to Y.T.K.), the World Class University (R31-2008-000-10103-0 to Y.T.K.) and the World Class Institute (WCI 2009-002 to B.Y.K.) through the National Research Foundation funded by the Ministry of Education, Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Tae Kwon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Bo Yeon Kim's homepage

Yong Tae Kwon's homepage

Glossary

E3 ligases

Proteins that recognize specific substrates and accelerate the transfer of ubiquitin from E2 conjugating enzymes to these substrates.

Ubiquitin

A protein with a size of 76 amino acids that exists in all eukaryotic cells and can be conjugated to Lys residues of substrates to provide a secondary degradation signal for the proteasome.

Tertiary destabilizing residues

Amino-terminal degradation determinants that can be recognized and bound by N-recognin through two distinct modifications, such as deamidation and arginylation.

Secondary destabilizing residues

Amino-terminal degradation determinants that can be recognized and bound by N-recognin through a single modification, such as arginylation.

Primary destabilizing residue

The amino-terminal residue of an N-end rule substrate, which acts as the N-terminal degradation determinant without further modification.

N-domain

The second substrate-recognition domain conserved in UBR1-type N-recognins, which binds to type 2 degrons and shares a similarity in the secondary structure with the ClpS N-recognin of bacteria.

Pro-N-degrons

Precursors of amino-terminal degrons (N-degrons), the modification or N-terminal exposure of which can create N-degrons through endoproteolytic cleavage.

Met aminopeptidase

(MetAP). Catalyses the removal of the amino-terminal Met residue when the second residue has a small-sized side chain (for example, Gly, Pro, Ala, Ser, Thr or Cys), and thus exposes the residues at position two at the N terminus.

E4 enzyme

A protein that promotes the processivity of polyubiquitylation by E3 without affecting substrate specificity.

Tetrahedral coordination

Fourfold bonding of a central ion through non-covalent interactions with residues in its proximity, such as a zinc ion interacting with two Cys and two His residues to form four non-covalent contacts.

Salt bridge

A combination of hydrogen bonding and electrostatic interactions in which both donor and acceptor atoms are fully charged for a hydrogen bond.

van der Waals packing

Tight packing of residues owing to weak attractive forces arising from the fluctuations in electron distribution around the nuclei of less-electronegative atoms.

Rotamer

A single side-chain conformation, which represents one dihedral-angle of all possible rotational isomers.

Steric clash

Occurs when two atoms are placed closer than the sum of their atomic radii, thus preventing them from occupying the same volume.

Effector caspases

Activated caspases that are produced from inactive pro-caspases through cleavage by initiator caspases and which subsequently cleave protein substrates to induce the apoptotic process.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriram, S., Kim, B. & Kwon, Y. The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat Rev Mol Cell Biol 12, 735–747 (2011). https://doi.org/10.1038/nrm3217

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3217

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing