[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Collective cell migration in morphogenesis, regeneration and cancer

Key Points

  • Collective cell migration is defined as the coordinated movement of multiple cells that retain cell–cell contacts while coordinating their actin dynamics and intracellular signalling.

  • Because the cells form a structural and functional unit, both active and passive cell translocation occur.

  • The movement of connected cells contributes to morphogenesis, wound healing and cancer invasion and each process underlies homologous but distinct molecular mechanisms of cell–cell interaction and pro-migratory extracellular signalling.

  • The concept of collective movement explains how the body forms and reshapes as well as how cancer cells destructively invade as a 'socially' organized mass.

Abstract

The collective migration of cells as a cohesive group is a hallmark of the tissue remodelling events that underlie embryonic morphogenesis, wound repair and cancer invasion. In such migration, cells move as sheets, strands, clusters or ducts rather than individually, and use similar actin- and myosin-mediated protrusions and guidance by extrinsic chemotactic and mechanical cues as used by single migratory cells. However, cadherin-based junctions between cells additionally maintain 'supracellular' properties, such as collective polarization, force generation, decision making and, eventually, complex tissue organization. Comparing different types of collective migration at the molecular and cellular level reveals a common mechanistic theme between developmental and cancer research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Types and variants of collective cell migration.
Figure 2: Molecular mechanisms of different forms of collective migration.
Figure 3: The lateral line primordium couples collective migration to differentiation.

Similar content being viewed by others

References

  1. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    CAS  PubMed  Google Scholar 

  2. Friedl, P. & Weigelin, B. Interstitial leukocyte trafficking and immune function. Nature Immunol. 9, 839–848 (2008).

    Google Scholar 

  3. Vaughan, R. B. & Trinkaus, J. P. Movements of epithelial cell sheets in vitro. J. Cell Sci. 1, 407–413 (1966).

    CAS  PubMed  Google Scholar 

  4. Friedl, P., Hegerfeldt, Y. & Tusch, M. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol. 48, 441–449 (2004).

    CAS  PubMed  Google Scholar 

  5. Friedl, P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14–23 (2004). Describes the concept of different individual and collective migration strategies in various systems that serve distinct purposes.

    CAS  PubMed  Google Scholar 

  6. Montell, D. J. Morphogenetic cell movements: diversity from modular mechanical properties. Science 322, 1502–1505 (2008). A comprehensive review of recent work on the mechanics of morphogenic tissue rearrangements.

    CAS  PubMed  Google Scholar 

  7. Nobes, C. D. & Hall, A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144, 1235–1244 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mattila, P. K. & Lappalainen, P. Filopodia: molecular architecture and cellular functions. Nature Rev. Mol. Cell Biol. 9, 446–454 (2008).

    CAS  Google Scholar 

  9. Friedl, P. & Wolf, K. Proteolytic interstitial cell migration: a five-step process. Cancer Metastasis Rev. 28, 129–135 (2009).

    PubMed  Google Scholar 

  10. Carmona-Fontaine, C. et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456, 957–961 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Farooqui, R. & Fenteany, G. Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J. Cell Sci. 118, 51–63 (2005).

    CAS  PubMed  Google Scholar 

  12. Simpson, K. J. et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nature Cell Biol. 10, 1027–1038 (2008).

    CAS  PubMed  Google Scholar 

  13. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for Rho GTPases in leading and following cells. Nature Cell Biol. 9, 1392–1400 (2007).

    CAS  PubMed  Google Scholar 

  14. Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature Cell Biol. 9, 893–904 (2007). References 13 and 14 show how collective cancer cell invasion is facilitated by tip cells; both leading cancer cells or leading stromal fibroblasts can pave the way to enhance invasion.

    CAS  PubMed  Google Scholar 

  15. Lee, G. Y., Kenny, P. A., Lee, E. H. & Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nature Methods 4, 359–365 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Friedl, P. et al. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res. 55, 4557–4560 (1995).

    CAS  PubMed  Google Scholar 

  17. Masson, V. V. et al. Mouse aortic ring assay: a new approach of the molecular genetics of angiogenesis. Biol. Proced. Online 4, 24–31 (2002).

    CAS  PubMed Central  Google Scholar 

  18. Affolter, M. et al. Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev. Cell 4, 11–18 (2003).

    CAS  PubMed  Google Scholar 

  19. Affolter, M. & Caussinus, E. Tracheal branching morphogenesis in Drosophila: new insights into cell behaviour and organ architecture. Development 135, 2055–2064 (2008).

    CAS  PubMed  Google Scholar 

  20. Lecaudey, V. & Gilmour, D. Organizing moving groups during morphogenesis. Curr. Opin. Cell Biol. 18, 102–107 (2006).

    CAS  PubMed  Google Scholar 

  21. Kibbey, M. C., Grant, D. S. & Kleinman, H. K. Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: an in vivo Matrigel model. J. Natl Cancer Inst. 84, 1633–1638 (1992).

    CAS  PubMed  Google Scholar 

  22. Becker, M. D. et al. In vivo fluorescence microscopy of corneal neovascularization. Graefes Arch. Clin. Exp. Ophthalmol. 236, 390–398 (1998).

    CAS  PubMed  Google Scholar 

  23. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    PubMed  Google Scholar 

  24. Siekmann, A. F. & Lawson, N. D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445, 781–784 (2007). References 23 and 24 show how tip and sprout cell fate is controlled through Notch-based lateral inhibition in mouse and zebrafish, respectively. Together with evidence for tracheal development in D. melanogaster (see references 88 and 89), these findings suggest that this polarity mechanism in branching morphogenesis is highly conserved throughout evolution.

    CAS  PubMed  Google Scholar 

  25. Alexander, S., Koehl, G. E., Hirschberg, M., Geissler, E. K. & Friedl, P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem. Cell Biol. 130, 1147–1154 (2008). First in vivo demonstration of collective invasion of cancer cells.

    CAS  PubMed  Google Scholar 

  26. Christiansen, J. J. & Rajasekaran, A. K. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66, 8319–8326 (2006).

    CAS  PubMed  Google Scholar 

  27. Niessen, C. M. Tight junctions/adherens junctions: basic structure and function. J. Invest. Dermatol. 127, 2525–2532 (2007).

    CAS  PubMed  Google Scholar 

  28. Kametani, Y. & Takeichi, M. Basal-to-apical cadherin flow at cell junctions. Nature Cell Biol. 9, 92–98 (2007).

    CAS  PubMed  Google Scholar 

  29. Yamada, S. & Nelson, W. J. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell–cell adhesion. J. Cell Biol. 178, 517–527 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. van Kempen, L. C. et al. Activated leukocyte cell adhesion molecule/CD166, a marker of tumor progression in primary malignant melanoma of the skin. Am. J. Pathol. 156, 769–774 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gavert, N., Ben-Shmuel, A., Raveh, S. & Ben-Ze'ev, A. L1-CAM in cancerous tissues. Expert Opin. Biol. Ther. 8, 1749–1757 (2008).

    CAS  PubMed  Google Scholar 

  32. Ewald, A. J., Brenot, A., Duong, M., Chan, B. S. & Werb, Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev. Cell 14, 570–581 (2008). Compelling live-cell imaging and immunohistochemistry of 3D mammary gland cultures that show that cells at the tips of growing buds, albeit devoid of lamellopodia and filopodia, protrude efficiently, which suggests a 'pushing' rather than a 'pulling' mechanism.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. di Bari, M. G. et al. Msx2 induces epithelial–mesenchymal transition in mouse mammary epithelial cells through upregulation of Cripto-1. J. Cell. Physiol. 219, 659–666 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Grunert, S., Jechlinger, M. & Beug, H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nature Rev. Mol. Cell Biol. 4, 657–665 (2003).

    Google Scholar 

  35. Lee, J. M., Dedhar, S., Kalluri, R. & Thompson, E. W. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J. Cell Biol. 172, 973–981 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Thompson, E. W. & Williams, E. D. EMT and MET in carcinoma—clinical observations, regulatory pathways and new models. Clin. Exp. Metastasis 25, 591–592 (2008).

    PubMed  Google Scholar 

  37. Schreiber, S. C. et al. Polysialylated NCAM represses E-cadherin-mediated cell–cell adhesion in pancreatic tumor cells. Gastroenterology 134, 1555–1566 (2008).

    CAS  PubMed  Google Scholar 

  38. Lehembre, F. et al. NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin. EMBO J. 27, 2603–2615 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei, J., Hortsch, M. & Goode, S. Neuroglian stabilizes epithelial structure during Drosophila oogenesis. Dev. Dyn. 230, 800–808 (2004).

    CAS  PubMed  Google Scholar 

  40. Massoumi, R. et al. Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. J. Exp. Med. 206, 221–232 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Salmenpera, P. et al. Formation and activation of fibroblast spheroids depend on fibronectin–integrin interaction. Exp. Cell Res. 314, 3444–3452 (2008).

    CAS  PubMed  Google Scholar 

  42. Belvindrah, R. Hankel, S., Walker, J., Patton, B. L. & Muller, U. β1 integrins control the formation of cell chains in the adult rostral migratory stream. J. Neurosci. 27, 2704–2717 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Khan, K. et al. Desmocollin switching in colorectal cancer. Br. J. Cancer 95, 1367–1370 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chidgey, M. & Dawson, C. Desmosomes: a role in cancer? Br. J. Cancer 96, 1783–1787 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Langbein, L. et al. Tight junction-related structures in the absence of a lumen: occludin, claudins and tight junction plaque proteins in densely packed cell formations of stratified epithelia and squamous cell carcinomas. Eur. J. Cell Biol. 82, 385–400 (2003).

    CAS  PubMed  Google Scholar 

  46. Smalley, K. S. et al. Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. Am. J. Pathol. 166, 1541–1554 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ito, A. et al. Increased expression of connexin 26 in the invasive component of lung squamous cell carcinoma: significant correlation with poor prognosis. Cancer Lett. 234, 239–248 (2006).

    CAS  PubMed  Google Scholar 

  48. Defranco, B. H. et al. Migrating cells retain gap junction plaque structure and function. Cell Commun. Adhes. 15, 273–288 (2008).

    CAS  PubMed  Google Scholar 

  49. Czyz, J. The stage-specific function of gap junctions during tumourigenesis. Cell. Mol. Biol. Lett. 13, 92–102 (2008).

    CAS  PubMed  Google Scholar 

  50. Vitorino, P. & Meyer, T. Modular control of endothelial sheet migration. Genes Dev. 22, 3268–3281 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fischer, R. S., Gardel, M., Ma, X., Adelstein, R. S. & Waterman, C. M. Local cortical cension by myosin II guides 3D endothelial cell branching. Curr. Biol. 19, 260–265 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nabeshima, K. et al. Front-cell-specific expression of membrane-type 1 matrix metalloproteinase and gelatinase A during cohort migration of colon carcinoma cells induced by hepatocyte growth factor/scatter factor. Cancer Res. 60, 3364–3369 (2000).

    CAS  PubMed  Google Scholar 

  53. Palmieri, D. et al. Procollagen I COOH-terminal fragment induces VEGF-A and CXCR4 expression in breast carcinoma cells. Exp. Cell Res. 314, 2289–2298 (2008).

    CAS  PubMed  Google Scholar 

  54. Wolf, K. & Friedl, P. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res. 68, 7247–7249 (2008).

    PubMed  Google Scholar 

  55. Smola, H. et al. Dynamics of basement membrane formation by keratinocyte–fibroblast interactions in organotypic skin culture. Exp. Cell Res. 239, 399–410 (1998).

    CAS  PubMed  Google Scholar 

  56. Schmidt, M. et al. EGFL7 regulates the collective migration of endothelial cells by restricting their spatial distribution. Development 134, 2913–2923 (2007).

    CAS  PubMed  Google Scholar 

  57. Lecaudey, V., Cakan-Akdogan, G., Norton, W. H. & Gilmour, D. Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development 135, 2695–2705 (2008).

    CAS  PubMed  Google Scholar 

  58. Aman, A. & Piotrowski, T. Wnt/β-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev. Cell 15, 749–761 (2008).

    CAS  PubMed  Google Scholar 

  59. Shintani, Y. et al. Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J. Cell Biol. 180, 1277–1289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    CAS  PubMed  Google Scholar 

  61. Valentin, G., Haas, P. & Gilmour, D. The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr. Biol. 17, 1026–1031 (2007).

    CAS  PubMed  Google Scholar 

  62. Hegerfeldt, Y., Tusch, M., Brocker, E. B. & Friedl, P. Collective cell movement in primary melanoma explants: plasticity of cell–cell interaction, β1-integrin function, and migration strategies. Cancer Res. 62, 2125–2130 (2002).

    CAS  PubMed  Google Scholar 

  63. Haas, P. & Gilmour, D. Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev. Cell 10, 673–680 (2006). By combining zebrafish genetics and in vivo imaging, this work shows that a few chemokine-sensing leader cells direct the migration of many non-responsive followers during lateral line development.

    CAS  PubMed  Google Scholar 

  64. Kolega, J. The movement of cell clusters in vitro: morphology and directionality. J. Cell Sci. 49, 15–32 (1981).

    CAS  PubMed  Google Scholar 

  65. Zaidel-Bar, R., Itzkovitz, S., Ma'ayan, A., Iyengar, R. & Geiger, B. Functional atlas of the integrin adhesome. Nature Cell Biol. 9, 858–867 (2007).

    CAS  PubMed  Google Scholar 

  66. Boguslavsky, S. et al. p120 catenin regulates lamellipodial dynamics and cell adhesion in cooperation with cortactin. Proc. Natl Acad. Sci. USA 104, 10882–10887 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. le Noble, F., Klein, C., Tintu, A., Pries, A. & Buschmann, I. Neural guidance molecules, tip cells, and mechanical factors in vascular development. Cardiovasc. Res. 78, 232–241 (2008).

    CAS  PubMed  Google Scholar 

  68. Ribeiro, C., Ebner, A. & Affolter, M. In vivo imaging reveals different cellular functions for FGF and Dpp signaling in tracheal branching morphogenesis. Dev. Cell 2, 677–683 (2002).

    CAS  PubMed  Google Scholar 

  69. Caussinus, E., Colombelli, J. & Affolter, M. Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Curr. Biol. 18, 1727–1734 (2008).

    CAS  PubMed  Google Scholar 

  70. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100, 209–219 (2000).

    CAS  PubMed  Google Scholar 

  71. Geisbrecht, E. R. & Montell, D. J. Myosin VI is required for E-cadherin-mediated border cell migration. Nature Cell Biol. 4, 616–620 (2002).

    CAS  PubMed  Google Scholar 

  72. Yana, I. et al. Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J. Cell Sci. 120, 1607–1614 (2007).

    CAS  PubMed  Google Scholar 

  73. Hendrix, M. J., Seftor, E. A., Hess, A. R. & Seftor, R. E. Molecular plasticity of human melanoma cells. Oncogene 22, 3070–3075 (2003).

    CAS  PubMed  Google Scholar 

  74. Gudjonsson, T. et al. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J. Cell Sci. 115, 39–50 (2002).

    CAS  PubMed  Google Scholar 

  75. Brachvogel, B. et al. Isolated Anxa5+/Sca-1+ perivascular cells from mouse meningeal vasculature retain their perivascular phenotype in vitro and in vivo. Exp. Cell Res. 313, 2730–2743 (2007).

    CAS  PubMed  Google Scholar 

  76. Nischt, R. et al. Lack of nidogen-1 and -2 prevents basement membrane assembly in skin-organotypic coculture. J. Invest. Dermatol. 127, 545–554 (2007).

    CAS  PubMed  Google Scholar 

  77. Rorth, P. Collective guidance of collective cell migration. Trends Cell Biol. 17, 575–579 (2007).

    CAS  PubMed  Google Scholar 

  78. Murphy, A. M. & Montell, D. J. Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J. Cell Biol. 133, 617–630 (1996).

    CAS  PubMed  Google Scholar 

  79. Fulga, T. A. & Rorth, P. Invasive cell migration is initiated by guided growth of long cellular extensions. Nature Cell Biol. 4, 715–719 (2002).

    CAS  PubMed  Google Scholar 

  80. Niewiadomska, P., Godt, D. & Tepass, U. DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144, 533–547 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pacquelet, A. & Rorth, P. Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J. Cell Biol. 170, 803–812 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Edwards, K. A. & Kiehart, D. P. Drosophila nonmuscle myosin II has multiple essential roles in imaginal disc and egg chamber morphogenesis. Development 122, 1499–1511 (1996).

    CAS  PubMed  Google Scholar 

  83. Bianco, A. et al. Two distinct modes of guidance signalling during collective migration of border cells. Nature 448, 362–365 (2007). Elegant genetic mosaic experiments that show how border cell migration results from two genetically and mechanistically distinct guidance mechanisms.

    CAS  PubMed  Google Scholar 

  84. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rorth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001).

    CAS  PubMed  Google Scholar 

  85. Llense, F. & Martin-Blanco, E. JNK signaling controls border cell cluster integrity and collective cell migration. Curr. Biol. 18, 538–544 (2008).

    CAS  PubMed  Google Scholar 

  86. Melani, M., Simpson, K. J., Brugge, J. S. & Montell, D. Regulation of cell adhesion and collective cell migration by hindsight and its human homolog RREB1. Curr. Biol. 18, 532–537 (2008).

    CAS  PubMed  Google Scholar 

  87. Sutherland, D., Samakovlis, C. & Krasnow, M. A. branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87, 1091–1101 (1996). Seminal work on the instructive role of the FGF ligand Branchless in the pattern of branching in the D. melanogaster tracheal system.

    CAS  PubMed  Google Scholar 

  88. Llimargas, M. The Notch pathway helps to pattern the tips of the Drosophila tracheal branches by selecting cell fates. Development 126, 2355–2364 (1999).

    CAS  PubMed  Google Scholar 

  89. Ghabrial, A. S. & Krasnow, M. A. Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 441, 746–749 (2006).

    CAS  PubMed  Google Scholar 

  90. Lu, P., Sternlicht, M. D. & Werb, Z. Comparative mechanisms of branching morphogenesis in diverse systems. J. Mammary Gland Biol. Neoplasia 11, 213–228 (2006).

    PubMed  PubMed Central  Google Scholar 

  91. Lu, P. & Werb, Z. Patterning mechanisms of branched organs. Science 322, 1506–1509 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ghysen, A. & Dambly-Chaudiere, C. The lateral line microcosmos. Genes Dev. 21, 2118–2130 (2007).

    CAS  PubMed  Google Scholar 

  93. David, N. B. et al. Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc. Natl Acad. Sci. USA 99, 16297–16302 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nechiporuk, A. & Raible, D. W. FGF-dependent mechanosensory organ patterning in zebrafish. Science 320, 1774–1777 (2008).

    CAS  PubMed  Google Scholar 

  95. Dambly-Chaudiere, C., Cubedo, N. & Ghysen, A. Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev. Biol. 7, 23 (2007).

    PubMed  PubMed Central  Google Scholar 

  96. Boldajipour, B. et al. Control of chemokine-guided cell migration by ligand sequestration. Cell 132, 463–473 (2008).

    CAS  PubMed  Google Scholar 

  97. Sainson, R. C. et al. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J. 19, 1027–1029 (2005).

    CAS  PubMed  Google Scholar 

  98. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gerhardt, H. VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4, 241–246 (2008).

    PubMed  PubMed Central  Google Scholar 

  100. Poujade, M. et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104, 15988–15993 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zelenka, P. S. & Arpitha, P. Coordinating cell proliferation and migration in the lens and cornea. Semin. Cell Dev. Biol. 19, 113–124 (2008).

    CAS  PubMed  Google Scholar 

  102. Grose, R. et al. A crucial role of β1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129, 2303–2315 (2002).

    CAS  PubMed  Google Scholar 

  103. Cowin, A. J. et al. Wound healing is defective in mice lacking tetraspanin CD151. J. Invest. Dermatol. 126, 680–689 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Moll, I., Houdek, P., Schafer, S., Nuber, U. & Moll, R. Diversity of desmosomal proteins in regenerating epidermis: immunohistochemical study using a human skin organ culture model. Arch. Dermatol. Res. 291, 437–446 (1999).

    CAS  PubMed  Google Scholar 

  105. Vaezi, A., Bauer, C., Vasioukhin, V. & Fuchs, E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev. Cell 3, 367–381 (2002).

    CAS  PubMed  Google Scholar 

  106. Nikolic, D. L., Boettiger, A. N., Bar-Sagi, D., Carbeck, J. D. & Shvartsman, S. Y. Role of boundary conditions in an experimental model of epithelial wound healing. Am J. Physiol. Cell Physiol. 291, C68–C75 (2006).

    CAS  PubMed  Google Scholar 

  107. Werner, S., Krieg, T. & Smola, H. Keratinocyte–fibroblast interactions in wound healing. J. Invest. Dermatol. 127, 998–1008 (2007).

    CAS  PubMed  Google Scholar 

  108. Nabeshima, K., Inoue, T., Shimao, Y., Kataoka, H. & Koono, M. Cohort migration of carcinoma cells: differentiated colorectal carcinoma cells move as coherent cell clusters or sheets. Histol. Histopathol. 14, 1183–1197 (1999).

    CAS  PubMed  Google Scholar 

  109. Hsu, M., Andl, T., Li, G., Meinkoth, J. L. & Herlyn, M. Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J. Cell Sci. 113, 1535–1542 (2000).

    CAS  PubMed  Google Scholar 

  110. Radunsky, G. S. & van Golen, K. L. The current understanding of the molecular determinants of inflammatory breast cancer metastasis. Clin. Exp. Metastasis 22, 615–620 (2005).

    PubMed  Google Scholar 

  111. Lahlou, H., Fanjul, M., Pradayrol, L., Susini, C. & Pyronnet, S. Restoration of functional gap junctions through internal ribosome entry site-dependent synthesis of endogenous connexins in density-inhibited cancer cells. Mol. Cell. Biol. 25, 4034–4045 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Daly, A. J., McIlreavey, L. & Irwin, C. R. Regulation of HGF and SDF-1 expression by oral fibroblasts—implications for invasion of oral cancer. Oral Oncol. 44, 646–651 (2008).

    CAS  PubMed  Google Scholar 

  113. Liotta, L. A., Kleinerman, J. & Saidel, G. M. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 34, 997–1004 (1974).

    CAS  PubMed  Google Scholar 

  114. Kusters, B. et al. Micronodular transformation as a novel mechanism of VEGF-A-induced metastasis. Oncogene 26, 5808–5815 (2007).

    CAS  PubMed  Google Scholar 

  115. Le, M. G. et al. Dermal lymphatic emboli in inflammatory and noninflammatory breast cancer: a French–Tunisian joint study in 337 patients. Clin. Breast Cancer 6, 439–445 (2005).

    PubMed  Google Scholar 

  116. Sternlicht, M. D. et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137–146 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Friedl, P. & Wolf, K. Proteolytic and non-proteolytic migration in tumor cells and leukocytes. Biochem. Soc. Symp. 70 277–285 (2003).

    CAS  Google Scholar 

  118. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Rev. Cancer 3, 362–374 (2003).

    CAS  Google Scholar 

  119. Toyama, Y., Peralta, X. G., Wells, A. R., Kiehart, D. P. & Edwards, G. S. Apoptotic force and tissue dynamics during Drosophila embryogenesis. Science 321, 1683–1686 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004).

    CAS  PubMed  Google Scholar 

  121. Kopfstein, L. et al. Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am. J. Pathol. 170, 1348–1361 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Teddy, J. M. & Kulesa, P. M. In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development 131, 6141–6151 (2004).

    CAS  PubMed  Google Scholar 

  123. Weijer, C. J. Dictyostelium morphogenesis. Curr. Opin. Genet. Dev. 14, 392–398 (2004).

    CAS  PubMed  Google Scholar 

  124. Kriebel, P. W., Barr, V. A., Rericha, E. C., Zhang, G. & Parent, C. A. Collective cell migration requires vesicular trafficking for chemoattractant delivery at the trailing edge. J. Cell Biol. 183, 949–961 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Siu, C. H., Lam, T. Y. & Choi, A. H. Inhibition of cell–cell binding at the aggregation stage of Dictyostelium discoideum development by monoclonal antibodies directed against an 80,000-dalton surface glycoprotein. J. Biol. Chem. 260, 16030–16036 (1985).

    CAS  PubMed  Google Scholar 

  126. Dormann, D. & Weijer, C. J. Propagating chemoattractant waves coordinate periodic cell movement in Dictyostelium slugs. Development 128, 4535–4543 (2001).

    CAS  PubMed  Google Scholar 

  127. Dormann, D., Weijer, G., Parent, C. A., Devreotes, P. N. & Weijer, C. J. Visualizing PI3 kinase-mediated cell–cell signaling during Dictyostelium development. Curr. Biol. 12, 1178–1188 (2002).

    CAS  PubMed  Google Scholar 

  128. Hafner, C. et al. Ephrin-B2 is differentially expressed in the intestinal epithelium in Crohn's disease and contributes to accelerated epithelial wound healing in vitro. World J. Gastroenterol. 11, 4024–4031 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Korff, T. & Augustin, H. G. Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J. Cell Sci. 112, 3249–3258 (1999).

    CAS  PubMed  Google Scholar 

  130. Montell, D. J., Rorth, P. & Spradling, A. C. Slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 71, 51–62 (1992).

    CAS  PubMed  Google Scholar 

  131. Gerharz, M. et al. Morphometric analysis of murine skin wound healing: standardization of experimental procedures and impact of an advanced multitissue array technique. Wound Repair Regen. 15, 105–112 (2007).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank O. Ilina and C. Rose for providing immunofluorescence and histological images. This work was supported by grants to P.F. from the Deutsche Krebshilfe (106950), Deutsche Forschungsgemeinschaft (FR 1155/8-2) and European Union (European Molecular Imaging Laboratories LSHC-CT-2004-503569).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

OMIM

breast cancer

colorectal carcinoma

endometrial carcinoma

melanoma

oral squamous cell carcinoma

rhabdomyosarcoma

FURTHER INFORMATION

Peter Friedl's homepage 1

Peter Friedl's homepage 2

Darren Gilmour's homepage

Glossary

Invasion

A hallmark of cancer, measured as cells breaking away from their origin through the basement membrane. We use this term to mean all forms of cell movement through three-dimensional tissue that involve a change in tissue structure and, eventually, tissue destruction.

Basement membrane

A sheet-like layer of interwoven macromolecules, including laminin, collagen IV and link proteins, that structurally anchor an epithelium or endothelium to the adjacent interstitial tissue. Epithelial or endothelial cells and stromal cells cooperate and deposit the macromolecules from either side.

Border cell

One of a small cluster of cells that delaminate from the follicular epithelium of the Drosophila melanogaster egg chamber and migrate in a stereotypical pattern towards the developing oocyte. Ablation studies suggest that the function of border cells is to generate the micropyle, a structure at the dorso-anterior side of the oocyte that allows sperm entry.

Neural crest

A population of migrating, pluripotent cells that appears transiently in the dorsal neuroectoderm. In the chick embryo, neural crest cells move as loosely associated strands or streams throughout the entire embryo and give rise to different tissues, including craniofacial bones and cartilage, the enteric and peripheral nervous systems and pigment cells.

Stroma

Interstitial tissue consisting of extracellular matrix and mesenchymal cells. The interface between stroma and adjacent epithelia and vessels is formed by a basement membrane layer.

Lateral line

A series of mechanosensory hair cell organs along the skin in fish and amphibia that detect changes in the surrounding water. Its precursor consists of neurogenic placodes, which migrate along defined paths and deposit clusters of cells behind them. These clusters differentiate into sensory hair cells that are analogous to those of the mammalian inner ear.

Matrigel plug assay

An experiment in which tumour cells are suspended in matrigel solution and injected into a mammal, usually a mouse or rat. Because of the avascular matrigel barrier, vessels from the host sprout into the transplant and generate a de novo vessel network.

Adherens junction

A punctated or linear cell–cell adhesion that contains cadherins and nectin, which are coupled to the actomyosin cytoskeleton by the adaptors α-, β- and γ-catenin and afadin (also known as AF6), respectively. Adherens junctions are dynamic structures that undergo continuous remodelling and provide cell–cell adhesion and signalling.

Integrin

A heterodimeric protein that consists of an α- and a β-chain that both mediate extracellular ligand binding and intracellular engagement of cytoskeletal and signalling proteins. Integrins provide adhesion and mechanotransduction as well as intracellular signal transduction.

Epithelial–mesenchymal transition

(EMT). The detachment of individual cells from an epithelium after downmodulation of cell–cell junctions, followed by single cell migration. The concept of EMT was established for morphogenic delamination of single cells into the mesenchyme and is discussed here in the context of early steps of cancer invasion.

Desmosomal protein

Desmoglein 1–4 and desmocollin 1–3 connect through desmosomal adaptor proteins (plakoglobin, plakophilin, desmoplakin and desmocollin) to the intermediate filament cytoskeleton. These cadherins form homophilic adhesions and provide mechanically strong intercellular junctions between epithelial cells.

Tight junction

A linear cell–cell adhesion complex in polarized epithelial and endothelial cells. Mediated by homophilic adhesion proteins, junction adhesion molecules, occludin and claudins, tight junctions form a tight barrier for the regulation of liquid, ion and nutrient flow across the epithelial barrier and contribute to cell polarity and signalling.

Pseudopodium

A morphologically dynamic cylindrical cell protrusion of <3 μm thickness. Pseudopodia are controlled by the small GTPase Rac and CDC42, result from rapid filamentous actin polymerization, and allow cells to elongate, probe and adhere to other cells and to the extracellular matrix.

Lamellipodium

A flat, cellular protrusion that is rich in branched actin filaments. Filament formation and branching are controlled by the small GTPase Rac and downstream effectors, including the actin-related protein (Arp)2/3 complex and formins, including mammalian diaphanous 1 (mDIA1; also known as DIAPH1) and mDIA2 (also known as DIAPH3).

Filopodium

A finger-like and highly dynamic cell protrusion, 1 μm in diameter and up to 5 μm in length. Filopodia are formed by anterograde polymerization of actin bundles in parallel and lack microtubules. Their formation is controlled by the small GTPase CDC42.

Mesenchymal–epithelial transition

An experimentally induced aggregation of moving individual cells to form a multicellular complex that maintains cell–cell junctions. Its role in physiological contexts is unclear.

Gap junction

An intercellular hexameric channel between directly adjacent cells that transfers ions, small compounds and messengers between the cytosol of both cells and provides adhesive coupling independent of channel function. Gap junctions synchronize mechanical and metabolic cell functions in multicellular tissues.

Collective amoeboid transition

The detachment of amoeboid cells from a multicellular complex as a consequence of loosened cell–cell junctions. Detached cells then use a leukocyte-like amoeboid migration mode because of the low adhesion and traction force generated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedl, P., Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10, 445–457 (2009). https://doi.org/10.1038/nrm2720

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing