[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Matrix metalloproteinases and the regulation of tissue remodelling

Key Points

  • Matrix metalloproteinases (MMPs) were discovered because of their role in amphibian metamorphosis, yet they have attracted more attention because of their roles in disease.

  • Recent work has highlighted the diverse consequences of MMP proteolysis on normal and pathological cell behaviour.

  • Mutations in mouse MMP genes have displayed phenotypes in normal skeletal, mammary and vascular development.

  • Drosophila melanogaster has only two MMP genes; mutations in both MMP genes have been isolated. Each mutant is larval lethal with defects in tissue remodelling.

  • Collectively, the loss-of-function studies in different organisms point to MMPs as mediators of change and physical adaptation in tissues, whether developmentally regulated, environmentally induced or associated with disease.

  • An important outstanding question is whether MMPs function primarily as structural effectors of tissue remodelling or as regulators of signalling networks.

  • In this Review, we synthesize the current genetic evidence from mice, flies and humans on the normal functions of MMPs in embryonic and postnatal development. We highlight the consequences of modifying MMP action in D. melanogaster larval development, mammalian skeletal, vascular and mammary development and in inflammation and wound repair.

Abstract

Matrix metalloproteinases (MMPs) were discovered because of their role in amphibian metamorphosis, yet they have attracted more attention because of their roles in disease. Despite intensive scrutiny in vitro, in cell culture and in animal models, the normal physiological roles of these extracellular proteases have been elusive. Recent studies in mice and flies point to essential roles of MMPs as mediators of change and physical adaptation in tissues, whether developmentally regulated, environmentally induced or disease associated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic structure of MMPs.
Figure 2: Possible modes of MMP action.
Figure 3: Skeletal phenotypes of MMP mutants.
Figure 4: Mammary gland phenotypes of MMP mutants.
Figure 5: Phenotypes of Drosophila melanogaster DmMmp1 and DmMmp2 mutant flies.

Similar content being viewed by others

References

  1. Gross, J. & Lapiere, C. M. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Natl Acad. Sci. USA 47, 1014–1022 (1962).

    Article  Google Scholar 

  2. Brinckerhoff, C. E. & Matrisian, L. M. Matrix metalloproteinases: a tail of a frog that became a prince. Nature Rev. Mol. Cell Biol. 3, 207–214 (2002).

    Article  CAS  Google Scholar 

  3. Birkedal-Hansen, H. et al. Matrix metalloproteinases: a review. Crit. Rev. Oral. Biol. Med. 4, 197–250 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Welgus, H. G., Kobayashi, D. K. & Jeffrey, J. J. The collagen substrate specificity of rat uterus collagenase. J. Biol. Chem. 258, 14162–14165 (1983).

    CAS  PubMed  Google Scholar 

  5. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002).

    Article  CAS  Google Scholar 

  6. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002). A critical analysis of why MMP inhibitors failed as cancer therapeutics, despite great promise.

    Article  CAS  PubMed  Google Scholar 

  7. Stickens, D. et al. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131, 5883–5895 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Oh, J. et al. Mutations in two matrix metalloproteinase genes, MMP-2 and MT1-MMP, are synthetic lethal in mice. Oncogene 23, 5041–5048 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Ducharme, A. et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J. Clin. Invest. 106, 55–62 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rudolph-Owen, L. A., Hulboy, D. L., Wilson, C. L., Mudgett, J. & Matrisian, L. M. Coordinate expression of matrix metalloproteinase family members in the uterus of normal, matrilysin-deficient, and stromelysin-1-deficient mice. Endocrinology 138, 4902–4911 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Bode, W., Gomis-Ruth, F. X. & Stockler, W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'. FEBS Lett. 331, 134–140 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Stocker, W. et al. The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Science 4, 823–840 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rawlings, N. D., Morton, F. R. & Barrett, A. J. MEROPS: the peptidase database. Nucleic Acids Res. 34, D270–D272 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Overall, C. M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol. 22, 51–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Maskos, K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie 87, 249–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell. Dev. Biol. 17, 463–516 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Streuli, C. Extracellular matrix remodelling and cellular differentiation. Curr. Opin. Cell. Biol. 11, 634–640 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W. G. & Quaranta, V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277, 225–228 (1997). Demonstration that cleavage of an ECM protein reveals a cryptic function, in this case chemokinesis.

    Article  CAS  PubMed  Google Scholar 

  19. Xu, J. et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell. Biol. 154, 1069–1080 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pilcher, B. K. et al. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J. Cell. Biol. 137, 1445–1457 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fowlkes, J. L., Thrailkill, K. M., Serra, D. M., Suzuki, K. & Nagase, H. Matrix metalloproteinases as insulin-like growth factor binding protein-degrading proteinases. Prog. Growth Factor Res. 6, 255–263 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Whitelock, J. M., Murdoch, A. D., Iozzo, R. V. & Underwood, P. A. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem. 271, 10079–10086 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, Z., Juttermann, R. & Soloway, P. D. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J. Biol. Chem. 275, 26411–26415 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Luo, D., Mari, B., Stoll, I. & Anglard, P. Alternative splicing and promoter usage generates an intracellular stromelysin 3 isoform directly translated as an active matrix metalloproteinase. J. Biol. Chem. 277, 25527–25536 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Peschon, J. J. et al. An essential role for ectodomain shedding in mammalian development. Science 282, 1281–1284 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki, M., Raab, G., Moses, M. A., Fernandez, C. A. & Klagsbrun, M. Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J. Biol. Chem. 272, 31730–31737 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Montero, J. C., Yuste, L., Diaz-Rodriguez, E., Esparis-Ogando, A. & Pandiella, A. Differential shedding of transmembrane neuregulin isoforms by the tumor necrosis factor-α-converting enzyme. Mol. Cell. Neurosci. 16, 631–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Sternlicht, M. D. et al. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 132, 3923–3933 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Noe, V. et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J. Cell Sci. 114, 111–118 (2001).

    CAS  PubMed  Google Scholar 

  30. Kajita, M. et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J. Cell. Biol. 153, 893–904 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Endo, K. et al. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J. Biol. Chem. 278, 40764–40770 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Li, Q., Park, P. W., Wilson, C. L. & Parks, W. C. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111, 635–646 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Senft, A. P., Korfhagen, T. R., Whitsett, J. A., Shapiro, S. D. & LeVine, A. M. Surfactant protein-D regulates soluble CD14 through matrix metalloproteinase-12. J. Immunol. 174, 4953–4959 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Mohan, R. et al. Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration. J. Biol. Chem. 277, 2065–2072 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163–176 (2000).

    PubMed  PubMed Central  Google Scholar 

  36. Vu, T. H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422 (1998). First MMP-null mutant with a tissue-remodelling phenotype and defects in development and angiogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Colnot, C., Sidhu, S. S., Balmain, N. & Poirier, F. Uncoupling of chondrocyte death and vascular invasion in mouse galectin 3 null mutant bones. Dev. Biol. 229, 203–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Ortega, N., Behonick, D. J., Colnot, C., Cooper, D. N. & Werb, Z. Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation. Mol. Biol. Cell 16, 3028–3039 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colnot, C., Thompson, Z., Miclau, T., Werb, Z. & Helms, J. A. Altered fracture repair in the absence of MMP9. Development 130, 4123–4133 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Inada, M. et al. Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc. Natl Acad. Sci. USA 101, 17192–17197 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Little, C. B. et al. Matrix metalloproteinases are not essential for aggrecan turnover during normal skeletal growth and development. Mol. Cell. Biol. 25, 3388–3399 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holmbeck, K. et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92 (1999). Demonstration that loss of an MMP decreases ECM remodelling with the surprising consequence of increased bone loss and arthritis; previously these phenotypes were thought to be the consequence of excess proteolysis.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou, Z. et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc. Natl Acad. Sci. USA 97, 4052–4057 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ohuchi, E. et al. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem. 272, 2446–2451 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Holmbeck, K., Bianco, P., Chrysovergis, K., Yamada, S. & Birkedal-Hansen, H. MT1-MMP-dependent, apoptotic remodeling of unmineralized cartilage: a critical process in skeletal growth. J. Cell. Biol. 163, 661–671 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oblander, S. A. et al. Distinctive functions of membrane type 1 matrix-metalloprotease (MT1-MMP or MMP-14) in lung and submandibular gland development are independent of its role in pro-MMP-2 activation. Dev. Biol. 277, 255–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Martignetti, J. A. et al. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nature Genet. 28, 261–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Kennedy, A. M. et al. MMP13 mutation causes spondyloepimetaphyseal dysplasia, Missouri type (SEMDM O). J. Clin. Invest. 115, 2832–2842 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, J. W. et al. MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta. J. Med. Genet. 42, 271–275 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Inoue, K. et al. A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J. Biol. Chem. 281, 33814–33824 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Strongin, A. Y. et al. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem. 270, 5331–5338 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Sato, H. et al. A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 370, 61–65 (1994). Discovery of the first transmembrane MMP, MMP14 (MT1-MMP). This discovery changed the concept of pericellular proteolysis.

    Article  CAS  PubMed  Google Scholar 

  53. Sternlicht, M. D., Kouros-Mehr, H., Lu, P. & Werb, Z. Hormonal and local control of mammary branching morphogenesis. Differentiation 74, 365–381 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wiseman, B. S. et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J. Cell. Biol. 162, 1123–1133 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kato, T. et al. Diminished corneal angiogenesis in gelatinase A-deficient mice. FEBS Lett. 508, 187–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Lambert, V. et al. MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J. 17, 2290–2292 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Chun, T. H. et al. MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J. Cell. Biol. 167, 757–767 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Filippov, S. et al. MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. J. Exp. Med. 202, 663–671 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chantrain, C. F. et al. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res. 64, 1675–1686 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Lehti, K. et al. An MT1-MMP–PDGF receptor-β axis regulates mural cell investment of the microvasculature. Genes Dev. 19, 979–991 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Park, J. E., Keller, G. A. & Ferrara, N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell 4, 1317–1326 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bergers, G., Hanahan, D. & Coussens, L. M. Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis. Int. J. Dev. Biol. 42, 995–1002 (1998). Discovery that MMP-regulated bioavailability of VEGF regulated the angiogenic switch early in tumour progression.

    CAS  PubMed  Google Scholar 

  63. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Lee, S., Jilani, S. M., Nikolova, G. V., Carpizo, D. & Iruela-Arispe, M. L. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell. Biol. 169, 681–691 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hasebe, T., Hartman, R., Fu, L., Amano, T. & Shi, Y. B. Evidence for a cooperative role of gelatinase A and membrane type-1 matrix metalloproteinase during Xenopus laevis development. Mech. Dev. 124, 11–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Harrison, M. et al. Matrix metalloproteinase genes in Xenopus development. Dev. Dyn. 231, 214–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Leontovich, A. A., Zhang, J., Shimokawa, K., Nagase, H. & Sarras, M. P. Jr. A novel hydra matrix metalloproteinase (HMMP) functions in extracellular matrix degradation, morphogenesis and the maintenance of differentiated cells in the foot process. Development 127, 907–920 (2000).

    CAS  PubMed  Google Scholar 

  68. Yoong, S. et al. Characterization of the zebrafish matrix metalloproteinase 9 gene and its developmental expression pattern. Gene Expr. Patterns 7, 39–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Bai, S. et al. Matrix metalloproteinase expression and function during fin regeneration in zebrafish: analysis of MT1-MMP, MMP2 and TIMP2. Matrix Biol. 24, 247–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, J., Bai, S., Zhang, X., Nagase, H. & Sarras, M. P. Jr. The expression of novel membrane-type matrix metalloproteinase isoforms is required for normal development of zebrafish embryos. Matrix Biol. 22, 279–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Sherwood, D. R., Butler, J. A., Kramer, J. M. & Sternberg, P. W. FOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans. Cell 121, 951–962 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Wada, K. et al. Cloning of three Caenorhabditis elegans genes potentially encoding novel matrix metalloproteinases. Gene 211, 57–62 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Llano, E. et al. Structural and enzymatic characterization of Drosophila Dm2-MMP, a membrane-bound matrix metalloproteinase with tissue-specific expression. J. Biol. Chem. 277, 23321–23329 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Llano, E., Pendas, A. M., Aza-Blanc, P., Kornberg, T. B. & Lopez-Otin, C. Dm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. J. Biol. Chem. 275, 35978–35985 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Page-McCaw, A., Serano, J., Sante, J. M. & Rubin, G. M. Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev. Cell 4, 95–106 (2003). A clear demonstration of the important role of MMPs in tissue remodelling.

    Article  CAS  PubMed  Google Scholar 

  76. Wei, S., Xie, Z., Filenova, E. & Brew, K. Drosophila TIMP is a potent inhibitor of MMPs and TACE: similarities in structure and function to TIMP-3. Biochemistry 42, 12200–12207 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Beitel, G. J. & Krasnow, M. A. Genetic control of epithelial tube size in the Drosophila tracheal system. Development 127, 3271–3282 (2000).

    CAS  PubMed  Google Scholar 

  78. Zhang, S. et al. An MMP liberates the Ninjurin A ectodomain to signal a loss of cell adhesion. Genes Dev. 20, 1899–1910 (2006). Demonstration that MMP cleavage regulates adhesion and signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Uhlirova, M. & Bohmann, D. JNK- and Fos-regulated MMP1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J. 25, 5294–5304 (2006). Following loss of MMPs, mutant tissue overproliferates, resists apoptosis, leaves its site of origin and invades other organs, ultimately causing lethality.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Beaucher, M., Herspberger, E., Page-McCaw, A. & Shearn, A. Metastatic ability of Drosophila tumors depends on MMP activity. Dev. Biol. 5 Dec 2006 (doi:10.1016/j.ydbio.2006.12.001).

  81. Parks, W. C., Wilson, C. L. & Lopez-Boado, Y. S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nature Rev. Immunol. 4, 617–629 (2004).

    Article  CAS  Google Scholar 

  82. Lopez-Boado, Y. S. et al. Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J. Cell. Biol. 148, 1305–1315 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wilson, C. L. et al. Regulation of intestinal-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. McGuire, J. K., Li, Q. & Parks, W. C. Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am. J. Pathol. 162, 1831–1843 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dunsmore, S. E. et al. Matrilysin expression and function in airway epithelium. J. Clin. Invest. 102, 1321–1331 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bullard, K. M. et al. Impaired wound contraction in stromelysin-1-deficient mice. Ann. Surg. 230, 260–265 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Haas, T. L. & Madri, J. A. Extracellular matrix-driven matrix metalloproteinase production in endothelial cells: implications for angiogenesis. Trends Cardiovasc. Med. 9, 70–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Haro, H. et al. Matrix metalloproteinase-3-dependent generation of a macrophage chemoattractant in a model of herniated disc resorption. J. Clin. Invest. 105, 133–141 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, M. et al. Matrix metalloproteinase deficiencies affect contact hypersensitivity: stromelysin-1 deficiency prevents the response and gelatinase B deficiency prolongs the response. Proc. Natl Acad. Sci. USA 96, 6885–6889 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zheng, T. et al. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Invest. 106, 1081–1093 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kumagai, K. et al. Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. J. Immunol. 162, 4212–4219 (1999).

    CAS  PubMed  Google Scholar 

  92. Overall, C. M., McQuibban, G. A. & Clark-Lewis, I. Discovery of chemokine substrates for matrix metalloproteinases by exosite scanning: a new tool for degradomics. Biol. Chem. 383, 1059–1066 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Van den Steen, P. E., Proost, P., Wuyts, A., Van Damme, J. & Opdenakker, G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact. Blood 96, 2673–2681 (2000).

    CAS  PubMed  Google Scholar 

  94. D'Haese, A. et al. In vivo neutrophil recruitment by granulocyte chemotactic protein-2 is assisted by gelatinase B/MMP-9 in the mouse. J. Interferon Cytokine Res. 20, 667–674 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Corry, D. B. et al. Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nature Immunol. 3, 347–353 (2002).

    Article  CAS  Google Scholar 

  96. Corry, D. B. et al. Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J. 18, 995–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Greenlee, K. J. et al. Proteomic identification of in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mechanism for resolution of inflammation. J. Immunol. 177, 7312–7321 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Liu, Z. et al. The serpin α1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell 102, 647–655 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. McQuibban, G. A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000). First demonstration that a main role of MMPs is to regulate chemokine activity and therefore the chemoattraction of immune cells.

    Article  CAS  PubMed  Google Scholar 

  100. McQuibban, G. A. et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J. Biol. Chem. 276, 43503–43508 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. McQuibban, G. A. et al. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100, 1160–1167 (2002).

    CAS  PubMed  Google Scholar 

  102. Van Den Steen, P. E. et al. Gelatinase B/MMP-9 and neutrophil collagenase/MMP-8 process the chemokines human GCP-2/CXCL6, ENA-78/CXCL5 and mouse GCP-2/LIX and modulate their physiological activities. Eur. J. Biochem. 270, 3739–3749 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Van Lint, P. et al. Resistance of collagenase-2 (matrix metalloproteinase-8)-deficient mice to TNF-induced lethal hepatitis. J. Immunol. 175, 7642–7649 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Balbin, M. et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nature Genet. 35, 252–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Weathington, N. M. et al. A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nature Med. 12, 317–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Asahi, M. et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J. Neurosci. 21, 7724–7732 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee, M. M. et al. Tissue inhibitor of metalloproteinase 1 regulates resistance to infection. Infect. Immun. 73, 661–665 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vermaelen, K. Y. et al. Matrix metalloproteinase-9-mediated dendritic cell recruitment into the airways is a critical step in a mouse model of asthma. J. Immunol. 171, 1016–1022 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Lanone, S. et al. Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and-12 in IL-13-induced inflammation and remodeling. J. Clin. Invest. 110, 463–474 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pyo, R. et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J. Clin. Invest. 105, 1641–1649 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lelongt, B. et al. Matrix metalloproteinase 9 protects mice from anti-glomerular basement membrane nephritis through its fibrinolytic activity. J. Exp. Med. 193, 793–802 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. McMillan, S. J. et al. Matrix metalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J. Immunol. 172, 2586–2594 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Hautamaki, R. D., Kobayashi, D. K., Senior, R. M. & Shapiro, S. D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Morris, D. G. et al. Loss of integrin α(v)β6-mediated TGF-β activation causes Mmp12-dependent emphysema. Nature 422, 169–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Liu, Z. et al. Synergy between a plasminogen cascade and MMP-9 in autoimmune disease. J. Clin. Invest. 115, 879–887 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Esparza, J., Kruse, M., Lee, J., Michaud, M. & Madri, J. A. MMP-2 null mice exhibit an early onset and severe experimental autoimmune encephalomyelitis due to an increase in MMP-9 expression and activity. FASEB J. 18, 1682–1691 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Lopez-Otin, C. & Overall, C. M. Protease degradomics: a new challenge for proteomics. Nature Rev. Mol. Cell Biol. 3, 509–519 (2002).

    Article  CAS  Google Scholar 

  118. Sottrup-Jensen, L. & Birkedal-Hansen, H. Human fibroblast collagenase-α-macroglobulin interactions. Localization of cleavage sites in the bait regions of five mammalian a-macroglobulins. J. Biol. Chem. 264, 393–401 (1989).

    CAS  PubMed  Google Scholar 

  119. Chase, A. J. & Newby, A. C. Regulation of matrix metalloproteinase (matrixin) genes in blood vessels: a multi-step recruitment model for pathological remodelling. J. Vasc. Res. 40, 329–343 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Leeman, M. F., Curran, S. & Murray, G. I. The structure, regulation, and function of human matrix metalloproteinase-13. Crit. Rev. Biochem. Mol. Biol. 37, 149–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Ortega, N. & Werb, Z. New functional roles for non-collagenous domains of basement membrane collagens. J. Cell Sci. 115, 4201–4214 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Nyberg, P., Xie, L. & Kalluri, R. Endogenous inhibitors of angiogenesis. Cancer Res. 65, 3967–3979 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Kalluri, R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nature Rev. Cancer 3, 422–433 (2003).

    Article  CAS  Google Scholar 

  124. Sund, M. et al. Function of endogenous inhibitors of angiogenesis as endothelium-specific tumor suppressors. Proc. Natl Acad. Sci. USA 102, 2934–2939 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Larrain, J. et al. BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development 127, 821–830 (2000).

    CAS  PubMed  Google Scholar 

  126. De Robertis, E. M. Spemann's organizer and self-regulation in amphibian embryos. Nature Rev. Mol. Cell Biol. 7, 296–302 (2006).

    Article  CAS  Google Scholar 

  127. Hamano, Y. et al. Physiological levels of tumstatin, a fragment of collagen IV α3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via αV β3 integrin. Cancer Cell 3, 589–601 (2003). Shows the molecular mechanisms that underlie the function of new bioactive molecules generated from extracellular matrix by MMPs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Houghton, A. M. et al. Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res. 66, 6149–6155 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Fjeldstad, K. & Kolset, S. O. Decreasing the metastatic potential in cancers--targeting the heparan sulfate proteoglycans. Curr. Drug Targets 6, 665–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Gu, Z. et al. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J. Neurosci. 25, 6401–6408 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Trackman, P. C. Diverse biological functions of extracellular collagen processing enzymes. J. Cell Biochem. 96, 927–937 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fukui, N. et al. Processing of type II procollagen amino propeptide by matrix metalloproteinases. J. Biol. Chem. 277, 2193–2201 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Dusek, R. L. et al. The differentiation-dependent desmosomal cadherin desmoglein 1 is a novel caspase-3 target that regulates apoptosis in keratinocytes. J. Biol. Chem. 281, 3614–3624 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Illman, S. A., Lehti, K., Keski-Oja, J. & Lohi, J. Epilysin (MMP-28) induces TGF-β mediated epithelial to mesenchymal transition in lung carcinoma cells. J. Cell Sci. 119, 3856–3865 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Radisky, D. C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123–127 (2005). Works out the molecular mechanisms downstream of MMP cleavage that lead to tumour development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Duong, T. D. & Erickson, C. A. MMP-2 plays an essential role in producing epithelial-mesenchymal transformations in the avian embryo. Dev. Dyn. 229, 42–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Song, W., Jackson, K. & McGuire, P. G. Degradation of type IV collagen by matrix metalloproteinases is an important step in the epithelial-mesenchymal transformation of the endocardial cushions. Dev. Biol. 227, 606–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Sternlicht, M. D. et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137–146 (1999). Demonstrates that MMPs not only facilitate cell invasion, but can also initiate tumour progression directly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Takahashi, C. et al. Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc. Natl Acad. Sci. USA 95, 13221–13226 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fernandez-Patron, C., Radomski, M. W. & Davidge, S. T. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ. Res. 85, 906–911 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Xu, J., Park, P. W., Kheradmand, F. & Corry, D. B. Endogenous attenuation of allergic lung inflammation by syndecan-1. J. Immunol. 174, 5758–5765 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Hinkle, C. L. et al. Multiple metalloproteinases process protransforming growth factor-α (proTGF-α). Biochemistry 42, 2127–2136 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Sahin, U. et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell. Biol. 164, 769–779 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ii, M., Yamamoto, H., Adachi, Y., Maruyama, Y. & Shinomura, Y. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp. Biol. Med. 231, 20–27 (2006).

    Article  CAS  Google Scholar 

  145. Zhang, K. et al. HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nature Neurosci. 6, 1064–1071 (2003). Shows that MMPs regulate survival factors and excess activity can lead to cell death.

    Article  CAS  PubMed  Google Scholar 

  146. Mizgerd, J. P., Spieker, M. R. & Doerschuk, C. M. Early response cytokines and innate immunity: essential roles for TNF receptor 1 and type I IL-1 receptor during Escherichia coli pneumonia in mice. J. Immunol. 166, 4042–4048 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Xu, H., Uysal, K. T., Becherer, J. D., Arner, P. & Hotamisligil, G. S. Altered tumor necrosis factor-α (TNF-α) processing in adipocytes and increased expression of transmembrane TNF-α in obesity. Diabetes 51, 1876–1883 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Chun, T. H. et al. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125, 577–591 (2006). This study shows that MMPs contribute to the architectural context of cells and argues that this might be necessary for the conversion of pre-adipocytes to adipocytes.

    Article  CAS  PubMed  Google Scholar 

  149. Alexander, C. M., Selvarajan, S., Mudgett, J. & Werb, Z. Stromelysin-1 regulates adipogenesis during mammary gland involution. J. Cell. Biol. 152, 693–703 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gerber, H. P. & Ferrara, N. Angiogenesis and bone growth. Trends Cardiovasc. Med. 10, 223–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Harper, J. & Klagsbrun, M. Cartilage to bone — angiogenesis leads the way. Nature Med. 5, 617–618 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Itoh, T. et al. Unaltered secretion of β-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J. Biol. Chem. 272, 22389–22392 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Kheradmand, F., Rishi, K. & Werb, Z. Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J. Cell Sci. 115, 839–848 (2002).

    CAS  PubMed  Google Scholar 

  154. VanSaun, M., Herrera, A. A. & Werle, M. J. Structural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice. J. Neurocytol. 32, 1129–1142 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Larsen, P. H., Wells, J. E., Stallcup, W. B., Opdenakker, G. & Yong, V. W. Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J. Neurosci. 23, 11127–11135 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Galis, Z. S. et al. Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ. Res. 91, 852–859 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Masson, R. et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J. Cell. Biol. 140, 1535–1541 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wells, J. E. et al. An adverse role for matrix metalloproteinase 12 after spinal cord injury in mice. J. Neurosci. 23, 10107–10115 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Uchinami, H., Seki, E., Brenner, D. A. & D'Armiento, J. Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis. Hepatology 44, 420–429 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Deguchi, J. O. et al. Matrix metalloproteinase-13/collagenase-3 deletion promotes collagen accumulation and organization in mouse atherosclerotic plaques. Circulation 112, 2708–2715 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Holmbeck, K. et al. The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J. Cell Sci. 118, 147–156 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Beertsen, W. et al. On the role of MT1-MMP, a matrix metalloproteinase essential to collagen remodeling, in murine molar eruption and root growth. Eur. J. Oral Sci. 110, 445–451 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Atkinson, J. J. et al. Membrane-type 1 matrix metalloproteinase is required for normal alveolar development. Dev. Dyn. 232, 1079–1090 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Pendas, A. M. et al. Diet-induced obesity and reduced skin cancer susceptibility in matrix metalloproteinase 19-deficient mice. Mol. Cell. Biol. 24, 5304–5313 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Caterina, J. J. et al. Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype. J. Biol. Chem. 277, 49598–49604 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Komori, K. et al. Absence of mechanical allodynia and Aβ-fiber sprouting after sciatic nerve injury in mice lacking membrane-type 5 matrix metalloproteinase. FEBS Lett. 557, 125–128 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Zhou, H. E., Zhang, X. & Nothnick, W. B. Disruption of the TIMP-1 gene product is associated with accelerated endometrial gland formation during early postnatal uterine development. Biol. Reprod. 71, 534–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Chaillan, F. A. et al. Involvement of tissue inhibition of metalloproteinases-1 in learning and memory in mice. Behav. Brain Res. 173, 191–198 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mohammed, F. F. et al. Metalloproteinase inhibitor TIMP-1 affects hepatocyte cell cycle via HGF activation in murine liver regeneration. Hepatology 41, 857–867 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Jaworski, D. M., Soloway, P., Caterina, J. & Falls, W. A. Tissue inhibitor of metalloproteinase-2 (TIMP-2)-deficient mice display motor deficits. J. Neurobiol. 66, 82–94 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Fata, J. E. et al. Accelerated apoptosis in the TIMP-3-deficient mammary gland. J. Clin. Invest. 108, 831–841 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gill, S. E., Pape, M. C., Khokha, R., Watson, A. J. & Leco, K. J. A null mutation for tissue inhibitor of metalloproteinases-3 (TIMP-3) impairs murine bronchiole branching morphogenesis. Dev. Biol. 261, 313–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Cruz-Munoz, W. et al. Enhanced metastatic dissemination to multiple organs by melanoma and lymphoma cells in Timp-3−/− mice. Oncogene 25, 6489–6496 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. English, J. L. et al. Individual Timp deficiencies differentially impact pro-MMP-2 activation. J. Biol. Chem. 281, 10337–10346 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Godenschwege, T. A., Pohar, N., Buchner, S. & Buchner, E. Inflated wings, tissue autolysis and early death in tissue inhibitor of metalloproteinases mutants of Drosophila. Eur. J. Cell Biol. 79, 495–501 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Institutes of Health (NIH) to Z.W. and to A.P.-M and a March of Dimes Basil O'Connor award to A.P.-M. A.J.E. was supported by an NIH National Research Service Award Institutional Fellowship and by the California Breast Cancer Research Program. We apologize to the many scientists whose papers we were unable to cite owing to space constraints.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Andrea Page-McCaw's homepage

Zena Werb's homepage

International Proteolysis Society

MEROPS

Glossary

Fibrillar collagen

Polymerized, supramolecular collagen that has been organized into fibrils; collagen types I, II and III form fibrils.

Extracellular matrix

Complex, ordered mixture of structural and signalling molecules that surrounds cells.

Enzymatic redundancy

Two enzymes that are expressed in the same time and place that can fully substitute for each other's essential functions.

Enzymatic compensation

Upregulation of an enzyme, which is normally not expressed (or is expressed at a low level) to substitute for the absence of a mutated enzyme.

Adaptive development

Alternative developmental trajectory whereby an organism compensates for the loss of a gene by doing some essential function in a reproducibly different manner.

Catalytic domain

A domain that cleaves other proteins.

Pro-domain

An autoinhibitory domain that prevents the catalytic domain from functioning.

Hemopexin domain

A four-bladed β-propeller domain that mediates protein–protein interactions.

Tissue inhibitor of metalloproteinases

(TIMPs). Endogenous protein inhibitors of matrix metalloproteinase function.

Intramembranous ossification

Direct differentiation of mesenchymal precursors into osteoblasts, as in the clavicle and in some skull bones.

Endochondral ossification

Bone development in which a cartilage template forms first and is then replaced by mineralized bone in the growth plate, as in the long bones.

Pseudo-metamorphic ossification

Bone development in which a cartilage template functions as a temporary mould to shape the deposition of bone, as in the mandible.

Osteoblast

A cell that secretes unmineralized type-I-collagen-rich extracellular matrix and builds bone.

Growth plate

The region of developing appendicular and axial skeleton that is responsible for growth in length of bones.

Aggrecan

The main chondroitin sulphate proteoglycan in cartilage.

Trabeculae

A fine network of bony spicules in trabecular bone.

Osteoclast

A cell that resorbs the mineralized matrix of the bone.

Terminal end bud

A highly proliferative epithelial structure at the end of invading mammary ductal epithelium during puberty.

Secondary branching

Also known as side branching. A process during mammary development whereby secondary ducts initiate laterally off of main ducts during puberty.

Corneal angiogenesis assay

Stimulated neovascularization assay in which test substances are implanted in the cornea of a rabbit or mouse and the cornea is monitored for the development of new blood vessels.

Perivascular cells

Also known as pericytes, mural cells or smooth muscle cells. These cells are tightly associated with endothelial cells and aid in the function and regulation of vascular networks.

Endothelial cells

Cells that constitute the lining of the blood vessels.

MMP degradome

The complete list of matrix metalloproteinase proteolytic substrates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page-McCaw, A., Ewald, A. & Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8, 221–233 (2007). https://doi.org/10.1038/nrm2125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing