[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innate immune activation in neurodegenerative disease

Key Points

  • Neuroinflammation is characterized by microglial and astroglial cell activation, and is frequently associated with neurodegenerative disease.

  • Aberrant or misfolded proteins can activate pattern recognition receptors that are expressed by innate immune cells of the brain, leading to neuroinflammatory responses.

  • Pro-inflammatory mediators — such as cytokines, chemokines, complement components and free radicals — can lead to functional impairments and structural changes in the brain.

  • Mutations in genes that encode innate immune proteins, such as triggering receptor expressed by myeloid cells 2 (TREM2) and CD33, may increase the risk of developing certain neurodegenerative diseases.

  • Several exogenous factors — such as midlife obesity, poor oral health or systemic inflammation — may drive the pathogenesis of neurodegenerative disease by augmenting neuroinflammation.

  • A better understanding of the innate immune mechanisms that promote neuroinflammation may enable the future development of anti-inflammatory and neuroprotective therapies for neurodegenerative diseases. These therapies have to be carefully considered, as innate immune pathways can have beneficial, as well as pathological, roles in the brain.

Abstract

The triggering of innate immune mechanisms is emerging as a crucial component of major neurodegenerative diseases. Microglia and other cell types in the brain can be activated in response to misfolded proteins or aberrantly localized nucleic acids. This diverts microglia from their physiological and beneficial functions, and leads to their sustained release of pro-inflammatory mediators. In this Review, we discuss how the activation of innate immune signalling pathways — in particular, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome — by aberrant host proteins may be a common step in the development of diverse neurodegenerative disorders. During chronic activation of microglia, the sustained exposure of neurons to pro-inflammatory mediators can cause neuronal dysfunction and contribute to cell death. As chronic neuroinflammation is observed at relatively early stages of neurodegenerative disease, targeting the mechanisms that drive this process may be useful for diagnostic and therapeutic purposes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Beneficial and detrimental functions of microglia in the brain.
Figure 2: Risk factors for Alzheimer's disease increase innate immune activation by inducing local or systemic inflammation.
Figure 3: Mechanisms of microglial cell activation in response to misfolded or aggregated proteins.

Similar content being viewed by others

References

  1. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nature Neurosci. 16, 273–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010). This paper shows that microglial cell populations originate from the yolk sac and not from the bone marrow, as was previously believed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alliot, F., Godin, I. & Pessac, B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res. 117, 145–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Lawson, L. J., Perry, V. H., Dri, P. & Gordon, S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151–170 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013). This paper shows that microglia have an important role in learning and memory by generating neurotrophic factors, such as BDNF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rigato, C., Buckinx, R., Le-Corronc, H., Rigo, J. M. & Legendre, P. Pattern of invasion of the embryonic mouse spinal cord by microglial cells at the time of the onset of functional neuronal networks. Glia 59, 675–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Tremblay, M.-È., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010). This paper shows that microglia direct the shaping of dendritic processes by spine removal in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vukovic, J., Colditz, M. J., Blackmore, D. G., Ruitenberg, M. J. & Bartlett, P. F. Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J. Neurosci. 32, 6435–6443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fellner, L. et al. Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 61, 349–360 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stewart, C. R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature Immunol. 11, 155–161 (2010).

    Article  CAS  Google Scholar 

  14. Udan, M. L. D., Ajit, D., Crouse, N. R. & Nichols, M. R. Toll-like receptors 2 and 4 mediate Aβ(1–42) activation of the innate immune response in a human monocytic cell line. J. Neurochem. 104, 524–533 (2008).

    CAS  PubMed  Google Scholar 

  15. Jin, J.-J., Kim, H.-D., Maxwell, J. A., Li, L. & Fukuchi, K.-I. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer's disease. J. Neuroinflamm. 5, 23 (2008).

    Article  CAS  Google Scholar 

  16. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nature Rev. Immunol. 13, 397–411 (2013).

    Article  CAS  Google Scholar 

  17. Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. De Rivero Vaccari, J. P. et al. Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J. Cereb. Blood Flow Metab. 29, 1251–1261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adamczak, S. E. et al. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J. Cereb. Blood Flow Metab. 34, 621–629 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Minkiewicz, J., de Rivero Vaccari, J. P. & Keane, R. W. Human astrocytes express a novel NLRP2 inflammasome. Glia 61, 1113–1121 (2013).

    Article  PubMed  Google Scholar 

  21. Shimohama, S. et al. Activation of NADPH oxidase in Alzheimer's disease brains. Biochem. Biophys. Res. Commun. 273, 5–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Reynolds, W. F. et al. Myeloperoxidase polymorphism is associated with gender specific risk for Alzheimer's disease. Exp. Neurol. 155, 31–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Heneka, M. T. et al. Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 906–916 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Vodovotz, Y. et al. Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease. J. Exp. Med. 184, 1425–1433 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Monje, M. L., Toda, H. & Palmer, T. D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Nagatsu, T. & Sawada, M. Inflammatory process in Parkinson's disease: role for cytokines. Curr. Pharm. Des. 11, 999–1016 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Alirezaei, M., Kiosses, W. B., Flynn, C. T., Brady, N. R. & Fox, H. S. Disruption of neuronal autophagy by infected microglia results in neurodegeneration. PLoS ONE 3, e2906 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koenigsknecht-Talboo, J. & Landreth, G. E. Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J. Neurosci. 25, 8240–8249 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sheng, J. G. et al. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid-β peptide in APPswe transgenic mice. Neurobiol. Dis. 14, 133–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Qiao, X., Cummins, D. J. & Paul, S. M. Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse. Eur. J. Neurosci. 14, 474–482 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Jack, C. R. Jr et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Querfurth, H. W. & LaFerla, F. M. Alzheimer's disease. N. Engl. J. Med. 362, 329–344 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Bertram, L., Lill, C. M. & Tanzi, R. E. The genetics of Alzheimer disease: back to the future. Neuron 68, 270–281 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Mawuenyega, K. G. et al. Decreased clearance of CNS β-amyloid in Alzheimer's disease. Science 330, 1774–1774 (2010). This study provides important evidence that the defective clearance of amyloid-β has a pathogenic role in sporadic Alzheimer's disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Breitner, J. C. The role of anti-inflammatory drugs in the prevention and treatment of Alzheimer's disease. Annu. Rev. Med. 47, 401–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Sastre, M. et al. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-γ agonists modulate immunostimulated processing of amyloid precursor protein through regulation of β-secretase. J. Neurosci. 23, 9796–9804 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. in t' Veld, B. A. et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. N. Engl. J. Med. 345, 1515–1521 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Iwashyna, T. J., Ely, E. W., Smith, D. M. & Langa, K. M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304, 1787–1794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holmes, C. et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 73, 768–774 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Semmler, A. et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J. Neurol. Neurosurg. Psychiatr. 84, 62–69 (2012).

    Article  Google Scholar 

  42. Whitmer, R. A., Gunderson, E. P., Quesenberry, C. P. Jr, Zhou, J. & Yaffe, K. Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Curr. Alzheimer Res. 4, 103–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Larson, E. B. et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann. Intern. Med. 144, 73–81 (2006).

    Article  PubMed  Google Scholar 

  44. Scarmeas, N. et al. Physical activity, diet, and risk of Alzheimer disease. JAMA 302, 627–637 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kamer, A. R. et al. TNF-α and antibodies to periodontal bacteria discriminate between Alzheimer's disease patients and normal subjects. J. Neuroimmunol. 216, 92–97 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kamer, A. R. et al. Inflammation and Alzheimer's disease: possible role of periodontal diseases. Alzheimers Dement. 4, 242–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Sparks Stein, P. et al. Serum antibodies to periodontal pathogens are a risk factor for Alzheimer's disease. Alzheimers Dement. 8, 196–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Cagnin, A. et al. In-vivo measurement of activated microglia in dementia. Lancet 358, 461–467 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Yasuno, F. et al. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [11C]DAA1106. Psychiatry Res. 203, 67–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153, 707–720 (2013). This study shows that innate immune networks are associated with Alzheimer's disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lambert, J.-C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genet. 43, 429–435 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Liang, Y. & Tedder, T. F. Identification of a CD20-, FcɛRIβ-, and HTm4-related gene family: sixteen new MS4A family members expressed in human and mouse. Genomics 72, 119–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Lajaunias, F., Dayer, J.-M. & Chizzolini, C. Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling. Eur. J. Immunol. 35, 243–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Bradshaw, E. M. et al. CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology. Nature Neurosci. 16, 848–850 (2013). This paper shows that a single nucleotide polymorphism in the CD33 gene is associated with Alzheimer's disease, and that it leads to altered phagocytosis of amyloid-β fibrils by monocytes and increased levels of amyloid-β in the brains of homozygous carriers.

    Article  CAS  PubMed  Google Scholar 

  56. Griciuc, A. et al. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78, 631–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guerreiro, R. et al. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368, 117–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med. 368, 107–116 (2013). References 57 and 58 link mutations in the gene that encodes the innate immune receptor TREM2 to rare forms of Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  59. Frank, S. et al. TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 56, 1438–1447 (2008).

    Article  PubMed  Google Scholar 

  60. Melchior, B. et al. Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer's disease. ASN Neuro. 2, e00037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bouchon, A., Hernández-Munain, C., Cella, M. & Colonna, M. A. DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J. Exp. Med. 194, 1111–1122 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hamerman, J. A. et al. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J. Immunol. 177, 2051–2055 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Sheedy, F. J. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating the intracellular nucleation from soluble to particulate ligands in sterile inflammation. Nature Immunol. 14, 812–820 (2013).

    Article  CAS  Google Scholar 

  64. Chapman, M. R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Epstein, E. A. & Chapman, M. R. Polymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibres. Cell. Microbiol. 10, 1413–1420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hammer, N. D. et al. The C-terminal repeating units of CsgB direct bacterial functional amyloid nucleation. J. Mol. Biol. 422, 376–389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nature Immunol. 9, 857–865 (2008). This study shows for the first time that the NLRP3 inflammasome can be activated by fibrillar amyloid-β.

    Article  CAS  Google Scholar 

  68. Heneka, M. T. et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013). This study shows that NLRP3 activation occurs in microglial cells in the brains of patients with Alzheimer's disease and provides evidence that inhibition of NLRP3 protects neuronal cell function and integrity in vivo.

    Article  CAS  PubMed  Google Scholar 

  69. Tong, L. et al. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J. Neurosci. 32, 17714–17724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cameron, B. et al. Loss of interleukin receptor-associated kinase 4 signaling suppresses amyloid pathology and alters microglial phenotype in a mouse model of Alzheimer's disease. J. Neurosci. 32, 15112–15123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci. 8, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Wu, Z. et al. Differential pathways for interleukin-1β production activated by chromogranin A and amyloid-β in microglia. Neurobiol. Aging 34, 2715–2725 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Shepherd, C. E. et al. Inflammatory S100A9 and S100A12 proteins in Alzheimer's disease. Neurobiol. Aging 27, 1554–1563 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Kummer, M. P. et al. Mrp14 deficiency ameliorates amyloid-β burden by increasing microglial phagocytosis and modulation of amyloid precursor protein processing. J. Neurosci. 32, 17824–17829 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vom Berg, J. et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline. Nature Med. 18, 1812–1819 (2012). This study shows that modulation of the IL-12–IL-23 pathway provides therapeutic benefits in an animal model of cerebral amyloidosis.

    Article  CAS  PubMed  Google Scholar 

  76. Terwel, D. et al. Critical role of astroglial apolipoprotein E and liver X receptor-α expression for microglial Aβ phagocytosis. J. Neurosci. 31, 7049–7059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kummer, M. P. et al. Nitration of tyrosine 10 critically enhances amyloid-β aggregation and plaque formation. Neuron 71, 833–844 (2011). This paper links immune activation and the expression of iNOS to the nitration of amyloid-β and the subsequent formation of plaques.

    Article  CAS  PubMed  Google Scholar 

  78. Serrano-Pozo, A., Gómez-Isla, T., Growdon, J. H., Frosch, M. P. & Hyman, B. T. A phenotypic change but not proliferation underlies glial responses in Alzheimer disease. Am. J. Pathol. 182, 2332–2344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. El Khoury, J. et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nature Med. 13, 432–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Mildner, A. et al. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease. J. Neurosci. 31, 11159–11171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kitazawa, M., Oddo, S., Yamasaki, T. R., Green, K. N. & LaFerla, F. M. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J. Neurosci. 25, 8843–8853 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, C. Y. D. & Landreth, G. E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. 117, 949–960 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Bhaskar, K. et al. Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68, 19–31 (2010). This study shows that phosphorylation of endogenous mouse tau occurs in response to LPS challenge and that this phenomenon depends on the expression of IL-1 and TLR4 by microglial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Van Langenhove, T., van der Zee, J. & Van Broeckhoven, C. The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann. Med. 44, 817–828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mackenzie, I. R. A. et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 119, 1–4 (2010).

    Article  PubMed  Google Scholar 

  87. Sjögren, M., Folkesson, S., Blennow, K. & Tarkowski, E. Increased intrathecal inflammatory activity in frontotemporal dementia: pathophysiological implications. J. Neurol. Neurosurg. Psychiatr. 75, 1107–1111 (2004).

    Article  Google Scholar 

  88. Cagnin, A., Rossor, M., Sampson, E. L., Mackinnon, T. & Banati, R. B. In vivo detection of microglial activation in frontotemporal dementia. Ann. Neurol. 56, 894–897 (2004).

    Article  PubMed  Google Scholar 

  89. Rayaprolu, S. et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson's disease. Mol. Neurodegener. 8, 19 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Petkau, T. L. et al. Progranulin expression in the developing and adult murine brain. J. Comp. Neurol. 518, 3931–3947 (2010).

    Article  PubMed  Google Scholar 

  92. Chen-Plotkin, A. S. et al. Brain progranulin expression in GRN-associated frontotemporal lobar degeneration. Acta Neuropathol. 119, 111–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Kleinberger, G., Capell, A., Haass, C. & Van Broeckhoven, C. Mechanisms of granulin deficiency: lessons from cellular and animal models. Mol. Neurobiol. 47, 337–360 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Pickford, F. et al. Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am. J. Pathol. 178, 284–295 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Martens, L. H. et al. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J. Clin. Invest. 122, 3955–3959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yin, F. et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J. Exp. Med. 207, 117–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hosler, B. A. et al. Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. JAMA 284, 1664–1669 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Petkau, T. L. et al. Synaptic dysfunction in progranulin-deficient mice. Neurobiol. Dis. 45, 711–722 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Gerhard, A. et al. [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology 61, 686–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Mogi, M. et al. Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients. Neurosci. Lett. 180, 147–150 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Damier, P., Hirsch, E. C., Zhang, P., Agid, Y. & Javoy-Agid, F. Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience 52, 1–6 (1993).

    Article  CAS  PubMed  Google Scholar 

  102. Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Hamza, T. H. et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease. Nature Genet. 42, 781–785 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. International Parkinson Disease Genomics Consortium. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377, 641–649 (2011).

  105. Noelker, C. et al. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Sci. Rep. 3, 1393 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McCoy, M. K. et al. Intranigral lentiviral delivery of dominant negative TNF attenuates neurodegeneration and behavioral deficits in hemiparkinsonian rats. Mol. Ther. 16, 1572–1579 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, W. et al. Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. FASEB J. 19, 533–542 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Wu, D.-C. et al. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc. Natl Acad. Sci. USA 100, 6145–6150 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Hunot, S. et al. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 72, 355–363 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Giasson, B. I. et al. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290, 985–989 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Shavali, S., Combs, C. K. & Ebadi, M. Reactive macrophages increase oxidative stress and alpha-synuclein nitration during death of dopaminergic neuronal cells in co-culture: relevance to Parkinson's disease. Neurochem. Res. 31, 85–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Chung, C. Y. et al. Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Theodore, S., Cao, S., McLean, P. J. & Standaert, D. G. Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J. Neuropathol. Exp. Neurol. 67, 1149–1158 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Harms, A. S. et al. MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J. Neurosci. 33, 9592–9600 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Codolo, G. et al. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8, e55375 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Béraud, D. et al. α-synuclein alters Toll-like receptor expression. Front. Neurosci. 5, 80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Talbot, K. Motor neurone disease. Postgrad. Med. J. 78, 513–519 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kawamata, T., Akiyama, H., Yamada, T. & McGeer, P. L. Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am. J. Pathol. 140, 691–707 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Frakes, A. E. et al. Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81, 1009–1023 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Brettschneider, J. et al. Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS ONE 7, e39216 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhao, W. et al. Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. Glia 58, 231–243 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Boillée, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006). This paper shows that microglial cell-restricted deficiency of mutant SOD1 in the SODG93A mouse model of amyotrophic lateral sclerosis causes prolonged survival in mice, thus proving a role for microglia in disease progression.

    Article  CAS  PubMed  Google Scholar 

  123. Clement, A. M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Yamanaka, K. et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nature Neurosci. 11, 251–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Meissner, F., Molawi, K. & Zychlinsky, A. Mutant superoxide dismutase 1-induced IL-1β accelerates ALS pathogenesis. Proc. Natl Acad. Sci. USA 107, 13046–13050 (2010).

    Article  PubMed  Google Scholar 

  126. Iłzecka, J., Stelmasiak, Z. & Dobosz, B. Interleukin-1β converting enzyme/Caspase-1 (ICE/Caspase-1) and soluble APO-1/Fas/CD 95 receptor in amyotrophic lateral sclerosis patients. Acta Neurol. Scand. 103, 255–258 (2001).

    Article  PubMed  Google Scholar 

  127. Pasinelli, P., Borchelt, D. R., Houseweart, M. K., Cleveland, D. W. & Brown, R. H. Jr. Caspase-1 is activated in neural cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc superoxide dismutase. Proc. Natl Acad. Sci. USA 95, 15763–15768 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Han, P. & Whelan, P. J. Tumor necrosis factor alpha enhances glutamatergic transmission onto spinal motoneurons. J. Neurotrauma 27, 287–292 (2010).

    Article  PubMed  Google Scholar 

  129. Sargsyan, S. A. et al. A comparison of in vitro properties of resting SOD1 transgenic microglia reveals evidence of reduced neuroprotective function. BMC Neurosci. 12, 91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nguyen, M. D., D'Aigle, T., Gowing, G., Julien, J.-P. & Rivest, S. Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J. Neurosci. 24, 1340–1349 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kiaei, M., Kipiani, K., Chen, J., Calingasan, N. Y. & Beal, M. F. Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 191, 331–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Schütz, B. et al. The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J. Neurosci. 25, 7805–7812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dupuis, L. et al. A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. PLoS ONE 7, e37885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wilcock, G. K. et al. Efficacy and safety of tarenflurbil in mild to moderate Alzheimer's disease: a randomised phase II trial. Lancet Neurol. 7, 483–493 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Levine, T. D. et al. A pilot trial of pioglitazone HCl and tretinoin in ALS: cerebrospinal fluid biomarkers to monitor drug efficacy and predict rate of disease progression. Neurol. Res. Int. 2012, 1–6 (2012).

    Article  Google Scholar 

  136. Singhrao, S. K., Neal, J. W., Morgan, B. P. & Gasque, P. Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease. Exp. Neurol. 159, 362–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Ona, V. O. et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 399, 263–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Dalrymple, A. et al. Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates. J. Proteome Res. 6, 2833–2840 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Björkqvist, M. et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J. Exp. Med. 205, 1869–1877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Silvestroni, A., Faull, R. L. M., Strand, A. D. & Möller, T. Distinct neuroinflammatory profile in post-mortem human Huntington's disease. Neuroreport 20, 1098–1103 (2009).

    Article  PubMed  Google Scholar 

  141. Tai, Y. F. et al. Microglial activation in presymptomatic Huntington's disease gene carriers. Brain 130, 1759–1766 (2007).

    Article  PubMed  Google Scholar 

  142. Simmons, D. A. et al. Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's disease. Glia 55, 1074–1084 (2007).

    Article  PubMed  Google Scholar 

  143. Crotti, A. et al. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nature Neurosci. 17, 513–521 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Wild, E. et al. Abnormal peripheral chemokine profile in Huntington's disease. PLoS Curr. 3, RRN1231 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Crocker, S. F., Costain, W. J. & Robertson, H. A. DNA microarray analysis of striatal gene expression in symptomatic transgenic Huntington's mice (R6/2) reveals neuroinflammation and insulin associations. Brain Res. 1088, 176–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Kraft, A. D., Kaltenbach, L. S., Lo, D. C. & Harry, G. J. Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol. Aging 33, 621.e17–621.e33 (2012).

    Article  CAS  Google Scholar 

  147. Kwan, W. et al. Mutant huntingtin impairs immune cell migration in Huntington disease. J. Clin. Invest. 122, 4737–4747 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Khoshnan, A. et al. Activation of the IκB kinase complex and nuclear factor-κB contributes to mutant huntingtin neurotoxicity. J. Neurosci. 24, 7999–8008 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Palazuelos, J. et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain 132, 3152–3164 (2009).

    Article  PubMed  Google Scholar 

  150. Bradford, J. et al. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. PNAS 106, 22480–22485 (2009).

    Article  PubMed  Google Scholar 

  151. Shin, J.-Y. et al. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J. Cell Biol. 171, 1001–1012 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Richards, R. I., Samaraweera, S. E., van Eyk, C. L., O'Keefe, L. V. & Suter, C. M. RNA pathogenesis via Toll-like receptor-activated inflammation in expanded repeat neurodegenerative diseases. Front. Mol. Neurosci. 6, 25 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Samaraweera, S. E., O'Keefe, L. V., Price, G. R., Venter, D. J. & Richards, R. I. Distinct roles for Toll and autophagy pathways in double-stranded RNA toxicity in a Drosophila model of expanded repeat neurodegenerative diseases. Hum. Mol. Genet. 22, 2811–2819 (2013). This study provides the first evidence for a role of dsRNA in mediating the activation of innate immunity in neurodegenerative diseases that are caused by the expansion of variable copy number, tandem repeat sequences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Shepherd, C. E., Thiel, E., McCann, H., Harding, A. J. & Halliday, G. M. Cortical inflammation in Alzheimer disease but not dementia with Lewy bodies. Arch. Neurol. 57, 817–822 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Mackenzie, I. R. Activated microglia in dementia with Lewy bodies. Neurology 55, 132–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Katsuse, O., Iseki, E. & Kosaka, K. Immunohistochemical study of the expression of cytokines and nitric oxide synthases in brains of patients with dementia with Lewy bodies. Neuropathology 23, 9–15 (2003).

    Article  PubMed  Google Scholar 

  157. Rozemuller, A. J., Eikelenboom, P., Theeuwes, J. W., Jansen Steur, E. N. & de Vos, R. A. Activated microglial cells and complement factors are unrelated to cortical Lewy bodies. Acta Neuropathol. 100, 701–708 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Rüb, U. et al. The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado–Joseph disease). J. Chem. Neuroanat. 25, 115–127 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Petersen, A. J., Rimkus, S. A. & Wassarman, D. A. ATM kinase inhibition in glial cells activates the innate immune response and causes neurodegeneration in Drosophila. Proc. Natl Acad. Sci. USA 109, E656–E664 (2012).

    Article  PubMed  Google Scholar 

  160. Petersen, A. J., Katzenberger, R. J. & Wassarman, D. A. The innate immune response transcription factor relish is necessary for neurodegeneration in a Drosophila model of ataxia-telangiectasia. Genetics 194, 133–142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  162. Jankowsky, J. L. et al. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol. Eng. 17, 157–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Jackson-Lewis, V. & Przedborski, S. Protocol for the MPTP mouse model of Parkinson's disease. Nature Protocols 2, 141–151 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Ungerstedt, U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5, 107–110 (1968).

    Article  CAS  PubMed  Google Scholar 

  165. St Martin, J. L. et al. Dopaminergic neuron loss and up-regulation of chaperone protein mRNA induced by targeted over-expression of alpha-synuclein in mouse substantia nigra. J. Neurochem. 100, 1449–1457 (2007).

    CAS  PubMed  Google Scholar 

  166. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  PubMed  Google Scholar 

  167. Wong, P. C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).

    Article  CAS  PubMed  Google Scholar 

  168. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work was supported by grants to M.T.H. and E.L. from the German Research Council (Deutsche Forschungsgemeinschaft, KFO177 and Cluster of Excellence “Immunosensation”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Heneka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heneka, M., Kummer, M. & Latz, E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14, 463–477 (2014). https://doi.org/10.1038/nri3705

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3705

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing