[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long non-coding RNAs: new players in cell differentiation and development

Key Points

  • Genomes of multicellular organisms produce thousands of different long non-coding RNA (lncRNA) species.

  • lncRNAs have crucial roles in gene expression control during developmental and differentiation processes.

  • lncRNAs can regulate gene expression by several mechanisms in both the nucleus and the cytoplasm.

  • lncRNAs drive the formation of ribonucleoprotein complexes and guide them to specific targets to regulate gene expression.

  • Different in vitro and in vivo systems have shown the importance of lncRNAs in developmental processes, such as in dosage compensation, genomic imprinting, cell differentiation and organogenesis.

  • lncRNAs can form regulative networks with other RNA species, such as microRNAs and mRNAs.

Abstract

Genomes of multicellular organisms are characterized by the pervasive expression of different types of non-coding RNAs (ncRNAs). Long ncRNAs (lncRNAs) belong to a novel heterogeneous class of ncRNAs that includes thousands of different species. lncRNAs have crucial roles in gene expression control during both developmental and differentiation processes, and the number of lncRNA species increases in genomes of developmentally complex organisms, which highlights the importance of RNA-based levels of control in the evolution of multicellular organisms. In this Review, we describe the function of lncRNAs in developmental processes, such as in dosage compensation, genomic imprinting, cell differentiation and organogenesis, with a particular emphasis on mammalian development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of nuclear lncRNA function.
Figure 2: Models of cytoplasmic lncRNA function.
Figure 3: Pluripotency control.
Figure 4: ncRNAs and muscle differentiation.

Similar content being viewed by others

References

  1. Maeda, N. et al. Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. PLoS Genet. 2, e62 (2006).

    PubMed  PubMed Central  Google Scholar 

  2. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Taft, R. J., Pheasant, M. & Mattick, J. S. The relationship between nonprotein-coding DNA and eukaryotic complexity. Bioessays 29, 288–299 (2007).

    CAS  PubMed  Google Scholar 

  4. Mattick, J. S. & Makunin, I. V. Non-coding RNA. Hum. Mol. Genet. 1, 17–29 (2006).

    Google Scholar 

  5. Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 8, 145–166 (2012).

    Google Scholar 

  6. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Batista, P. J. & Chang, H. Y. Long noncoding RNAs: cellular address codes in development and disease. Cell 152, 1298–1307 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Guttman, M. & Rinn, J. L. Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zappulla, D. C. & Cech, T. R. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc. Natl Acad. Sci. USA 101, 10024–10029 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nature Genet. 30, 167–174 (2002).

    CAS  PubMed  Google Scholar 

  11. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300 (2011). This study reports an exhaustive identification and characterization of lncRNAs that are involved in the control of pluripotency and differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ng, S. Y., Johnson, R. & Stanton, L. W. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 31, 522–533 (2012). This paper characterizes several lncRNAs that are involved in the control of pluripotency and neural differentiation; examples of lncRNAs that interact with multiple transcriptional modulators were found, which supports the modular scaffold hypothesis.

    CAS  PubMed  Google Scholar 

  15. Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F. & Mattick, J. S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl Acad. Sci. USA 105, 716–721 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pauli, A. et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 22, 577–591 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kelley, D. & Rinn, J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 13, R107 (2012).

    PubMed  PubMed Central  Google Scholar 

  19. Liang, Q., Xu, Z., Xu, R., Wu, L. & Zheng, S. Expression patterns of non-coding spliced transcripts from human endogenous retrovirus HERV-H elements in colon cancer. PLoS ONE 7, e29950 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kapusta, A. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 9, e1003470 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011). This paper describes a lncRNA that controls the translation of late myogenic factors and the progression to late differentiation stages through competition for common miRNAs.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Y. et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell 25, 69–80 (2013). This paper describes a lncRNA that controls the expression of core pluripotency transcriptional factors by competing for common miRNAs.

    CAS  PubMed  Google Scholar 

  24. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322, 1717–1720 (2008).

    CAS  PubMed  Google Scholar 

  27. Pandey, R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    CAS  PubMed  Google Scholar 

  28. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. & Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445, 666–670 (2007).

    CAS  PubMed  Google Scholar 

  29. Latos, P. A. et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338, 1469–1472 (2012).

    CAS  PubMed  Google Scholar 

  30. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bertani, S., Sauer, S., Bolotin, E. & Sauer, F. The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol. Cell 43, 1040–1046 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ørom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516–520 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jeon, Y. & Lee, J. T. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146, 119–133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmitz, K. M., Mayer, C., Postepska, A. & Grummt, I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24, 2264–2269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA–chromatin interactions. Mol. Cell 44, 667–678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hung, T. et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genet. 43, 621–629 (2011).

    CAS  PubMed  Google Scholar 

  38. Sun, S. et al. Jpx RNA activates Xist by evicting CTCF. Cell 153, 1537–1551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, X. et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454, 126–130 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, L. et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147, 773–788 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457 (2012). This study shows that a brain-specific lncRNA activates translation of an antisense mRNA through an embedded repetitive element.

    CAS  PubMed  Google Scholar 

  43. Yoon, J. H. et al. LincRNA-p21 suppresses target mRNA translation. Mol. Cell 47, 648–655 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Faghihi, M. A. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nature Med. 14, 723–730 (2008).

    CAS  PubMed  Google Scholar 

  45. Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231–235 (2013). This paper shows that STAU1 can be tethered by a lncRNA on specific target mRNAs that share a 25-nucleotide conserved box. However, different from STAU1-mediated decay, such tethering confers stability on the target mRNAs.

    CAS  PubMed  Google Scholar 

  46. Gong, C. & Maquat, L. E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470, 284–288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, J., Gong, C. & Maquat, L. E. Control of myogenesis by rodent SINE-containing lncRNAs. Genes Dev. 27, 793–804 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. The ceRNA hypothesis: the Rosetta stone of a hidden RNA language. Cell 146, 353–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet. 39, 1033–1037 (2007).

    CAS  PubMed  Google Scholar 

  50. Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010). This paper proposes the ceRNA hypothesis, in which coding and non-coding RNAs can crosstalk through competition for shared miRNA-binding motifs.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Karreth, F. A. et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147, 382–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sumazin, P. et al. An extensive microRNA-mediated network of RNA–RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147, 370–381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    CAS  PubMed  Google Scholar 

  55. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013). This paper identifies a large class of cellular circRNAs; for one of these, a ceRNA function is shown in the control of neuronal functions.

    CAS  PubMed  Google Scholar 

  56. Lee, J. T. & Bartolomei, M. S. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152, 1308–1323 (2013).

    CAS  PubMed  Google Scholar 

  57. Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).

    CAS  PubMed  Google Scholar 

  58. Schoeftner, S. et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J. 25, 3110–3122 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nozawa, R. S. et al. Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway. Nature Struct. Mol. Biol. 20, 566–573 (2013).

    CAS  Google Scholar 

  60. Lee, J. T. Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103, 17–27 (2000).

    CAS  PubMed  Google Scholar 

  61. Sado, T., Wang, Z., Sasaki, H. & Li, E. Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128, 1275–1286 (2001).

    CAS  PubMed  Google Scholar 

  62. Tian, D., Sun, S. & Lee, J. T. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143, 390–403 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yildirim, E. et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152, 727–742 (2013).

    CAS  PubMed  Google Scholar 

  64. Fitzpatrick, G. V., Soloway, P. D. & Higgins, M. J. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nature Genet. 32, 426–431 (2002).

    CAS  PubMed  Google Scholar 

  65. Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002).

    CAS  PubMed  Google Scholar 

  66. Mancini-Dinardo, D., Steele, S. J., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 20, 1268–1282 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Colin, J., Libri, D. & Porrua, O. Cryptic transcription and early termination in the control of gene expression. Genet. Res. Int. 2011, 653494 (2011).

    PubMed  PubMed Central  Google Scholar 

  68. Barber, B. A. & Rastegar, M. Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann. Anat. 192, 261–274 (2010).

    CAS  PubMed  Google Scholar 

  69. Kostic, D. & Capecchi, M. R. Targeted disruptions of the murine Hoxa-4 and Hoxa-6 genes result in homeotic transformations of components of the vertebral column. Mech. Dev. 46, 231–247 (1994).

    CAS  PubMed  Google Scholar 

  70. Zhang, X. et al. A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood 113, 2526–2534 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Maamar, H., Cabili, M.N., Rinn, J. & Raj, A. linc-HOXA1 is a noncoding RNA that represses Hoxa1 transcription in cis. Genes Dev. 27, 1260–1271 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, L. et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep. 5, 3–12 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Suemori, H. & Noguchi, S. Hox C cluster genes are dispensable for overall body plan of mouse embryonic development. Dev. Biol. 220, 333–342 (2000).

    CAS  PubMed  Google Scholar 

  74. Schorderet, P. & Duboule, D. Structural and functional differences in the long non-coding RNA Hotair in mouse and human. PLoS Genet. 7, e1002071 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Loewer, S. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genet. 42, 1113–1117 (2010).

    CAS  PubMed  Google Scholar 

  77. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dinger, M. E. et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 9, 1433–1445 (2008).

    Google Scholar 

  79. Sheik Mohamed, J., Gaughwin, P. M., Lim, B., Robson, P. & Lipovich, L. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 16, 324–337 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Qureshi, I. A. & Mehler, M. F. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nature Rev. Neurosci. 13, 528–541 (2012).

    CAS  Google Scholar 

  81. Bernard, D. et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 29, 3082–3093 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, B. et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2, 111–123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gutschner, T. et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73, 1180–1189 (2013).

    CAS  PubMed  Google Scholar 

  84. Ramos, A. D. et al. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell. 12, 616–628 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu, A. G. et al. Intergenic and repeat transcription in human, chimpanzee and macaque brains measured by RNA-seq. PLoS Comput. Biol. 6, e1000843 (2010).

    PubMed  PubMed Central  Google Scholar 

  86. Pollard, K. S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167–172 (2006).

    CAS  PubMed  Google Scholar 

  87. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dorus, S. et al. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119, 1027–1040 (2004).

    CAS  PubMed  Google Scholar 

  89. Amaral, P. P. et al. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA 11, 2013–2027 (2009).

    Google Scholar 

  90. Feng, J. et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 20, 1470–1484 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bond, A. M. et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nature Neurosci. 12, 1020–1027 (2009).

    CAS  PubMed  Google Scholar 

  92. Kraus, P. et al. Making sense of Dlx1 antisense RNA. Dev. Biol. 376, 224–235 (2013).

    CAS  PubMed  Google Scholar 

  93. Le, M. T. et al. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol. Cell. Biol. 29, 5290–5305 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Klattenhoff, C. A. et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152, 1–14 (2013).

    Google Scholar 

  95. Grote, P. et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell 24, 206–214 (2013). References 94 and 95 highlight the importance of lncRNAs during lineage commitment and in providing a new layer of regulation that is involved in determining cardiac cell fate.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Twayana, S. et al. Biogenesis and function of non-coding RNAs in muscle differentiation and in Duchenne muscular dystrophy. Bioch. Soc. Trans. 41, 844–849 (2013).

    CAS  Google Scholar 

  97. Kallen, A. N. et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 52, 101–112 (2013).

    CAS  PubMed  Google Scholar 

  98. Cabianca, D. S. et al. A long ncRNA links copy number variation to a Polycomb/Trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149, 819–831 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hu, W., Yuan, B., Flygare, J. & Lodish, H. F. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 25, 2573–2578 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sun, L. et al. Long noncoding RNAs regulate adipogenesis. Proc. Natl Acad. Sci. USA 110, 3387–3392 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ietswaart, R., Wu, Z. & Dean, C. Flowering time control: another window to the connection between antisense RNA and chromatin. Trends Genet. 28, 445–453 (2012).

    CAS  PubMed  Google Scholar 

  102. Heo, J. B. & Sung, S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76–79 (2011).

    CAS  PubMed  Google Scholar 

  103. Liu, F. et al. The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC. Mol. Cell 28, 398–407 (2007).

    PubMed  Google Scholar 

  104. Liu, F., Marquardt, S., Lister, C., Swiezewski, S. & Dean, C. Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327, 94–97 (2010).

    CAS  PubMed  Google Scholar 

  105. Sun, Q., Csorba, T., Skourti-Stathaki, K., Proudfoot, N. J. & Dean, C. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340, 619–621 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717–726 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Nesterova, T. B. et al. Characterization of the genomic Xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Res. 11, 833–849 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nature Protoc. 7, 1534–1550 (2012).

    CAS  Google Scholar 

  109. Guttman, M., Russell, P., Ingolia, N. T., Weissman, J. S. & Lander, E. S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154, 240–251 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147, 1537–1550 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ohhata, T., Hoki, Y., Sasaki, H. & Sado, T. Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification. Development 135, 227–235 (2008).

    CAS  PubMed  Google Scholar 

  112. Rinn, J. L. et al. The transcriptional activity of human chromosome 22. Genes Dev. 17, 529–540 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    CAS  PubMed  Google Scholar 

  114. Wei, C. L. et al. 5′ long serial analysis of gene expression (LongSAGE) and 3′ LongSAGE for transcriptome characterization and genome annotation. Proc. Natl Acad. Sci. USA 101, 11701–11706 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Matsumura, H., Krüger, D. H., Kahl, G. & Terauchi, R. SuperSAGE: a modern platform for genome-wide quantitative transcript profiling. Curr. Pharm. Biotechnol. 9, 368–374 (2008).

    CAS  PubMed  Google Scholar 

  116. Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl Acad. Sci. USA 100, 15776–15781 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nature Methods 5, 621–628 (2008).

    CAS  PubMed  Google Scholar 

  118. Wahl, M. C., Will, C. L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    CAS  PubMed  Google Scholar 

  119. Kiss, T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109, 145–148 (2002).

    CAS  PubMed  Google Scholar 

  120. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008).

    CAS  PubMed  Google Scholar 

  121. Melton, C., Judson, R. L. & Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621–626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Buckingham, M. & Vincent, S. D. Distinct and dynamic myogenic populations in the vertebrate embryo. Curr. Opin. Genet. Dev. 19, 444–453 (2009).

    CAS  PubMed  Google Scholar 

  124. Marrone, A. K. & Shcherbata, H. R. Dystrophin orchestrates the epigenetic profile of muscle cells via miRNAs. Front. Genet. 2, 64–72 (2011).

    PubMed  PubMed Central  Google Scholar 

  125. Cacchiarelli, D. et al. miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Rep. 12, 136–141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Rapicavoli, N. A., Poth, E. M. & Blackshaw, S. The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev. Biol. 10, 49 (2010).

    PubMed  PubMed Central  Google Scholar 

  127. Rapicavoli, N. A., Poth, E. M., Zhu, H. & Blackshaw, S. The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity. Neural Dev. 6, 32 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Young, T. L., Matsuda, T. & Cepko, C. L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr. Biol. 15, 501–512 (2005).

    CAS  PubMed  Google Scholar 

  129. Meola, N., Pizzo, M., Alfano, G., Surace, E. M. & Banfi, S. The long noncoding RNA Vax2os1 controls the cell cycle progression of photoreceptor progenitors in the mouse retina. RNA 18, 111–123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Bozzoni and Fatica laboratories for discussion, and J. Rinn, C. Dean and P. Avner for their suggestions. They apologize for papers that are not discussed owing to space limitations. They acknowledge support from FP7-PEOPLE-2011-ITN Project HemID (289611), Telethon (GPP11149), Parent Project Italia, Associazione Italiana per la Ricerca sul Cancro, Italian Institute of Technology “SEED”, Fondo per gli Investimenti per la Ricerca di Base, Programmi di Ricerca di Interesse Nazionale and the EPIGEN Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Bozzoni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

microRNAs

(miRNAs). Small non-coding RNAs of ~22 nucleotides that are integral components of RNA-induced silencing complex (RISC) and that recognize partially complementary target mRNAs to induce translational repression, which is often linked to degradation. Among the RISC proteins, AGO binds to miRNA and mediates the repressing activity.

Polyadenylation sites

Sequences that are required for the cleavage of primary RNA transcripts that are produced by RNA polymerase II. As a consequence of such cleavage, the 5′ cutoff product becomes polyadenylated, whereas the 3′ product undergoes rapid degradation that induces Pol II release from the DNA and hence transcriptional termination.

Polycomb repressive complex

(PRC). A multiprotein complex that silences target genes by establishing a repressive chromatin state; PRC2 trimethylates histone H3 at lysine 27, which is recognized by PRC1 that mediates chromatin compaction by inducing H2A monoubiquitylation.

MLL1 complex

A multiprotein complex that mediates both histone H3 trimethylation at lysine 4 (H3K4me3) and histone H4 acetylation at lysine 16 (H4K16ac), which are associated with transcriptionally active genes.

Dosage compensation

The process that ensures equal levels of X-linked gene expression in males (XY) and females (XX).

Genomic imprinting

Epigenetic silencing of genes on the basis of their parental origin, which results in monoallelic expression.

EHMT2

A histone lysine methyltransferase that is responsible for dimethylation and trimethylation at histone H3 lysine 9, which creates epigenetic marks that predominantly correlate with transcriptional repression.

Germ layer

Primary germ layers (that is, ectoderm, endoderm and mesoderm) are specified during vertebrate embryogenesis and, through further differentiation, give rise to the organs and tissues of the body.

Pluripotency

The ability of a cell to differentiate into one of many cell types.

Induced pluripotent stem cells

(iPSCs). In vitro-derived pluripotent cells that originate from non-pluripotent cells in a process called reprogramming.

Nuclear speckles

A class of nuclear body that is located in interchromatin regions of the nucleoplasm of mammalian cells, which are enriched in pre-mRNA splicing factors.

Zinc-finger nucleases

Artificial proteins that contain a zinc-finger DNA-binding element fused to an endonuclease domain. Double-stranded breaks are produced at specific DNA sequences to induce natural DNA repair. This strategy allows targeted gene deletions, integrations or modifications.

GABAergic interneurons

Neurons of the central nervous system that form a connection between other types of neurons and use the neurotransmitter γ-aminobutyric acid (GABA), which inhibits excitatory responses.

Hippocampus

A part of the brain that is specifically responsible for storing and retrieving memories.

Morpholino oligonucleotides

Oligonucleotides that are modified to be highly stable in the cell; they are used as antisense RNA to block cell components from accessing the target site for which they are designed.

Chromatin immunoprecipitation

(ChIP). A method used to determine whether a given protein binds to, or is localized to, specific chromatin loci in vivo.

Duchenne muscular dystrophy

A severe genetic disorder that is characterized by the rapid progression of muscle degeneration, which leads to a loss of ambulation and death. It is due to mutations in the dystrophin gene that prevent its production.

Phylogenetic analysis

Comparison of DNA, RNA or protein sequences in different organisms that enables one to establish their evolutionary relationships.

Bricolage

Construction or creation from a diverse range of available things.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatica, A., Bozzoni, I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15, 7–21 (2014). https://doi.org/10.1038/nrg3606

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3606

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing