[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computational genomics tools for dissecting tumour–immune cell interactions

Key Points

  • Cancer immunotherapies with antibodies that target immune checkpoint molecules show durable clinical effects and hold promise to transform cancer care. As only a fraction of patients are responding, the identification of predictive markers is of utmost importance.

  • Next-generation sequencing of cancer genomes, exomes and transcriptomes has provided a wealth of data that can be mined to decipher tumour–immune cell interactions.

  • Analytical pipelines and computational tools are necessary for extracting immunologically relevant information from cancer genomics data, including: estimation of the cellular composition of the immune infiltrates into the tumour; characterization of different classes of tumour antigens, including neoantigens and cancer germline antigens; and T cell repertoires.

  • Algorithms for de-convolving immune signatures from expression data from bulk tissue and for predicting binding of mutated peptides to major histocompatibility complex (MHC) molecules have been recently developed and applied to cancer genomic data. The results of these analyses provided new insights into cancer immunobiology.

  • Analytical pipelines and databases for cancer immunogenomics have been developed and are continuously improved.

  • Improvement of existing and development of novel analytical tools is required in order to identify predictive markers for cancer immunotherapy, to select neoantigens for therapeutic vaccination and to develop treatment based on adoptive cell transfer with engineered T cells.

Abstract

Recent breakthroughs in cancer immunotherapy and decreasing costs of high-throughput technologies have sparked intensive research into tumour–immune cell interactions using genomic tools. The wealth of the generated data and the added complexity pose considerable challenges and require computational tools to process, to analyse and to visualize the data. Recently, various tools have been developed and used to mine tumour immunologic and genomic data effectively and to provide novel mechanistic insights. Here, we review computational genomics tools for cancer immunology and provide information on the requirements and functionality in order to assist in the selection of tools and assembly of analytical pipelines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumour immunity at a glance.
Figure 2: Computational tools for genomic and immunogenomic analyses.
Figure 3: Determining cellular composition of tumour infiltrates using genomic data.
Figure 4: Identification of cancer neoantigens.

Similar content being viewed by others

References

  1. International Cancer Genome Consortium. International network of cancer genome projects. Nature 464, 993–998 (2010).

  2. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008). The TCGA Research Network provides clinical information, genomic characterization data and high-level sequence analysis of the tumour genomes.

  3. Fojo, T., Mailankody, S. & Lo, A. Unintended consequences of expensive cancer therapeutics—the pursuit of marginal indications and a me-too mentality that stifles innovation and creativity: the John Conley Lecture. JAMA Otolaryngol. Head Neck Surg. 140, 1225–1236 (2014).

    Article  PubMed  Google Scholar 

  4. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Schadendorf, D. et al. Pooled analysis of long-term survival data from Phase II and Phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889–1894 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wolchok, J. D. PD-1 blockers. Cell 162, 937 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer–immunity cycle. Immunity 39, 1–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Angelova, M. et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol. 16, 64 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    PubMed  CAS  Google Scholar 

  12. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Heng, T. S. P. & Painter, M. W. & Immunological Genome Project Consortium. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008). The Immunological Genome Project provides a comprehensive compendium of gene expression and regulation networks in immune cells and cell lineages.

    Article  CAS  PubMed  Google Scholar 

  14. Saadatpour, A., Lai, S., Guo, G. & Yuan, G.-C. Single-cell analysis in cancer genomics. Trends Genet. 31, 576–586 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Fan, H. C., Fu, G. K. & Fodor, S. P. A. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science 347, 1258367 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Stubbington, M. J. T. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329–332 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Pabinger, S. et al. A survey of tools for variant analysis of next-generation genome sequencing data. Brief. Bioinform. 15, 256–278 (2014).

    Article  PubMed  Google Scholar 

  23. Ding, L., Wendl, M. C., McMichael, J. F. & Raphael, B. J. Expanding the computational toolbox for mining cancer genomes. Nat. Rev. Genet. 15, 556–570 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11, 396–398 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bock, C. Analysing and interpreting DNA methylation data. Nat. Rev. Genet. 13, 705–719 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Fridman, W. H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). GSEA is a widely used tool for determining whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (for example, phenotypes).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shen-Orr, S. S. & Gaujoux, R. Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Curr. Opin. Immunol. 25, 571–578 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kidd, B. A., Peters, L. A., Schadt, E. E. & Dudley, J. T. Unifying immunology with informatics and multiscale biology. Nat. Immunol. 15, 118–127 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Rahmatallah, Y., Emmert-Streib, F. & Glazko, G. Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline. Brief. Bioinform. 17, 393–407 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Abbas, A. R. et al. Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun. 6, 319–331 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Godec, J. et al. Compendium of immune signatures identifies conserved and species-specific biology in response to inflammation. Immunity 44, 194–206 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gong, T. & Szustakowski, J. D. DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-seq data. Bioinformatics 29, 1083–1085 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015). CIBERSORT is a computational method for characterizing cell composition of complex tissues from their gene expression profiles.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Accomando, W. P., Wiencke, J. K., Houseman, E. A., Nelson, H. H. & Kelsey, K. T. Quantitative reconstruction of leukocyte subsets using DNA methylation. Genome Biol. 15, R50 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Koestler, D. C. et al. Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics 8, 816–826 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zou, J., Lippert, C., Heckerman, D., Aryee, M. & Listgarten, J. Epigenome-wide association studies without the need for cell-type composition. Nat. Methods 11, 309–311 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Houseman, E. A., Kelsey, K. T., Wiencke, J. K. & Marsit, C. J. Cell-composition effects in the analysis of DNA methylation array data: a mathematical perspective. BMC Bioinformatics 16, 95 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Almeida, L. G. et al. CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. Nucleic Acids Res. 37, D816–D819 (2009). This is the most updated and curated resource for cancer germline antigens and contains information about cancer germline genes, their expression in tumour and normal tissues and induced immune response.

    Article  CAS  PubMed  Google Scholar 

  47. Fonseca, N. A., Rung, J., Brazma, A. & Marioni, J. C. Tools for mapping high-throughput sequencing data. Bioinformatics 28, 3169–3177 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wang, Q. et al. Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers. Genome Med. 5, 91 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Shiraishi, Y. et al. An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res. 41, e89 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Flicek, P. et al. Ensembl 2012. Nucleic Acids Res. 40, D84–D90 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Pruitt, K. D., Tatusova, T., Brown, G. R. & Maglott, D. R. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 40, D130–D135 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).

  55. McCarthy, D. J. et al. Choice of transcripts and software has a large effect on variant annotation. Genome Med. 6, 26 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lefranc, M. -P. et al. IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Res. 43, D413–D422 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Warren, R. L. et al. Derivation of HLA types from shotgun sequence datasets. Genome Med. 4, 95 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Boegel, S. et al. HLA typing from RNA-seq sequence reads. Genome Med. 4, 102 (2012). Seq2HLA and HLAminer, described in references 57 and 58, were the first tools that used NGS data to derive HLA alleles.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kim, H. J. & Pourmand, N. HLA typing from RNA-seq data using hierarchical read weighting. PLoS ONE 8, e67885 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Szolek, A. et al. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics 30, 3310–3316 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Bai, Y., Ni, M., Cooper, B., Wei, Y. & Fury, W. Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads. BMC Genomics 15, 325 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Nariai, N. et al. HLA-VBSeq: accurate HLA typing at full resolution from whole-genome sequencing data. BMC Genomics 16, S7 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152–1158 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Liu, C. et al. ATHLATES: accurate typing of human leukocyte antigen through exome sequencing. Nucleic Acids Res. 41, e142 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Huang, Y. et al. HLAreporter: a tool for HLA typing from next generation sequencing data. Genome Med. 7, 25 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Abbas, A. K., Lichtman, A. H. & Pillai, S. Cellular and Molecular Immunology (Elsevier, 2014).

    Google Scholar 

  68. Nielsen, M. & Lund, O. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics 10, 296 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Backert, L. & Kohlbacher, O. Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med. 7, 119 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Gupta, S. K. et al. Personalized cancer immunotherapy using systems medicine approaches. Brief. Bioinform. 17, 453–467 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Parker, K. C., Bednarek, M. A. & Coligan, J. E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152, 163–175 (1994).

    CAS  PubMed  Google Scholar 

  72. Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. & Stevanovic´, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Karosiene, E., Lundegaard, C., Lund, O. & Nielsen, M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics 64, 177–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Moutaftsi, M. et al. A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus. Nat. Biotechnol. 24, 817–819 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Vita, R. et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 43, D405–D412 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, G. L., Lin, H. H., Keskin, D. B., Reinherz, E. L. & Brusic, V. Dana–Farber repository for machine learning in immunology. J. Immunol. Methods 374, 18–25 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hoof, I. et al. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61, 1–13 (2009). NetMHCpan predicts the binding affinity of peptides to class-I MHC molecules. It provides high-accuracy predictions for both well-annotated and novel alleles.

    Article  CAS  PubMed  Google Scholar 

  78. Andreatta, M. et al. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics 67, 641–650 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Trolle, T. et al. Automated benchmarking of peptide-MHC class I binding predictions. Bioinformatics 31, 2174–2181 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Nielsen, M., Justesen, S., Lund, O., Lundegaard, C. & Buus, S. NetMHCIIpan-2.0 — improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Res. 6, 9 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Peters, B. et al. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput. Biol. 2, e65 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wang, P. et al. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 4, e1000048 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Jørgensen, K. W., Rasmussen, M., Buus, S. & Nielsen, M. NetMHCstab — predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology 141, 18–26 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Nielsen, M., Lundegaard, C., Lund, O. & Kes¸mir, C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57, 33–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Bhasin, M. & Raghava, G. P. S. Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences. Nucleic Acids Res. 33, W202–W207 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Zhang, G. L., Petrovsky, N., Kwoh, C. K., August, J. T. & Brusic, V. PREDTAP: a system for prediction of peptide binding to the human transporter associated with antigen processing. Immunome Res. 2, 3 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Dönnes, P. & Kohlbacher, O. Integrated modeling of the major events in the MHC class I antigen processing pathway. Protein Sci. 14, 2132–2140 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Tung, C.-W. & Ho, S. -Y. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Bioinformatics 23, 942–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Tung, C. -W., Ziehm, M., Kämper, A., Kohlbacher, O. & Ho, S. -Y. POPISK: T-cell reactivity prediction using support vector machines and string kernels. BMC Bioinformatics 12, 446 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Trolle, T. & Nielsen, M. NetTepi: an integrated method for the prediction of T cell epitopes. Immunogenetics 66, 449–456 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Calis, J. J. A. et al. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput. Biol. 9, e1003266 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Calis, J. J. A. & Rosenberg, B. R. Characterizing immune repertoires by high throughput sequencing: strategies and applications. Trends Immunol. 35, 581–590 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Bolotin, D. A. et al. Next generation sequencing for TCR repertoire profiling: platform-specific features and correction algorithms. Eur. J. Immunol. 42, 3073–3083 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Greiff, V., Miho, E., Menzel, U. & Reddy, S. T. Bioinformatic and statistical analysis of adaptive immune repertoires. Trends Immunol. 36, 738–749 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Yaari, G. & Kleinstein, S. H. Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Med. 7, 121 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Bolotin, D. A. et al. MiTCR: software for T-cell receptor sequencing data analysis. Nat. Methods 10, 813–814 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Yu, Y., Ceredig, R. & Seoighe, C. LymAnalyzer: a tool for comprehensive analysis of next generation sequencing data of T cell receptors and immunoglobulins. Nucleic Acids Res. 44, e31 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015). MiXCR is a tool for B cell receptor and TCR profiling, which is applicable to data from targeted receptor sequencing and non-targeted RNA-seq.

    Article  CAS  PubMed  Google Scholar 

  99. Shugay, M. et al. Towards error-free profiling of immune repertoires. Nat. Methods 11, 653–655 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Yang, X. et al. TCRklass: a new K-string-based algorithm for human and mouse TCR repertoire characterization. J. Immunol. 194, 446–454 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Kuchenbecker, L. et al. IMSEQ — a fast and error aware approach to immunogenetic sequence analysis. Bioinformatics 31, 2963–2971 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Thomas, N., Heather, J., Ndifon, W., Shawe-Taylor, J. & Chain, B. Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine. Bioinformatics 29, 542–550 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34–W40 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gaëta, B. A. et al. iHMMune-align: hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences. Bioinformatics 23, 1580–1587 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Li, S. et al. IMGT/HighV QUEST paradigm for T cell receptor IMGT clonotype diversity and next generation repertoire immunoprofiling. Nat. Commun. 4, 2333 (2013).

    Article  PubMed  Google Scholar 

  106. Brown, S. D., Raeburn, L. A. & Holt, R. A. Profiling tissue-resident T cell repertoires by RNA sequencing. Genome Med. 7, 125 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Han, A., Glanville, J., Hansmann, L. & Davis, M. M. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32, 684–692 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Giardine, B. et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 15, 1451–1455 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  110. Larsen, M. V. et al. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8, 424 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Schubert, B., Brachvogel, H.-P., Jürges, C. & Kohlbacher, O. EpiToolKit — a web-based workbench for vaccine design. Bioinformatics 31, 2211–2213 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Schubert, B. et al. FRED 2: an immunoinformatics framework for python. Bioinformatics http://dx.doi.org/10.1093/bioinformatics/btw113 (2016).

  113. Hundal, J. et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 8, 11 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Gajewski, T. F. et al. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr. Opin. Immunol. 25, 268–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015); erratum 352, http://dx.doi.org/10.1126/science.aaf8264 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350, 1387–1390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Walter, S. et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med. 18, 1254–1261 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Cox, D. B. T., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Chattopadhyay, P. K., Gierahn, T. M., Roederer, M. & Love, J. C. Single-cell technologies for monitoring immune systems. Nat. Immunol. 15, 128–135 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4, 844–847 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Bendall, S. C. & Nolan, G. P. From single cells to deep phenotypes in cancer. Nat. Biotechnol. 30, 639–647 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886–891 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Amir, E. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545–552 (2013).

    Article  PubMed Central  CAS  Google Scholar 

  128. Diggins, K. E., Ferrell, P. B. & Irish, J. M. Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data. Methods 82, 55–63 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Gaujoux, R. & Seoighe, C. CellMix: a comprehensive toolbox for gene expression deconvolution. Bioinformatics 29, 2211–2212 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Yuan, Y. et al. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci. Transl. Med. 4, 157ra143 (2012).

    Article  PubMed  Google Scholar 

  132. Repsilber, D. et al. Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach. BMC Bioinformatics 11, 27 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Tuominen, V. J., Ruotoistenmäki, S., Viitanen, A., Jumppanen, M. & Isola, J. ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 12, R56 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Liebner, D. A., Huang, K. & Parvin, J. D. MMAD: microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples. Bioinformatics 30, 682–689 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Qiao, W. et al. PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions. PLoS Comput. Biol. 8, e1002838 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Bolen, C. R., Uduman, M. & Kleinstein, S. H. Cell subset prediction for blood genomic studies. BMC Bioinformatics 12, 258 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Ramos, A. H. et al. Oncotator: cancer variant annotation tool. Hum. Mutat. 36, E2423–E2429 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Larson, D. E. et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 28, 311–317 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics 28, 1811–1817 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Zhou, W. et al. TransVar: a multilevel variant annotator for precision genomics. Nat. Methods 12, 1002–1003 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26, 2069–2070 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Boegel, S., Löwer, M., Bukur, T., Sahin, U. & Castle, J. C. A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines. Oncoimmunology 3, e954893 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lundegaard, C. et al. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res. 36, W509–W512 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Nielsen, M. & Andreatta, M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med. 8, 33 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Zhang, H., Lund, O. & Nielsen, M. The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics 25, 1293–1299 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Stranzl, T., Larsen, M. V., Lundegaard, C. & Nielsen, M. NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62, 357–368 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Hess, J. L. The Cancer Genome Anatomy Project: power tools for cancer biologists. Cancer Invest. 21, 325–326 (2003).

    Article  PubMed  Google Scholar 

  152. Goldman, M. et al. The UCSC Cancer Genomics Browser: update 2013. Nucleic Acids Res. 41, D949–D954 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  155. Ellis, M. J. et al. Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. 3, 1108–1112 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Gonzalez-Perez, A. et al. IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods 10, 1081–1082 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Toseland, C. P. et al. AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res. 1, 4 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Grimes, G. R. et al. GPX-Macrophage Expression Atlas: a database for expression profiles of macrophages challenged with a variety of pro-inflammatory, anti-inflammatory, benign and pathogen insults. BMC Genomics 6, 178 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Watkins, N. A. et al. A HaemAtlas: characterizing gene expression in differentiated human blood cells. Blood 113, e1–9 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Reche, P. A., Zhang, H., Glutting, J.-P. & Reinherz, E. L. EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics 21, 2140–2141 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Robinson, J. et al. The IMGT/HLA database. Nucleic Acids Res. 41, D1222–D1227 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Bhattacharya, S. et al. ImmPort: disseminating data to the public for the future of immunology. Immunol. Res. 58, 234–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Breuer, K. et al. InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res. 41, D1228–D1233 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Vigneron, N., Stroobant, V., Van den Eynde, B. J. & van der Bruggen, P. Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun. 13, 15 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to fellow researchers not cited owing to restrictions. This work was supported by the Tyrolean Standortagentur (Project Bioinformatics Tyrol), Jubiläumsfonds der Österreichischen Nationalbank (Project 16534) and the Horizon2020 project No 633592 APERIM (Advanced Bioinformatics Platform for Personalized Cancer Immunotherapy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatko Trajanoski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Precision oncology

The use of systematic assessment of cancer genomic information for personalized diagnosis and therapy.

Cancer immunotherapy

Activation of the immune system to specifically target and kill cancer cells using checkpoint blockers, therapeutic vaccines or engineered T cells.

Antigens

Short peptides that are produced from digested proteins and presented on the surface on the cell by the major histocompatibility complex or the human leukocyte antigen.

Immune checkpoint

An inhibitory pathway of the immune system, commonly a ligand–receptor pair, that maintains self-tolerance and modulates immune responses in peripheral tissues in order to minimize collateral tissue damage.

Checkpoint blockers

Antibodies that target immune checkpoint molecules to activate the immune system.

Therapeutic vaccines

Cancer treatment or therapeutic vaccines use specific antigens to boost the immune system's ability to recognize and to destroy cancer cells.

Engineered T cells

Genetically modified T cells (for example, by expressing a chimeric antigen receptor) that are designed to recognize particular tumour antigens as non-self and lead to tumour destruction.

Tumour-infiltrating lymphocytes

(TILs). Subpopulations of the immune system infiltrating the tumour.

T cell receptors

(TCRs). Proteins that consist of an α-chain and a β-chain on T lymphocytes (T cells), which recognize fragments of antigens bound to the major histocompatibility complex.

Neoantigens

Acquired somatic mutations in the cancer genome that lead to new antigens recognized by the immune system.

Major histocompatibility complex

(MHC). Protein complex that presents antigens on the cell surface. In humans, the MHC is encoded by the human leukocyte antigen (HLA) gene locus.

Human leukocyte antigens

(HLAs). Loci of genes that encode for proteins on the surface of cells and present antigens from inside (class I) and outside (class II) of the cell to T lymphocytes. HLA is the human form of the major histocompatibility complex.

Microsatellite unstable

Pertains to microsatellite instability, which involves changes in the number of repeats of microsatellites (that is, short, repeated DNA sequences) in certain cell types, such as cancer cells, relative to that of inherited DNA. Microsatellite instability is often produced by an impaired DNA mismatch repair system.

Cancer immunoediting

A concept that describes the complex interactions that occur between a developing tumour and the immune system, in which immune cells not only protect the host, but also sculpt or edit the immunogenicity of the tumour.

Gene set enrichment analysis

(GSEA). A computational method to identify whether a predefined set of genes shows statistically significant concordant differences between two biological states (for example, phenotypes) based on gene expression profiling.

Deconvolution

A computational method to discern and quantitate individual components based on bulk measurements of a mixture (for example, gene expression measurement of a complex tumour sample).

Chemokine

A family of small secreted cytokines, the gradient of which causes immune cells with the respective receptors to migrate. This process is known as chemotaxis and is important for guiding the activated immune cells to the tumour site.

Inverse problem

A mathematical problem in which the cause is deduced based on the observed effects of a system.

High-dimensional data

Data with a few dozen to thousands of dimensions that are typically generated when each sample of an experiment or a large cohort is studied by high-throughput genomics or proteomics technologies or when many cells are studied in parallel: that is, using single-cell technologies.

Cancer germline antigens

(CGAs). Proteins that are normally expressed only by trophoblasts and germline cells but that are aberrantly expressed in cancer and recognized by the immune system. Formerly, they were often termed cancer testis antigens.

Allele frequency

Measure of the relative frequency of an allele at a particular genetic locus in a population.

Phased genotypes

Sets of alleles that are co-located on the same chromosome.

T cell propensity

Measure of how much T cell receptors are prone to interact with specific major-histocompatibility-complex-binding peptides.

Epitope

Part of an antigen that is recognized by the immune system.

Spectratyping

A method to study the T cell receptor repertoire. It is based on polymerase chain reaction amplification of rearranged genes of the T cell receptor beta variable gene family. The density of heterogeneous complementarity-determining region 3 (CDR3) lengths, which are separated by electrophoresis, results in a specific spectrum that is then further analysed.

TCR repertoires

(T cell receptor repertoires). Diversity of TCRs that allows the T cells of the immune system to specifically recognize the huge number of various antigens.

Repertoire sequencing

(Rep-seq). Targeted sequencing of the genome loci encoding the T cell (or B cell) receptor taking the complexity of different arrangements into account.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hackl, H., Charoentong, P., Finotello, F. et al. Computational genomics tools for dissecting tumour–immune cell interactions. Nat Rev Genet 17, 441–458 (2016). https://doi.org/10.1038/nrg.2016.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.67

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer