[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Branched-chain amino acids in metabolic signalling and insulin resistance

Key Points

  • Branched-chain amino acids (BCAAs) have beneficial nutrient signalling effects but paradoxically are associated with obesity, insulin resistance and type 2 diabetes mellitus (T2DM)

  • BCAAs might be a marker of, rather than, a cause of insulin resistance, as insulin resistance increases the rate of appearance of BCAAs and is linked to reduced expression of mitochondrial BCAA catabolic enzymes

  • Alternatively, two mechanisms have emerged indicating that a causative link exists between increased plasma concentrations of BCAAs and T2DM or insulin resistance

  • In the first mechanism, persistent activation of the mammalian target of rapamycin complex 1 signalling pathway uncouples the insulin receptor from the insulin signalling mediator, IRS-1, which leads to insulin resistance

  • In the second mechanism, abnormal BCAA metabolism in obesity results in accumulation of toxic BCAA metabolites that in turn trigger the mitochondrial dysfunction and stress signalling associated with insulin resistance and T2DM

  • Factors that alter expression of genes involved in the BCAA metabolic pathway (or post-translational modification of the encoded proteins) are associated with obesity and T2DM; three genes in the pathway are candidate genes for obesity and/or T2DM

Abstract

Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasma BCAA levels and insulin-resistant obesity.
Figure 2: Persistent activation of mTORC1 links increased plasma BCAA levels to insulin resistance.
Figure 3: BCAA dysmetabolism links elevated plasma levels of BCAAs and FFAs to T2DM and obesity-related comorbidities.
Figure 4: Mitochondrial genes attributed to BCAA metabolism.
Figure 5: Patterns of altered BCAA metabolism observed in animal models of obesity.

Similar content being viewed by others

References

  1. Cota, D. et al. Hypothalamic mTOR signaling regulates food intake. Science 312, 927–930 (2006).

    CAS  PubMed  Google Scholar 

  2. Blouet, C., Jo, Y. H., Li, X. & Schwartz, G. J. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus–brainstem circuit. J. Neurosci. 29, 8302–8311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Blouet, C. & Schwartz, G. J. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab. 16, 579–587 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schwartz, G. J. Central leucine sensing in the control of energy homeostasis. Endocrinol. Metab. Clin. North Am. 42, 81–87 (2013).

    CAS  PubMed  Google Scholar 

  5. Laeger, T. et al. Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R310–R320 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Devkota, S. & Layman, D. K. Protein metabolic roles in treatment of obesity. Curr. Opin. Clin. Nutr. Metab. Care 13, 403–407 (2010).

    CAS  PubMed  Google Scholar 

  7. Layman, D. K. & Walker, D. A. Potential importance of leucine in treatment of obesity and the metabolic syndrome. J. Nutr. 136, 319S–323S (2006).

    CAS  PubMed  Google Scholar 

  8. Norton, L. E. & Layman, D. K. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J. Nutr. 136, 533S–537S (2006).

    CAS  PubMed  Google Scholar 

  9. Li, H., Xu, M., Lee, J., He, C. & Xie, Z. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 303, E1234–E1244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Z. & Heber, D. Sarcopenic obesity in the elderly and strategies for weight management. Nutr. Rev. 70, 57–64 (2012).

    CAS  PubMed  Google Scholar 

  11. Guo, K., Yu, Y. H., Hou, J. & Zhang, Y. Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus. Nutr. Metab. (Lond.) 7, 57 (2010).

    Google Scholar 

  12. Zhang, Y. et al. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56, 1647–1654 (2007).

    CAS  PubMed  Google Scholar 

  13. Binder, E. et al. Leucine supplementation modulates fuel substrates utilization and glucose metabolism in previously obese mice. Obesity (Silver Spring) 22, 713–720 (2014).

    CAS  Google Scholar 

  14. Chen, H., Simar, D., Ting, J. H., Erkelens, J. R. & Morris, M. J. Leucine improves glucose and lipid status in offspring from obese dams, dependent on diet type, but not caloric intake. J. Neuroendocrinol. 24, 1356–1364 (2012).

    CAS  PubMed  Google Scholar 

  15. Torres-Leal, F. L. et al. Leucine supplementation improves adiponectin and total cholesterol concentrations despite the lack of changes in adiposity or glucose homeostasis in rats previously exposed to a high-fat diet. Nutr. Metab. (Lond.) 8, 62 (2011).

    CAS  Google Scholar 

  16. Potier, M., Darcel, N. & Tome, D. Protein, amino acids and the control of food intake. Curr. Opin. Clin. Nutr. Metab. Care 12, 54–58 (2009).

    CAS  PubMed  Google Scholar 

  17. Lopez, N., Sanchez, J., Pico, C., Palou, A. & Serra, F. Dietary L-leucine supplementation of lactating rats results in a tendency to increase lean/fat ratio associated to lower orexigenic neuropeptide expression in hypothalamus. Peptides 31, 1361–1367 (2010).

    CAS  PubMed  Google Scholar 

  18. Nairizi, A., She, P., Vary, T. C. & Lynch, C. J. Leucine supplementation of drinking water does not alter susceptibility to diet-induced obesity in mice. J. Nutr. 139, 715–719 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stevanovic, D. et al. Intracerebroventricular administration of metformin inhibits ghrelin-induced hypothalamic AMP-kinase signalling and food intake. Neuroendocrinology 96, 24–31 (2012).

    CAS  PubMed  Google Scholar 

  20. Chen, Q. & Reimer, R. A. Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. Nutrition 25, 340–349 (2009).

    PubMed  Google Scholar 

  21. Macotela, Y. et al. Dietary leucine—an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS ONE 6, e21187 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Qin, L. Q. et al. Higher branched-chain amino acid intake is associated with a lower prevalence of being overweight or obese in middle-aged East Asian and Western adults. J. Nutr. 141, 249–254 (2011).

    CAS  PubMed  Google Scholar 

  23. Salehi, A. et al. The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutr. Metab. (Lond.) 9, 48 (2012).

    CAS  Google Scholar 

  24. Xu, G. et al. Gastric mammalian target of rapamycin signaling regulates ghrelin production and food intake. Endocrinology 150, 3637–3644 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lynch, C. J. et al. Leucine in food mediates some of the postprandial rise in plasma leptin concentrations. Am. J. Physiol. Endocrinol. Metab. 291, E621–E630 (2006).

    CAS  PubMed  Google Scholar 

  26. Vary, T. C. & Lynch, C. J. Nutrient signaling components controlling protein synthesis in striated muscle. J. Nutr. 137, 1835–1843 (2007).

    CAS  PubMed  Google Scholar 

  27. Dodd, K. M. & Tee, A. R. Leucine and mTORC1: a complex relationship. Am. J. Physiol. Endocrinol. Metab. 302, E1329–E1342 (2012).

    CAS  PubMed  Google Scholar 

  28. Lynch, C. J. et al. Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 283, E503–E513 (2002).

    CAS  PubMed  Google Scholar 

  29. Lang, C. H., Frost, R. A., Bronson, S. K., Lynch, C. J. & Vary, T. C. Skeletal muscle protein balance in mTOR heterozygous mice in response to inflammation and leucine. Am. J. Physiol. Endocrinol. Metab. 298, E1283–E1294 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vary, T. C., Deiter, G. & Lynch, C. J. Rapamycin limits formation of active eukaryotic initiation factor 4F complex following meal feeding in rat hearts. J. Nutr. 137, 1857–1862 (2007).

    CAS  PubMed  Google Scholar 

  31. Vary, T. C., Anthony, J. C., Jefferson, L. S., Kimball, S. R. & Lynch, C. J. Rapamycin blunts nutrient stimulation of eIF4G, but not PKCε phosphorylation, in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 293, E188–E196 (2007).

    CAS  PubMed  Google Scholar 

  32. Vary, T. C. & Lynch, C. J. Meal feeding enhances formation of eIF4F in skeletal muscle: role of increased eIF4E availability and eIF4G phosphorylation. Am. J. Physiol. Endocrinol. Metab. 290, E631–E642 (2006).

    CAS  PubMed  Google Scholar 

  33. Wang, X. & Proud, C. G. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda) 21, 362–369 (2006).

    CAS  Google Scholar 

  34. Laplante, M. & Sabatini, D. M. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126, 1713–1719 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Garrow, J. S. The contribution of protein synthesis to thermogenesis in man. Int. J. Obes. 9 (Suppl. 2), 97–101 (1985).

    CAS  PubMed  Google Scholar 

  36. Giordano, M. & Castellino, P. Correlation between amino acid induced changes in energy expenditure and protein metabolism in humans. Nutrition 13, 309–312 (1997).

    CAS  PubMed  Google Scholar 

  37. Layman, D. K. & Baum, J. I. Dietary protein impact on glycemic control during weight loss. J. Nutr. 134, 968S–973S (2004).

    CAS  PubMed  Google Scholar 

  38. Tsujinaka, T. et al. Modulation of thermogenic response to parenteral amino acid infusion in surgical stress. Nutrition 12, 36–39 (1996).

    CAS  PubMed  Google Scholar 

  39. Yamaoka, I. Modification of core body temperature by amino acid administration. Asia Pac. J. Clin. Nutr. 17 (Suppl. 1), 309–311 (2008).

    CAS  PubMed  Google Scholar 

  40. Pitkänen, O., Takala, J., Pöyhönen, M. & Kari, A. Branched-chain and mixed amino acid solutions and thermogenesis in postoperative patients. Nutrition 10, 132–137 (1994).

    PubMed  Google Scholar 

  41. Kawaguchi, T., Taniguchi, E. & Sata, M. Effects of oral branched-chain amino acids on hepatic encephalopathy and outcome in patients with liver cirrhosis. Nutr. Clin. Pract. 28, 580–588 (2013).

    PubMed  Google Scholar 

  42. Ichikawa, K. et al. Branched-chain amino acid-enriched nutrients stimulate antioxidant DNA repair in a rat model of liver injury induced by carbon tetrachloride. Mol. Biol. Rep. 39, 10803–10810 (2012).

    CAS  PubMed  Google Scholar 

  43. Kuwahata, M. et al. Supplementation with branched-chain amino acids attenuates hepatic apoptosis in rats with chronic liver disease. Nutr. Res. 32, 522–529 (2012).

    CAS  PubMed  Google Scholar 

  44. Hayaishi, S. et al. Oral branched-chain amino acid granules reduce the incidence of hepatocellular carcinoma and improve event-free survival in patients with liver cirrhosis. Dig. Dis. 29, 326–332 (2011).

    PubMed  Google Scholar 

  45. Holecek, M. Three targets of branched-chain amino acid supplementation in the treatment of liver disease. Nutrition 26, 482–490 (2010).

    CAS  PubMed  Google Scholar 

  46. Layman, D. K. Dietary guidelines should reflect new understandings about adult protein needs. Nutr. Metab. (Lond.) 6, 12 (2009).

    Google Scholar 

  47. Mojtahedi, M. C. et al. The effects of a higher protein intake during energy restriction on changes in body composition and physical function in older women. J. Gerontol A Biol. Sci. Med. Sci. 66, 1218–1225 (2011).

    PubMed  Google Scholar 

  48. Layman, D. K. et al. Defining meal requirements for protein to optimize metabolic roles of amino acids. Am. J. Clin. Nutr. http://dx.doi.org/10.3945/ajcn.114.084053.

  49. Millward, D. J., Layman, D. K., Tome, D. & Schaafsma, G. Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health. Am. J. Clin. Nutr. 87, 1576S–1581S (2008).

    CAS  PubMed  Google Scholar 

  50. Muto, Y. et al. Overweight and obesity increase the risk for liver cancer in patients with liver cirrhosis and long-term oral supplementation with branched-chain amino acid granules inhibits liver carcinogenesis in heavier patients with liver cirrhosis. Hepatol. Res. 35, 204–214 (2006).

    CAS  PubMed  Google Scholar 

  51. Norton, L. E., Wilson, G. J., Layman, D. K., Moulton, C. J. & Garlick, P. J. Leucine content of dietary proteins is a determinant of postprandial skeletal muscle protein synthesis in adult rats. Nutr. Metab. (Lond.) 9, 67 (2012).

    CAS  Google Scholar 

  52. Zeng, Y. J. et al. Characteristics and risk factors for hyperglycemia in Chinese female patients with systemic lupus erythematosus. Lupus 19, 1344–1350 (2010).

    PubMed  Google Scholar 

  53. Wurtz, P. et al. Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes 61, 1372–1380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    PubMed  PubMed Central  Google Scholar 

  55. Tai, E. S. et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 53, 757–767 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Suhre, K. et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE 5, e13953 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Schauder, P., Zavelberg, D., Langer, K. & Herbertz, L. Sex-specific differences in plasma branched-chain keto acid levels in obesity. Am. J. Clin. Nutr. 46, 58–60 (1987).

    CAS  PubMed  Google Scholar 

  58. Pennetti, V., Galante, A., Zonta-Sgaramella, L. & Jayakar, S. D. Relation between obesity, insulinemia, and serum amino acid concentrations in a sample of Italian adults. Clin. Chem. 28, 2219–2224 (1982).

    CAS  PubMed  Google Scholar 

  59. Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Newgard, C. B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 15, 606–614 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nair, K. S., Garrow, J. S., Ford, C., Mahler, R. F. & Halliday, D. Effect of poor diabetic control and obesity on whole body protein metabolism in man. Diabetologia 25, 400–403 (1983).

    CAS  PubMed  Google Scholar 

  62. McCormack, S. E. et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr. Obes. 8, 52–61 (2013).

    CAS  PubMed  Google Scholar 

  63. Lackey, D. E. et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am. J. Physiol. Endocrinol. Metab. 304, E1175–E1187 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, M. J. et al. Obesity-related metabolomic analysis of human subjects in black soybean peptide intervention study by ultraperformance liquid chromatography and quadrupole-time-of-flight mass spectrometry. J. Obes. 2013, 874981 (2013).

    PubMed  PubMed Central  Google Scholar 

  65. Forlani, G. et al. Insulin-dependent metabolism of branched-chain amino acids in obesity. Metabolism 33, 147–150 (1984).

    CAS  PubMed  Google Scholar 

  66. Fiehn, O. et al. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS ONE 5, e15234 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. Felig, P., Marliss, E. & Cahill, G. F. Jr. Plasma amino acid levels and insulin secretion in obesity. N. Engl. J. Med. 281, 811–816 (1969).

    CAS  PubMed  Google Scholar 

  68. Cheng, S. et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 125, 2222–2231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Caballero, B., Finer, N. & Wurtman, R. J. Plasma amino acids and insulin levels in obesity: response to carbohydrate intake and tryptophan supplements. Metabolism 37, 672–676 (1988).

    CAS  PubMed  Google Scholar 

  70. Belfiore, F., Iannello, S. & Rabuazzo, A. M. Insulin resistance in obesity: a critical analysis at enzyme level. A review. Int. J. Obes. 3, 301–323 (1979).

    CAS  PubMed  Google Scholar 

  71. Adibi, S. A. Influence of dietary deprivations on plasma concentration of free amino acids of man. J. Appl. Physiol. 25, 52–57 (1968).

    CAS  PubMed  Google Scholar 

  72. She, P. et al. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am. J. Physiol. Endocrinol. Metab. 293, E1552–E1563 (2007).

    CAS  PubMed  Google Scholar 

  73. She, P. et al. Leucine and protein metabolism in obese Zucker rats. PLoS ONE 8, e59443 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Herman, M. A., She, P., Peroni, O. D., Lynch, C. J. & Kahn, B. B. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J. Biol. Chem. 285, 11348–11356 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Olson, K. C., Chen, G., Xu, Y., Hajnal, A. & Lynch, C. J. Alloisoleucine differentiates the branched-chain aminoacidemia of Zucker and dietary obese rats. Obesity (Silver Spring) 22, 1212–1215 (2014).

    CAS  Google Scholar 

  76. Batch, B. C. et al. Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism 62, 961–969 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang, Y., Zhou, M., Sun, H. & Wang, Y. Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovasc. Res. 90, 220–223 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Breitman, I. et al. The effects of an amino acid supplement on glucose homeostasis, inflammatory markers, and incretins after laparoscopic gastric bypass. J. Am. Coll. Surg. 212, 617–625 (2011).

    PubMed  PubMed Central  Google Scholar 

  79. Badoud, F. et al. Serum and adipose tissue amino Acid homeostasis in the metabolically healthy obese. J. Proteome Res. 13, 3455–3466 (2014).

    CAS  PubMed  Google Scholar 

  80. Fernstrom, J. D. Branched-chain amino acids and brain function. J. Nutr. 135, 1539S–1546S (2005).

    CAS  PubMed  Google Scholar 

  81. Mans, A. M., DeJoseph, M. R., Davis, D. W. & Hawkins, R. A. Regional amino acid transport into brain during diabetes: effect of plasma amino acids. Am. J. Physiol. 253, E575–E583 (1987).

    CAS  PubMed  Google Scholar 

  82. Crandall, E. A. & Fernstrom, J. D. Effect of experimental diabetes on the levels of aromatic and branched-chain amino acids in rat blood and brain. Diabetes 32, 222–230 (1983).

    CAS  PubMed  Google Scholar 

  83. Fernstrom, M. H., Volk, E. A. & Fernstrom, J. D. In vivo inhibition of tyrosine uptake into rat retina by large neutral but not acidic amino acids. Am. J. Physiol. 251, E393–E399 (1986).

    CAS  PubMed  Google Scholar 

  84. Coppola, A. et al. Branched-chain amino acids alter neurobehavioral function in rats. Am. J. Physiol. Endocrinol. Metab. 304, E405–E413 (2013).

    CAS  PubMed  Google Scholar 

  85. Pan, A. et al. Bidirectional association between depression and obesity in middle-aged and older women. Int. J. Obes. (Lond.) 36, 595–602 (2012).

    CAS  Google Scholar 

  86. Blommaart, E. F., Luiken, J. J., Blommaart, P. J., van Woerkom, G. M. & Meijer, A. J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem. 270, 2320–2326 (1995).

    CAS  PubMed  Google Scholar 

  87. Maki, T. et al. Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats. Nutr. Res. 32, 676–683 (2012).

    CAS  PubMed  Google Scholar 

  88. May, M. E. & Buse, M. G. Effects of branched-chain amino acids on protein turnover. Diabetes Metab. Rev. 5, 227–245 (1989).

    CAS  PubMed  Google Scholar 

  89. Mordier, S., Deval, C., Bechet, D., Tassa, A. & Ferrara, M. Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J. Biol. Chem. 275, 29900–29906 (2000).

    CAS  PubMed  Google Scholar 

  90. Mortimore, G. E. & Poso, A. R. Lysosomal pathways in hepatic protein degradation: regulatory role of amino acids. Fed. Proc. 43, 1289–1294 (1984).

    CAS  PubMed  Google Scholar 

  91. Sugawara, T., Ito, Y., Nishizawa, N. & Nagasawa, T. Regulation of muscle protein degradation, not synthesis, by dietary leucine in rats fed a protein-deficient diet. Amino Acids 37, 609–616 (2009).

    CAS  PubMed  Google Scholar 

  92. Hong, S. O. & Layman, D. K. Effects of leucine on in vitro protein synthesis and degradation in rat skeletal muscles. J. Nutr. 114, 1204–1212 (1984).

    CAS  PubMed  Google Scholar 

  93. Adegoke, O. A. et al. Fed-state clamp stimulates cellular mechanisms of muscle protein anabolism and modulates glucose disposal in normal men. Am. J. Physiol. Endocrinol. Metab. 296, E105–E113 (2009).

    CAS  PubMed  Google Scholar 

  94. Baptista, I. L. et al. Leucine attenuates skeletal muscle wasting via inhibition of ubiquitin ligases. Muscle Nerve 41, 800–808 (2010).

    CAS  PubMed  Google Scholar 

  95. Glass, D. J. Signaling pathways perturbing muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 13, 225–229 (2010).

    CAS  PubMed  Google Scholar 

  96. Latres, E. et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J. Biol. Chem. 280, 2737–2744 (2005).

    CAS  PubMed  Google Scholar 

  97. Paula-Gomes, S. et al. Insulin suppresses atrophy and autophagy-related genes in heart tissue and cardiomyocytes through AKT/FOXO signaling. Horm. Metab. Res. 45, 849–855 (2013).

    CAS  PubMed  Google Scholar 

  98. Williamson, J. R., Walajtys-Rode, E. & Coll., K. E. Effects of branched chain α-ketoacids on the metabolism of isolated rat liver cells. I. Regulation of branched chain α-ketoacid metabolism. J. Biol. Chem. 254, 11511–11520 (1979).

    CAS  PubMed  Google Scholar 

  99. Greenhaff, P. L. et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am. J. Physiol. Endocrinol. Metab. 295, E595–E604 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. O'Connor, P. M., Bush, J. A., Suryawan, A., Nguyen, H. V. & Davis, T. A. Insulin and amino acids independently stimulate skeletal muscle protein synthesis in neonatal pigs. Am. J. Physiol. Endocrinol. Metab. 284, E110–E119 (2003).

    CAS  PubMed  Google Scholar 

  101. Fryburg, D. A., Jahn, L. A., Hill, S. A., Oliveras, D. M. & Barrett, E. J. Insulin and insulin-like growth factor-I enhance human skeletal muscle protein anabolism during hyperaminoacidemia by different mechanisms. J. Clin. Invest. 96, 1722–1729 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Estornell, E., Cabo, J. & Barber, T. Protein synthesis is stimulated in nutritionally obese rats. J. Nutr. 125, 1309–1315 (1995).

    CAS  PubMed  Google Scholar 

  103. Guillet, C., Masgrau, A. & Boirie, Y. Is protein metabolism changed with obesity? Curr. Opin. Clin. Nutr. Metab. Care 14, 89–92 (2011).

    CAS  PubMed  Google Scholar 

  104. Kumashiro, N. et al. Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance. Diabetes 62, 2183–2194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nilsson, M. I. et al. Abnormal protein turnover and anabolic resistance to exercise in sarcopenic obesity. FASEB J. 27, 3905–3916 (2013).

    CAS  PubMed  Google Scholar 

  106. Welle, S., Barnard, R. R., Statt, M. & Amatruda, J. M. Increased protein turnover in obese women. Metabolism 41, 1028–1034 (1992).

    CAS  PubMed  Google Scholar 

  107. Louard, R. J., Barrett, E. J. & Gelfand, R. A. Overnight branched-chain amino acid infusion causes sustained suppression of muscle proteolysis. Metabolism 44, 424–429 (1995).

    CAS  PubMed  Google Scholar 

  108. Hung, C. F. et al. Relationship between obesity and the risk of clinically significant depression: Mendelian randomisation study. Br. J. Psychiatry 205, 24–28 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Um, S. H. et al. Absence of S6K1 protects against age and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).

    CAS  PubMed  Google Scholar 

  110. Um, S. H., D'Alessio, D. & Thomas, G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 3, 393–402 (2006).

    CAS  PubMed  Google Scholar 

  111. She, P. et al. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab. 6, 181–194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kihlberg, R., Bark, S. & Hallberg, D. An oral amino acid loading test before and after intestinal bypass operation for morbid obesity. Acta Chir. Scand. 148, 73–86 (1982).

    CAS  PubMed  Google Scholar 

  113. Magkos, F. et al. Effect of Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding on branched-chain amino acid metabolism. Diabetes 62, 2757–2761 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Laferrere, B. et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci. Transl. Med. 3, 80re2 (2011).

    PubMed  PubMed Central  Google Scholar 

  115. Doi, M. et al. Isoleucine, a blood glucose-lowering amino acid, increases glucose uptake in rat skeletal muscle in the absence of increases in AMP-activated protein kinase activity. J. Nutr. 135, 2103–2108 (2005).

    CAS  PubMed  Google Scholar 

  116. Doi, M., Yamaoka, I., Nakayama, M., Sugahara, K. & Yoshizawa, F. Hypoglycemic effect of isoleucine involves increased muscle glucose uptake and whole body glucose oxidation and decreased hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 292, E1683–E1693 (2007).

    CAS  PubMed  Google Scholar 

  117. Broca, C. et al. Insulinotropic agent ID-1101 (4-hydroxyisoleucine) activates insulin signaling in rat. Am. J. Physiol. Endocrinol. Metab. 287, E463–E471 (2004).

    CAS  PubMed  Google Scholar 

  118. Blanchard, P. G. et al. Major involvement of mTOR in the PPARγ-induced stimulation of adipose tissue lipid uptake and fat accretion. J. Lipid Res. 53, 1117–1125 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Herder, C. & Roden, M. Genetics of type 2 diabetes: pathophysiologic and clinical relevance. Eur. J. Clin. Invest. 41, 679–692 (2011).

    PubMed  Google Scholar 

  120. Tiffin, N. et al. Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res. 34, 3067–3081 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Vimaleswaran, K. S. et al. Candidate genes for obesity-susceptibility show enriched association within a large genome-wide association study for BMI. Hum. Mol. Genet. 21, 4537–4542 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Leibowitz, G., Cerasi, E. & Ketzinel-Gilad, M. The role of mTOR in the adaptation and failure of β-cells in type 2 diabetes. Diabetes Obes. Metab. 10 (Suppl. 4), 157–169 (2008).

    CAS  PubMed  Google Scholar 

  123. Lopes, P. et al. Effects of cyclosporine and sirolimus on insulin-stimulated glucose transport and glucose tolerance in a rat model. Transplant Proc. 45, 1142–1148 (2013).

    CAS  PubMed  Google Scholar 

  124. Dandel, M., Lehmkuhl, H. B., Knosalla, C. & Hetzer, R. Impact of different long-term maintenance immunosuppressive therapy strategies on patients' outcome after heart transplantation. Transpl. Immunol. 23, 93–103 (2010).

    CAS  PubMed  Google Scholar 

  125. Gyurus, E., Kaposztas, Z. & Kahan, B. D. Sirolimus therapy predisposes to new-onset diabetes mellitus after renal transplantation: a long-term analysis of various treatment regimens. Transplant Proc. 43, 1583–1592 (2011).

    CAS  PubMed  Google Scholar 

  126. Hughes, K. J. & Kennedy, B. K. Rapamycin paradox resolved. Science 335, 1578–1579 (2012).

    CAS  PubMed  Google Scholar 

  127. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–168 (2006).

    CAS  PubMed  Google Scholar 

  129. Pham, P.-T. T., Pham, P.-M. T., Pham, S. V., Pham, P.-A. T. & Pham, P.-C. T. New onset diabetes after transplantation (NODAT): an overview. Diabetes Metab. Syndr. Obes. 4, 175–186 (2011).

    PubMed  PubMed Central  Google Scholar 

  130. Bridi, R. et al. α-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metab. Brain Dis. 20, 155–167 (2005).

    CAS  PubMed  Google Scholar 

  131. Funchal, C. et al. Morphological alterations and induction of oxidative stress in glial cells caused by the branched-chain α-keto acids accumulating in maple syrup urine disease. Neurochem. Int. 49, 640–650 (2006).

    CAS  PubMed  Google Scholar 

  132. Jackson, R. H. & Singer, T. P. Inactivation of the 2-ketoglutarate and pyruvate dehydrogenase complexes of beef heart by branched chain keto acids. J. Biol. Chem. 258, 1857–1865 (1983).

    CAS  PubMed  Google Scholar 

  133. Walajtys-Rode, E. & Williamson, J. R. Effects of branched chain α-ketoacids on the metabolism of isolated rat liver cells. III. Interactions with pyruvate dehydrogenase. J. Biol. Chem. 255, 413–418 (1980).

    CAS  PubMed  Google Scholar 

  134. Jouvet, P., Kozma, M. & Mehmet, H. Primary human fibroblasts from a maple syrup urine disease patient undergo apoptosis following exposure to physiological concentrations of branched chain amino acids. Ann. NY Acad. Sci. 926, 116–121 (2000).

    CAS  PubMed  Google Scholar 

  135. Jouvet, P. et al. Maple syrup urine disease metabolites induce apoptosis in neural cells without cytochrome c release or changes in mitochondrial membrane potential. Biochem. Soc. Trans. 26, S341 (1998).

    CAS  PubMed  Google Scholar 

  136. Kasinski, A., Doering, C. B. & Danner, D. J. Leucine toxicity in a neuronal cell model with inhibited branched chain amino acid catabolism. Brain Res. Mol. Brain Res. 122, 180–187 (2004).

    CAS  PubMed  Google Scholar 

  137. Lu, G. et al. Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells. J. Clin. Invest. 119, 1678–1687 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Oyarzabal, A. et al. A novel regulatory defect in the branched-chain α-keto acid dehydrogenase complex due to a mutation in the PPM1K gene causes a mild variant phenotype of maple syrup urine disease. Hum. Mutat. 34, 355–362 (2013).

    CAS  PubMed  Google Scholar 

  139. Lu, G. et al. Functional characterization of a mitochondrial Ser/Thr protein phosphatase in cell death regulation. Methods Enzymol. 457, 255–273 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Lu, G. et al. A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development. Genes Dev. 21, 784–796 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Amaral, A. U. et al. α-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res. 1324, 75–84 (2010).

    CAS  PubMed  Google Scholar 

  142. Adams, S. H. et al. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid β-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J. Nutr. 139, 1073–1081 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Adams, S. H. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv. Nutr. 2, 445–456 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Shah, S. H. et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 55, 321–330 (2012).

    CAS  PubMed  Google Scholar 

  145. Wajner, M. & Goodman, S. I. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J. Bioenerg. Biomembr. 43, 31–38 (2011).

    CAS  PubMed  Google Scholar 

  146. Klimcakova, E. et al. Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response. J. Clin. Endocrinol. Metab. 96, E73–E82 (2011).

    CAS  PubMed  Google Scholar 

  147. Pietilainen, K. H. et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med. 5, e51 (2008).

    PubMed  PubMed Central  Google Scholar 

  148. Leskinen, T. et al. Differences in muscle and adipose tissue gene expression and cardio-metabolic risk factors in the members of physical activity discordant twin pairs. PLoS ONE 5, e12609 (2010).

    PubMed  PubMed Central  Google Scholar 

  149. Lan, H. et al. Gene expression profiles of nondiabetic and diabetic obese mice suggest a role of hepatic lipogenic capacity in diabetes susceptibility. Diabetes 52, 688–700 (2003).

    CAS  PubMed  Google Scholar 

  150. Stancakova, A. et al. Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes 61, 1895–1902 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Zimmerman, H. A., Olson, K. C., Chen, G. & Lynch, C. J. Adipose transplant for inborn errors of branched chain amino acid metabolism in mice. Mol. Genet. Metab. 109, 345–353 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mazariegos, G. V. et al. Liver transplantation for classical maple syrup urine disease: long-term follow-up in 37 patients and comparative United Network for Organ Sharing experience. J. Pediatr. 160, 116–121 (2012).

    PubMed  Google Scholar 

  153. Harris, R. A., Joshi, M., Jeoung, N. H. & Obayashi, M. Overview of the molecular and biochemical basis of branched-chain amino acid catabolism. J. Nutr. 135, 1527S–1530S (2005).

    CAS  PubMed  Google Scholar 

  154. Lefort, N. et al. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes 59, 2444–2452 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Mullen, E. & Ohlendieck, K. Proteomic profiling of non-obese type 2 diabetic skeletal muscle. Int. J. Mol. Med. 25, 445–458 (2010).

    CAS  PubMed  Google Scholar 

  156. Roe, C. R. et al. Isolated isobutyryl-CoA dehydrogenase deficiency: an unrecognized defect in human valine metabolism. Mol. Genet. Metab. 65, 264–271 (1998).

    CAS  PubMed  Google Scholar 

  157. Shin, A. C. et al. Brain insulin lowers circulating BCAA levels by inducing hepatic branched-chain α keto-acid dehydrogenase. Cell Metab. (in press).

  158. Tschop, M. H. et al. A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57–63 (2012).

    Google Scholar 

  159. Wolfe, R. R. & Chinkes, D. L. in Isotope Tracers in Metabolic Research 299–323 (Wiley, 2005).

    Google Scholar 

  160. Allsop, J. R., Wolfe, R. R. & Burke, J. F. Tracer priming the bicarbonate pool. J. Appl. Physiol. 45, 137–139 (1978).

    PubMed  Google Scholar 

  161. Doisaki, M. et al. Regulation of hepatic branched-chain α-keto acid dehydrogenase kinase in a rat model for type 2 diabetes mellitus at different stages of the disease. Biochem. Biophys. Res. Commun. 393, 303–307 (2010).

    CAS  PubMed  Google Scholar 

  162. Kuzuya, T. et al. Regulation of branched-chain amino acid catabolism in rat models for spontaneous type 2 diabetes mellitus. Biochem. Biophys. Res. Commun. 373, 94–98 (2008).

    CAS  PubMed  Google Scholar 

  163. Kadota, Y., Toyoda, T., Kitaura, Y., Adams, S. H. & Shimomura, Y. Regulation of hepatic branched-chain α-ketoacid dehydrogenase complex in rats fed a high-fat diet. Obes. Res. Clin. Pract. 7, e439–e444 (2013).

    PubMed  PubMed Central  Google Scholar 

  164. Joshi, M., Jeoung, N. H., Popov, K. M. & Harris, R. A. Identification of a novel PP2C-type mitochondrial phosphatase. Biochem. Biophys. Res. Commun. 356, 38–44 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Taneera, J. et al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab. 16, 122–134 (2012).

    CAS  PubMed  Google Scholar 

  166. Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Xu, M. et al. Genetic determinant for amino acid metabolites and changes in body weight and insulin resistance in response to weight-loss diets: the preventing overweight using novel dietary strategies (POUNDS LOST) trial. Circulation 127, 1283–1289 (2013).

    PubMed  Google Scholar 

  168. Cipolla-Neto, J., Amaral, F. G., Afeche, S. C., Tan, D. X. & Reiter, R. J. Melatonin, energy metabolism, and obesity: a review. J. Pineal Res. 56, 371–381 (2014).

    CAS  PubMed  Google Scholar 

  169. Shi, S. Q., Ansari, T. S., McGuinness, O. P., Wasserman, D. H. & Johnson, C. H. Circadian disruption leads to insulin resistance and obesity. Curr. Biol. 23, 372–381 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Wu, L. & Reddy, A. B. Disrupting rhythms: diet-induced obesity impairs diurnal rhythms in metabolic tissues. Diabetes 62, 1829–1830 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Holt, R. I., Barnett, A. H. & Bailey, C. J. Bromocriptine: old drug, new formulation and new indication. Diabetes Obes. Metab. 12, 1048–1057 (2010).

    CAS  PubMed  Google Scholar 

  172. Cano, P. et al. Effect of a high-fat diet on 24-hour pattern of circulating adipocytokines in rats. Obesity (Silver Spring) 17, 1866–1871 (2009).

    CAS  Google Scholar 

  173. Takashima, M. et al. Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action. Diabetes 59, 1608–1615 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Elbein, S. C. et al. Global gene expression profiles of subcutaneous adipose and muscle from glucose-tolerant, insulin-sensitive, and insulin-resistant individuals matched for BMI. Diabetes 60, 1019–1029 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Corkey, B. E., Martin-Requero, A., Walajtys-Rode, E., Williams, R. J. & Williamson, J. R. Regulation of the branched chain α-ketoacid pathway in liver. J. Biol. Chem. 257, 9668–9676 (1982).

    CAS  PubMed  Google Scholar 

  176. Hu, H., Jaskiewicz, J. A. & Harris, R. A. Ethanol and oleate inhibition of α-ketoisovalerate and 3-hydroxyisobutyrate metabolism by isolated hepatocytes. Arch. Biochem. Biophys. 299, 57–62 (1992).

    CAS  PubMed  Google Scholar 

  177. Koves, T. R. et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 7, 45–56 (2008).

    CAS  PubMed  Google Scholar 

  178. Frohnert, B. I. & Bernlohr, D. A. Protein carbonylation, mitochondrial dysfunction, and insulin resistance. Adv. Nutr. 4, 157–163 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Frohnert, B. I. et al. Increased adipose protein carbonylation in human obesity. Obesity (Silver Spring) 19, 1735–1741 (2011).

    CAS  Google Scholar 

  180. Long, E. K., Olson, D. M. & Bernlohr, D. A. High-fat diet induces changes in adipose tissue trans-4-oxo-2-nonenal and trans-4-hydroxy-2-nonenal levels in a depot-specific manner. Free Radic. Biol. Med. 63, 390–398 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Ruskovska, T. & Bernlohr, D. A. Oxidative stress and protein carbonylation in adipose tissue—implications for insulin resistance and diabetes mellitus. J. Proteomics 92, 323–334 (2013).

    CAS  PubMed  Google Scholar 

  182. Mamer, O. A. & Reimer, M. L. On the mechanisms of the formation of L-alloisoleucine and the 2-hydroxy-3-methylvaleric acid stereoisomers from L-isoleucine in maple syrup urine disease patients and in normal humans. J. Biol. Chem. 267, 22141–22147 (1992).

    CAS  PubMed  Google Scholar 

  183. Zhang, B., Zhao, Y., Harris, R. A. & Crabb, D. W. Molecular defects in the E1 α subunit of the branched-chain α-ketoacid dehydrogenase complex that cause maple syrup urine disease. Mol. Biol. Med. 8, 39–47 (1991).

    CAS  PubMed  Google Scholar 

  184. Strauss, K. A. et al. Maple syrup urine disease. GeneReviews [online], (1993).

    Google Scholar 

  185. Strauss, K. A. et al. Classical maple syrup urine disease and brain development: principles of management and formula design. Mol. Genet. Metab. 99, 333–345 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Homanics, G. E., Skvorak, K., Ferguson, C., Watkins, S. & Paul, H. S. Production and characterization of murine models of classic and intermediate maple syrup urine disease. BMC Med. Genet. 7, 33 (2006).

    PubMed  PubMed Central  Google Scholar 

  187. Zinnanti, W. J. et al. Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain 132, 903–918 (2009).

    PubMed  PubMed Central  Google Scholar 

  188. Bridi, R. et al. Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int. J. Dev. Neurosci. 21, 327–332 (2003).

    CAS  PubMed  Google Scholar 

  189. Kobayashi, R. et al. Clofibric acid stimulates branched-chain amino acid catabolism by three mechanisms. Arch. Biochem. Biophys. 407, 231–240 (2002).

    CAS  PubMed  Google Scholar 

  190. Shimomura, Y. et al. Branched-chain 2-oxo acid dehydrogenase complex activation by tetanic contractions in rat skeletal muscle. Biochim. Biophys. Acta 1157, 290–296 (1993).

    CAS  Google Scholar 

  191. Shimomura, Y. et al. Branched-chain amino acid catabolism in exercise and liver disease. J. Nutr. 136, 250S–253S (2006).

    CAS  PubMed  Google Scholar 

  192. Wang, X. & Price, S. R. Differential regulation of branched-chain α-ketoacid dehydrogenase kinase expression by glucocorticoids and acidification in LLC-PK1-GR101 cells. Am. J. Physiol. Renal Physiol. 286, F504–F508 (2004).

    CAS  PubMed  Google Scholar 

  193. Block, K. P., Richmond, W. B., Mehard, W. B. & Buse, M. G. Glucocorticoid-mediated activation of muscle branched-chain α-keto acid dehydrogenase in vivo. Am. J. Physiol. 252, E396–E407 (1987).

    CAS  PubMed  Google Scholar 

  194. Popov, K. M. et al. Dietary control and tissue specific expression of branched-chain α-ketoacid dehydrogenase kinase. Arch. Biochem. Biophys. 316, 148–154 (1995).

    CAS  PubMed  Google Scholar 

  195. Kobayashi, R. et al. Hepatic branched-chain α-keto acid dehydrogenase complex in female rats: activation by exercise and starvation. J. Nutr. Sci. Vitaminol. (Tokyo) 45, 303–309 (1999).

    CAS  Google Scholar 

  196. Zhao, Y. et al. Effect of dietary protein on the liver content and subunit composition of the branched-chain α-ketoacid dehydrogenase complex. Arch. Biochem. Biophys. 308, 446–453 (1994).

    PubMed  Google Scholar 

  197. Nellis, M. M., Doering, C. B., Kasinski, A. & Danner, D. J. Insulin increases branched-chain α-ketoacid dehydrogenase kinase expression in Clone 9 rat cells. Am. J. Physiol. Endocrinol. Metab. 283, E853–E860 (2002).

    CAS  PubMed  Google Scholar 

  198. Harris, R. A. et al. Regulation of the branched-chain α-ketoacid dehydrogenase and elucidation of a molecular basis for maple syrup urine disease. Adv. Enzyme Regul. 30, 245–263 (1990).

    CAS  PubMed  Google Scholar 

  199. Harper, A. E., Miller, R. H. & Block, K. P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 4, 409–454 (1984).

    CAS  PubMed  Google Scholar 

  200. Paxton, R. & Harris, R. A. Regulation of branched-chain α-ketoacid dehydrogenase kinase. Arch. Biochem. Biophys. 231, 48–57 (1984).

    CAS  PubMed  Google Scholar 

  201. Nawabi, M. D., Block, K. P., Chakrabarti, M. C. & Buse, M. G. Administration of endotoxin, tumor necrosis factor, or interleukin 1 to rats activates skeletal muscle branched-chain α-keto acid dehydrogenase. J. Clin. Invest. 85, 256–263 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Harris, R. A., Kobayashi, R., Murakami, T. & Shimomura, Y. Regulation of branched-chain α-keto acid dehydrogenase kinase expression in rat liver. J. Nutr. 131, 841S–845S (2001).

    CAS  PubMed  Google Scholar 

  203. Shimomura, Y., Obayashi, M., Murakami, T. & Harris, R. A. Regulation of branched-chain amino acid catabolism: nutritional and hormonal regulation of activity and expression of the branched-chain α-keto acid dehydrogenase kinase. Curr. Opin. Clin. Nutr. Metab. Care 4, 419–423 (2001).

    CAS  PubMed  Google Scholar 

  204. Harris, R. A. et al. in Lipoic Acid: Energy Production, Antioxidant Activity and Health Effects (eds Patel, M. S. & Packer, L.) 101–148 (CRC Press, 2008).

    Google Scholar 

  205. Gillim, S. E., Paxton, R., Cook, G. A. & Harris, R. A. Activity state of the branched chain α-ketoacid dehydrogenase complex in heart, liver, and kidney of normal, fasted, diabetic, and protein-starved rats. Biochem. Biophys. Res. Commun. 111, 74–81 (1983).

    CAS  PubMed  Google Scholar 

  206. Lombardo, Y. B., Serdikoff, C., Thamotharan, M., Paul, H. S. & Adibi, S. A. Inverse alterations of BCKA dehydrogenase activity in cardiac and skeletal muscles of diabetic rats. Am. J. Physiol. 277, E685–E692 (1999).

    CAS  PubMed  Google Scholar 

  207. Lombardo, Y. B., Thamotharan, M., Bawani, S. Z., Paul, H. S. & Adibi, S. A. Posttranscriptional alterations in protein masses of hepatic branched-chain keto acid dehydrogenase and its associated kinase in diabetes. Proc. Assoc. Am. Physicians 110, 40–49 (1998).

    CAS  PubMed  Google Scholar 

  208. Kobayashi, R., Shimomura, Y., Otsuka, M., Popov, K. M. & Harris, R. A. Experimental hyperthyroidism causes inactivation of the branched-chain α-ketoacid dehydrogenase complex in rat liver. Arch. Biochem. Biophys. 375, 55–61 (2000).

    CAS  PubMed  Google Scholar 

  209. Harris, R. A., Powell, S. M., Paxton, R., Gillim, S. E. & Nagae, H. Physiological covalent regulation of rat liver branched-chain α-ketoacid dehydrogenase. Arch. Biochem. Biophys. 243, 542–555 (1985).

    CAS  PubMed  Google Scholar 

  210. Hsiao, G. et al. Multi-tissue, selective PPARγ modulation of insulin sensitivity and metabolic pathways in obese rats. Am. J. Physiol. Endocrinol. Metab. 300, E164–E174 (2011).

    PubMed  Google Scholar 

Download references

Acknowledgements

C.J.L. acknowledges research support from the NIH (DK091784 and DK084428). S.H.A. acknowledges research support from the USDA–Agricultural Research Service (Intramural Project 5,306-51530-019-00) and the NIH (NIH-NIDDK R01DK078328). The authors wish to thank their many colleagues, collaborators and mentors who have inspired their interest in branched-chain amino acids and metabolic disease.

Author information

Authors and Affiliations

Authors

Contributions

C.J.L. and S.H.A. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Christopher J. Lynch.

Ethics declarations

Competing interests

C.J.L. has received an honorarium for being a panelist for the Protein Summit, Washington, DC, USA, in 2013. S.H.A. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynch, C., Adams, S. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 10, 723–736 (2014). https://doi.org/10.1038/nrendo.2014.171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing