[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interleukin-21: a double-edged sword with therapeutic potential

Key Points

  • Interleukin-21 (IL-21) is a pleiotropic cytokine with actions on a broad range of lymphoid, myeloid and epithelial cells. These actions include effects on proliferation, survival, differentiation and function.

  • IL-21 has a key role in B cell differentiation to plasma cells and in the development of T follicular helper cells, promoting functional germinal centres and immunoglobulin production.

  • IL-21 induces a functional programme in CD8+ T cells that leads to enhanced survival, antiviral activity and antitumour activity.

  • IL-21 has a key role in the development of T helper 17 (TH17) cells, which contribute to pathogenesis in a range of inflammatory diseases.

  • Clinical trials with IL-21 alone or in combination with other agents have yielded favourable results in the treatment of solid tumours.

  • IL-21 promotes a range of autoimmune diseases, including systemic lupus erythematosus, type 1 diabetes, multiple sclerosis, inflammatory bowel disease and psoriasis. Clinical trials using IL-21 inhibitors are in progress.

Abstract

Interleukin-21 is a cytokine with broad pleiotropic actions that affect the differentiation and function of lymphoid and myeloid cells. Since its discovery in 2000, a tremendous amount has been learned about its biological actions and the molecular mechanisms controlling IL-21-mediated cellular responses. IL-21 regulates both innate and adaptive immune responses, and it not only has key roles in antitumour and antiviral responses but also exerts major effects on inflammatory responses that promote the development of autoimmune diseases and inflammatory disorders. Numerous studies have shown that enhancing or inhibiting the action of IL-21 has therapeutic effects in animal models of a wide range of diseases, and various clinical trials are underway. The current challenge is to understand how to specifically modulate the actions of IL-21 in the context of each specific immune response or pathological situation. In this Review, we provide an overview of the basic biology of IL-21 and discuss how this information has been — and can be — exploited therapeutically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sources of IL-21 and its cellular targets.
Figure 2: IL-21 signals through IL-21R and utilizes the JAK–STAT, MAPK and PI3K pathways.
Figure 3: IL-21 has a key role in B cell differentiation and germinal cell development.

Similar content being viewed by others

References

  1. Spolski, R. & Leonard, W. J. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 26, 57–79 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Parrish-Novak, J. et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408, 57–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ozaki, K., Kikly, K., Michalovich, D., Young, P. R. & Leonard, W. J. Cloning of a type I cytokine receptor most related to the IL-2 receptor β chain. Proc. Natl Acad. Sci. USA 97, 11439–11444 (2000). References 2 and 3 are the first papers to describe IL-21 and its receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Asao, H. et al. Cutting edge: the common γ-chain is an indispensable subunit of the IL-21 receptor complex. J. Immunol. 167, 1–5 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Noguchi, M. et al. Interleukin-2 receptor γ chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157 (1993). This is the first paper to describe the defect in patients with X-SCID.

    Article  CAS  PubMed  Google Scholar 

  6. Leonard, W. J. Cytokines and immunodeficiency diseases. Nature Rev. Immunol. 1, 200–208 (2001).

    Article  CAS  Google Scholar 

  7. Kang, L., Bondensgaard, K., Li, T., Hartmann, R. & Hjorth, S. A. Rational design of interleukin-21 antagonist through selective elimination of the γC binding epitope. J. Biol. Chem. 285, 12223–12231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeng, R. et al. The molecular basis of IL-21-mediated proliferation. Blood 109, 4135–4142 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kwon, H. et al. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 31, 941–952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, P. et al. BATF-JUN is critical for IRF4-mediated transcription in T cells. Nature 490, 543–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Glasmacher, E. et al. A genomic regulatory element that directs assembly and function of immune-specific AP-1-IRF complexes. Science 338, 975–980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamaoka, K. & Tanaka, Y. Targeting the Janus kinases in rheumatoid arthritis: focus on tofacitinib. Expert Opin. Pharmacother. 15, 103–113 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Sandborn, W. J. et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N. Engl. J. Med. 367, 616–624 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Ozaki, K. et al. A critical role for IL-21 in regulating immunoglobulin production. Science 298, 1630–1634 (2002). This is the first paper to describe a role for IL-21 in immunoglobulin production.

    Article  CAS  PubMed  Google Scholar 

  16. Recher, M. et al. IL-21 is the primary common γ chain-binding cytokine required for human B-cell differentiation in vivo. Blood 118, 6824–6835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pene, J. et al. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J. Immunol. 172, 5154–5157 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Ettinger, R. et al. IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J. Immunol. 175, 7867–7879 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Avery, D. T., Bryant, V. L., Ma, C. S., de Waal Malefyt, R. & Tangye, S. G. IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. J. Immunol. 181, 1767–1779 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Bryant, V. L. et al. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J. Immunol. 179, 8180–8190 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Dullaers, M. et al. A T cell-dependent mechanism for the induction of human mucosal homing immunoglobulin A-secreting plasmablasts. Immunity 30, 120–129 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jin, H., Carrio, R., Yu, A. & Malek, T. R. Distinct activation signals determine whether IL-21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis. J. Immunol. 173, 657–665 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Mehta, D. S. et al. IL-21 induces the apoptosis of resting and activated primary B cells. J. Immunol. 170, 4111–4118 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Ozaki, K. et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J. Immunol. 173, 5361–5371 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Calame, K. L., Lin, K. I. & Tunyaplin, C. Regulatory mechanisms that determine the development and function of plasma cells. Annu. Rev. Immunol. 21, 205–230 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Diehl, S. A. et al. STAT3-mediated up-regulation of BLIMP1 is coordinated with BCL6 down-regulation to control human plasma cell differentiation. J. Immunol. 180, 4805–4815 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Avery, D. T. et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J. Exp. Med. 207, 155–171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez-Bayona, B., Ramos-Amaya, A., Bernal, J., Campos-Caro, A. & Brieva, J. A. Cutting edge: IL-21 derived from human follicular helper T cells acts as a survival factor for secondary lymphoid organ, but not for bone marrow, plasma cells. J. Immunol. 188, 1578–1581 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Hagn, M. et al. Activated mouse B cells lack expression of granzyme B. J. Immunol. 188, 3886–3892 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Hagn, M. et al. Human B cells differentiate into granzyme B-secreting cytotoxic B lymphocytes upon incomplete T-cell help. Immunol. Cell Biol. 90, 457–467 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Xu, W. et al. Human plasma cells express granzyme B. Eur. J. Immunol. 44, 275–284 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Brandt, K., Bulfone-Paus, S., Foster, D. C. & Ruckert, R. Interleukin-21 inhibits dendritic cell activation and maturation. Blood 102, 4090–4098 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Wan, C. K. et al. The cytokines IL-21 and GM-CSF have opposing regulatory roles in the apoptosis of conventional dendritic cells. Immunity 38, 514–527 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miossec, P. & Kolls, J. K. Targeting IL-17 and TH17 cells in chronic inflammation. Nature Rev. Drug Discov. 11, 763–776 (2012).

    Article  CAS  Google Scholar 

  35. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunol. 8, 967–974 (2007). References 35, 36 and 37 are the first to describe the role of IL-21 in the differentiation of the pro-inflammatory T H 17 population of cells.

    Article  CAS  Google Scholar 

  38. Ivanov, I. I., Zhou, L. & Littman, D. R. Transcriptional regulation of Th17 cell differentiation. Semin. Immunol. 19, 409–417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coquet, J. M., Chakravarti, S., Smyth, M. J. & Godfrey, D. I. Cutting edge: IL-21 is not essential for Th17 differentiation or experimental autoimmune encephalomyelitis. J. Immunol. 180, 7097–7101 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Sonderegger, I., Kisielow, J., Meier, R., King, C. & Kopf, M. IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. Eur. J. Immunol. 38, 1833–1838 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Tangye, S. G., Ma, C. S., Brink, R. & Deenick, E. K. The good, the bad and the ugly — TFH cells in human health and disease. Nature Rev. Immunol. 13, 412–426 (2013).

    Article  CAS  Google Scholar 

  42. King, C., Tangye, S. G. & Mackay, C. R. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26, 741–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Linterman, M. A. et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207, 353–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zotos, D. et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207, 365–378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bauquet, A. T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nature Immunol. 10, 167–175 (2009).

    Article  CAS  Google Scholar 

  46. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Eto, D. et al. IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation. PLoS ONE 6, e17739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dienz, O. et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J. Exp. Med. 206, 69–78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. King, I. L., Mohrs, K. & Mohrs, M. A nonredundant role for IL-21 receptor signaling in plasma cell differentiation and protective type 2 immunity against gastrointestinal helminth infection. J. Immunol. 185, 6138–6145 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Rasheed, M. A. et al. Interleukin-21 is a critical cytokine for the generation of virus-specific long-lived plasma cells. J. Virol. 87, 7737–7746 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Luthje, K. et al. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nature Immunol. 13, 491–498 (2012).

    Article  CAS  Google Scholar 

  53. Reinhardt, R. L., Liang, H. E. & Locksley, R. M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nature Immunol. 10, 385–393 (2009).

    Article  CAS  Google Scholar 

  54. Morita, R. et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McGuire, H. M. et al. A subset of interleukin-21+ chemokine receptor CCR9+ T helper cells target accessory organs of the digestive system in autoimmunity. Immunity 34, 602–615 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pelletier, N. et al. Plasma cells negatively regulate the follicular helper T cell program. Nature Immunol. 11, 1110–1118 (2010).

    Article  CAS  Google Scholar 

  58. Chung, Y. et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nature Med. 17, 983–988 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Linterman, M. A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nature Med. 17, 975–982 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Pallikkuth, S. et al. Impaired peripheral blood T-follicular helper cell function in HIV-infected nonresponders to the 2009 H1N1/09 vaccine. Blood 120, 985–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Attridge, K. et al. IL-21 inhibits T cell IL-2 production and impairs Treg homeostasis. Blood 119, 4656–4664 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Schmitz, I. et al. IL-21 restricts virus-driven Treg cell expansion in chronic LCMV infection. PLoS Pathog. 9, e1003362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vogelzang, A. et al. IL-21 contributes to fatal inflammatory disease in the absence of Foxp3+ T regulatory cells. J. Immunol. 192, 1404–1414 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Spolski, R., Kim, H. P., Zhu, W., Levy, D. E. & Leonard, W. J. IL-21 mediates suppressive effects via its induction of IL-10. J. Immunol. 182, 2859–2867 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Pot, C. et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J. Immunol. 183, 797–801 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Zeng, R. et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J. Exp. Med. 201, 139–148 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hinrichs, C. S. et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111, 5326–5333 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mittal, A., Murugaiyan, G., Beynon, V., Hu, D. & Weiner, H. L. IL-27 induction of IL-21 from human CD8+ T cells induces granzyme B in an autocrine manner. Immunol. Cell Biol. 90, 831–835 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Williams, L. D. et al. Interleukin-21-producing HIV-1-specific CD8 T cells are preferentially seen in elite controllers. J. Virol. 85, 2316–2324 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Casanova, J. L., Holland, S. M. & Notarangelo, L. D. Inborn errors of human JAKs and STATs. Immunity 36, 515–528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kotlarz, D. et al. Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. J. Exp. Med. 210, 433–443 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Holland, S. M. et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 357, 1608–1619 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Minegishi, Y. et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448, 1058–1062 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Ives, M. L. et al. Signal transducer and activator of transcription 3 (STAT3) mutations underlying autosomal dominant hyper-IgE syndrome impair human CD8+ T-cell memory formation and function. J. Allergy Clin. Immunol. 132, 400–411.e9 (2013). Along with reference 71, this paper first describes the immune phenotype of immunodeficient patients with mutations in the IL21R gene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ma, C. S. et al. Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood 119, 3997–4008 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Milner, J. D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Siegel, A. M. et al. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35, 806–818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pesce, J. et al. The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J. Clin. Invest. 116, 2044–2055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Skak, K., Kragh, M., Hausman, D., Smyth, M. J. & Sivakumar, P. V. Interleukin 21: combination strategies for cancer therapy. Nature Rev. Drug Discov. 7, 231–240 (2008).

    Article  CAS  Google Scholar 

  80. Wang, G. et al. In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res. 63, 9016–9022 (2003).

    CAS  PubMed  Google Scholar 

  81. Takaki, R. et al. IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J. Immunol. 175, 2167–2173 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Sivakumar, P. V. et al. Comparison of vascular leak syndrome in mice treated with IL21 or IL2. Comparative Med. 63, 13–21 (2013).

    CAS  Google Scholar 

  83. Moroz, A. et al. IL-21 enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21. J. Immunol. 173, 900–909 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ahmadzadeh, M. & Rosenberg, S. A. IL-2 administration increases CD4+ CD25hi Foxp3+ regulatory T cells in cancer patients. Blood 107, 2409–2414 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Santegoets, S. J. et al. IL-21 promotes the expansion of CD27+CD28+ tumor infiltrating lymphocytes with high cytotoxic potential and low collateral expansion of regulatory T cells. J. Transl. Med. 11, 37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gattinoni, L., Klebanoff, C. A. & Restifo, N. P. Paths to stemness: building the ultimate antitumour T cell. Nature Rev. Cancer 12, 671–684 (2012).

    Article  CAS  Google Scholar 

  89. Roda, J. M. et al. Interleukin-21 enhances NK cell activation in response to antibody-coated targets. J. Immunol. 177, 120–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Takeda, K. et al. Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J. Exp. Med. 199, 437–448 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Smyth, M. J. et al. Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. J. Exp. Med. 201, 1973–1985 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. He, H. et al. Combined IL-21 and low-dose IL-2 therapy induces anti-tumor immunity and long-term curative effects in a murine melanoma tumor model. J. Transl. Med. 4, 24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kishida, T. et al. Interleukin (IL)-21 and IL-15 genetic transfer synergistically augments therapeutic antitumor immunity and promotes regression of metastatic lymphoma. Mol. Ther. 8, 552–558 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Davis, I. D. et al. Clinical and biological efficacy of recombinant human interleukin-21 in patients with stage IV malignant melanoma without prior treatment: a phase IIa trial. Clin. Cancer Res. 15, 2123–2129 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Thompson, J. A. et al. Phase I study of recombinant interleukin-21 in patients with metastatic melanoma and renal cell carcinoma. J. Clin. Oncol. 26, 2034–2039 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Steele, N. et al. A phase 1 trial of recombinant human IL-21 in combination with cetuximab in patients with metastatic colorectal cancer. Br. J. Cancer 106, 793–798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stolfi, C. et al. Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J. Exp. Med. 208, 2279–2290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gowda, A. et al. IL-21 mediates apoptosis through up-regulation of the BH3 family member BIM and enhances both direct and antibody-dependent cellular cytotoxicity in primary chronic lymphocytic leukemia cells in vitro. Blood 111, 4723–4730 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ghalamfarsa, G. et al. Differential regulation of B-cell proliferation by IL21 in different subsets of chronic lymphocytic leukemia. Cytokine 62, 439–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Jahrsdorfer, B. et al. B-chronic lymphocytic leukemia cells and other B cells can produce granzyme B and gain cytotoxic potential after interleukin-21-based activation. Blood 108, 2712–2719 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ahearne, M. J. et al. Enhancement of CD154/IL4 proliferation by the T follicular helper (Tfh) cytokine, IL21 and increased numbers of circulating cells resembling Tfh cells in chronic lymphocytic leukaemia. Br. J. Haematol. 162, 360–370 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Pascutti, M. F. et al. IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells. Blood 122, 3010–3019 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Sarosiek, K. A. et al. Novel IL-21 signaling pathway up-regulates c-Myc and induces apoptosis of diffuse large B-cell lymphomas. Blood 115, 570–580 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wood, B. et al. Abundant expression of interleukin-21 receptor in follicular lymphoma cells is associated with more aggressive disease. Leukemia Lymphoma 54, 1212–1220 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Akamatsu, N. et al. High IL-21 receptor expression and apoptosis induction by IL-21 in follicular lymphoma. Cancer Lett. 256, 196–206 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. de Totero, D. et al. Heterogeneous expression and function of IL-21R and susceptibility to IL-21-mediated apoptosis in follicular lymphoma cells. Exp. Hematol. 38, 373–383 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Wahlin, B. E. et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1—positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin. Cancer Res. 16, 637–650 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Brenne, A. T. et al. Interleukin-21 is a growth and survival factor for human myeloma cells. Blood 99, 3756–3762 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Menoret, E. et al. IL-21 stimulates human myeloma cell growth through an autocrine IGF-1 loop. J. Immunol. 181, 6837–6842 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Scheeren, F. A. et al. IL-21 is expressed in Hodgkin lymphoma and activates STAT5: evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood 111, 4706–4715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Iannitto, E., Ferreri, A. J., Minardi, V., Tripodo, C. & Kreipe, H. H. Angioimmunoblastic T-cell lymphoma. Crit. Rev. Oncol. Hematol. 68, 264–271 (2008).

    Article  PubMed  Google Scholar 

  112. Miyoshi, H. et al. Clinicopathologic analysis of peripheral T-cell lymphoma, follicular variant, and comparison with angioimmunoblastic T-cell lymphoma: Bcl-6 expression might affect progression between these disorders. Am. J. Clin. Pathol. 137, 879–889 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. de Leval, L. et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109, 4952–4963 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Dorfman, D. M., Brown, J. A., Shahsafaei, A. & Freeman, G. J. Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am. J. Surg. Pathol. 30, 802–810 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Grogg, K. L. et al. Angioimmunoblastic T-cell lymphoma: a neoplasm of germinal-center T-helper cells? Blood 106, 1501–1502 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Marafioti, T. et al. The inducible T-cell co-stimulator molecule is expressed on subsets of T cells and is a new marker of lymphomas of T follicular helper cell-derivation. Haematologica 95, 432–439 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Morito, N. et al. Overexpression of c-Maf contributes to T-cell lymphoma in both mice and human. Cancer Res. 66, 812–819 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Iqbal, J. et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood 115, 1026–1036 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Timmerman, J. M. et al. A phase I dose-finding trial of recombinant interleukin-21 and rituximab in relapsed and refractory low grade B-cell lymphoproliferative disorders. Clin. Cancer Res. 18, 5752–5760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Novy, P., Huang, X., Leonard, W. J. & Yang, Y. Intrinsic IL-21 signaling is critical for CD8 T cell survival and memory formation in response to vaccinia viral infection. J. Immunol. 186, 2729–2738 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Frohlich, A. et al. IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324, 1576–1580 (2009).

    Article  PubMed  CAS  Google Scholar 

  122. Elsaesser, H., Sauer, K. & Brooks, D. G. IL-21 is required to control chronic viral infection. Science 324, 1569–1572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yi, J. S., Du, M. & Zajac, A. J. A vital role for interleukin-21 in the control of a chronic viral infection. Science 324, 1572–1576 (2009). References 121, 122 and 123 are the first papers to determine that IL-21 has a role in chronic viral infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yi, J. S., Ingram, J. T. & Zajac, A. J. IL-21 deficiency influences CD8 T cell quality and recall responses following an acute viral infection. J. Immunol. 185, 4835–4845 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Cui, W., Liu, Y., Weinstein, J. S., Craft, J. & Kaech, S. M. An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35, 792–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hu, X. et al. Interleukin-21 is upregulated in hepatitis B-related acute-on-chronic liver failure and associated with severity of liver disease. J. Viral Hepat. 18, 458–467 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Li, L. et al. HBcAg-specific IL-21-producing CD4+ T cells are associated with relative viral control in patients with chronic hepatitis B. Scand. J. Immunol. 78, 439–446 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Ma, S. W. et al. High serum IL-21 levels after 12 weeks of antiviral therapy predict HBeAg seroconversion in chronic hepatitis B. J. Hepatol. 56, 775–781 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Publicover, J. et al. IL-21 is pivotal in determining age-dependent effectiveness of immune responses in a mouse model of human hepatitis B. J. Clin. Invest. 121, 1154–1162 (2011). This paper describes the role of IL-21 related to the age-related response to human hepatitis B infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Publicover, J. et al. Age-dependent hepatic lymphoid organization directs successful immunity to hepatitis B. J. Clin. Invest. 123, 3728–3739 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Feng, G. et al. Interleukin-21 mediates hepatitis B virus-associated liver cirrhosis by activating hepatic stellate cells. Hepatol. Res. http://dx.doi.org/10.1111/hepr.12215 (2013).

  132. Kared, H., Fabre, T., Bedard, N., Bruneau, J. & Shoukry, N. H. Galectin-9 and IL-21 mediate cross-regulation between Th17 and Treg cells during acute hepatitis C. PLoS Pathog. 9, e1003422 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Iannello, A. et al. Dynamics and consequences of IL-21 production in HIV-infected individuals: a longitudinal and cross-sectional study. J. Immunol. 184, 114–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Yue, F. Y. et al. HIV-specific IL-21 producing CD4+ T cells are induced in acute and chronic progressive HIV infection and are associated with relative viral control. J. Immunol. 185, 498–506 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Chevalier, M. F. et al. HIV-1-specific interleukin-21+ CD4+ T cell responses contribute to durable viral control through the modulation of HIV-specific CD8+ T cell function. J. Virol. 85, 733–741 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. White, L. et al. Differential effects of IL-21 and IL-15 on perforin expression, lysosomal degranulation, and proliferation in CD8 T cells of patients with human immunodeficiency virus-1 (HIV). Blood 109, 3873–3880 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lindqvist, M. et al. Expansion of HIV-specific T follicular helper cells in chronic HIV infection. J. Clin. Invest. 122, 3271–3280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cubas, R. A. et al. Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nature Med. 19, 494–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Pallikkuth, S. et al. Interleukin-21 administration to rhesus macaques chronically infected with simian immunodeficiency virus increases cytotoxic effector molecules in T cells and NK cells and enhances B cell function without increasing immune activation or viral replication. Vaccine 29, 9229–9238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pallikkuth, S. et al. Maintenance of intestinal Th17 cells and reduced microbial translocation in SIV-infected rhesus macaques treated with interleukin (IL)-21. PLoS Pathog. 9, e1003471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Spolski, R. et al. IL-21 promotes the pathologic immune response to pneumovirus infection. J. Immunol. 188, 1924–1932 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Hughes, T. et al. Fine-mapping and transethnic genotyping establish IL2/IL21 genetic association with lupus and localize this genetic effect to IL21. Arthritis Rheum. 63, 1689–1697 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cooper, J. D. et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nature Genet. 40, 1399–1401 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Marquez, A. et al. Novel association of the interleukin 2-interleukin 21 region with inflammatory bowel disease. Am. J. Gastroenterol. 104, 1968–1975 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. van Heel, D. A. et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nature Genet. 39, 827–829 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Liu, Y. et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 4, e1000041 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. McPhee, C. G. et al. IL-21 is a double-edged sword in the systemic lupus erythematosus-like disease of BXSB.Yaa mice. J. Immunol. 191, 4581–4588 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Bubier, J. A. et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc. Natl Acad. Sci. USA 106, 1518–1523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Herber, D. et al. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J. Immunol. 178, 3822–3830 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Terrier, B. et al. Interleukin 21 correlates with T cell and B cell subset alterations in systemic lupus erythematosus. J. Rheumatol. 39, 1819–1828 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Jang, E. et al. A positive feedback loop of IL-21 signaling provoked by homeostatic CD4+CD25 T cell expansion is essential for the development of arthritis in autoimmune K/BxN mice. J. Immunol. 182, 4649–4656 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Niu, X. et al. IL-21 regulates Th17 cells in rheumatoid arthritis. Hum. Immunol. 71, 334–341 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Ma, J. et al. Increased frequency of circulating follicular helper T cells in patients with rheumatoid arthritis. Clin. Dev. Immunol. 2012, 827480 (2012).

    PubMed  PubMed Central  Google Scholar 

  154. Block, K. E. & Huang, H. The cellular source and target of IL-21 in K/BxN autoimmune arthritis. J. Immunol. 191, 2948–2955 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Gabay, C. et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet 381, 1541–1550 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Carbone, G. et al. Interleukin-6 receptor blockade selectively reduces IL-21 production by CD4 T cells and IgG4 autoantibodies in rheumatoid arthritis. Int. J. Biol. Sci. 9, 279–288 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Kwok, S. K. et al. Interleukin-21 promotes osteoclastogenesis in humans with rheumatoid arthritis and in mice with collagen-induced arthritis. Arthritis Rheum. 64, 740–751 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. King, C., Ilic, A., Koelsch, K. & Sarvetnick, N. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117, 265–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Spolski, R., Kashyap, M., Robinson, C., Yu, Z. & Leonard, W. J. IL-21 signaling is critical for the development of type I diabetes in the NOD mouse. Proc. Natl Acad. Sci. USA 105, 14028–14033 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sutherland, A. P. et al. Interleukin-21 is required for the development of type 1 diabetes in NOD mice. Diabetes 58, 1144–1155 (2009). References 158, 159 and 160 describe the crucial role of IL-21 in the development of type 1 diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu, S. M. et al. Differential IL-21 signaling in APCs leads to disparate Th17 differentiation in diabetes-susceptible NOD and diabetes-resistant NOD.Idd3 mice. J. Clin. Invest. 121, 4303–4310 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Van Belle, T. L., Nierkens, S., Arens, R. & von Herrath, M. G. Interleukin-21 receptor-mediated signals control autoreactive T cell infiltration in pancreatic islets. Immunity 36, 1060–1072 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Ramanathan, S. et al. Exposure to IL-15 and IL-21 enables autoreactive CD8 T cells to respond to weak antigens and cause disease in a mouse model of autoimmune diabetes. J. Immunol. 186, 5131–5141 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. McGuire, H. M. et al. Interleukin-21 is critically required in autoimmune and allogeneic responses to islet tissue in murine models. Diabetes 60, 867–875 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Vollmer, T. L. et al. Differential effects of IL-21 during initiation and progression of autoimmunity against neuroantigen. J. Immunol. 174, 2696–2701 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Nohra, R. et al. RGMA and IL21R show association with experimental inflammation and multiple sclerosis. Genes Immun. 11, 279–293 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Tzartos, J. S. et al. IL-21 and IL-21 receptor expression in lymphocytes and neurons in multiple sclerosis brain. Am. J. Pathol. 178, 794–802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Romme Christensen, J. et al. Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PLoS ONE 8, e57820 (2013).

    Article  PubMed  CAS  Google Scholar 

  169. Jones, J. L. et al. IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J. Clin. Invest. 119, 2052–2061 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Yoshizaki, A. et al. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 491, 264–268 (2012). This paper describes the crucial role of IL-21 in the control of T cell autoimmunity by regulatory B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang, L. et al. Key role for IL-21 in experimental autoimmune uveitis. Proc. Natl Acad. Sci. USA 108, 9542–9547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bouma, G. & Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nature Rev. Immunol. 3, 521–533 (2003).

    Article  CAS  Google Scholar 

  173. Fantini, M. C., Monteleone, G. & MacDonald, T. T. IL-21 comes of age as a regulator of effector T cells in the gut. Mucosal Immunol. 1, 110–115 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Monteleone, G. et al. Interleukin-21 enhances T-helper cell type I signaling and interferon-γ production in Crohn's disease. Gastroenterology 128, 687–694 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Fina, D. et al. Regulation of gut inflammation and Th17 cell response by interleukin-21. Gastroenterology 134, 1038–1048 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. van Leeuwen, M. A. et al. Increased production of interleukin-21, but not interleukin-17A, in the small intestine characterizes pediatric celiac disease. Mucosal Immunol. 6, 1202–1213 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Caruso, R. et al. A functional role for interleukin-21 in promoting the synthesis of the T-cell chemoattractant, MIP-3α, by gut epithelial cells. Gastroenterology 132, 166–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Monteleone, G. et al. Control of matrix metalloproteinase production in human intestinal fibroblasts by interleukin 21. Gut 55, 1774–1780 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Jauch, D. et al. Interleukin 21 controls tumour growth and tumour immunosurveillance in colitis-associated tumorigenesis in mice. Gut 60, 1678–1686 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Suto, A. et al. Interleukin 21 prevents antigen-induced IgE production by inhibiting germ line Cɛ transcription of IL-4-stimulated B cells. Blood 100, 4565–4573 (2002).

    Article  CAS  PubMed  Google Scholar 

  181. Frohlich, A. et al. IL-21 receptor signaling is integral to the development of Th2 effector responses in vivo. Blood 109, 2023–2031 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Hiromura, Y. et al. IL-21 administration into the nostril alleviates murine allergic rhinitis. J. Immunol. 179, 7157–7165 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Tamagawa-Mineoka, R., Kishida, T., Mazda, O. & Katoh, N. IL-21 reduces immediate hypersensitivity reactions in mouse skin by suppressing mast cell activation or IgE production. J. Invest. Dermatol. 131, 1513–1520 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Jin, H. et al. IL-21R is essential for epicutaneous sensitization and allergic skin inflammation in humans and mice. J. Clin. Invest. 119, 47–60 (2009).

    CAS  PubMed  Google Scholar 

  185. Caruso, R. et al. Involvement of interleukin-21 in the epidermal hyperplasia of psoriasis. Nature Med. 15, 1013–1015 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Davis, I. D. et al. An open-label, two-arm, phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin. Cancer Res. 13, 3630–3636 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Petrella, T. M. et al. Interleukin-21 has activity in patients with metastatic melanoma: a phase II study. J. Clin. Oncol. 30, 3396–3401 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Grunwald, V. et al. A phase I study of recombinant human interleukin-21 (rIL-21) in combination with sunitinib in patients with metastatic renal cell carcinoma (RCC). Acta Oncol. 50, 121–126 (2011).

    Article  PubMed  CAS  Google Scholar 

  189. Bhatia, S. et al. Recombinant interleukin-21 plus sorafenib for metastatic renal cell carcinoma: a phase 1/2 study. J. Immunother. Cancer 2, 2 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Hua, F. et al. Anti-IL21 receptor monoclonal antibody (ATR-107): Safety, pharmacokinetics, and pharmacodynamic evaluation in healthy volunteers: a phase I, first-in-human study. J. Clin. Pharmacol. 54, 14–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Bubier, J. A. et al. Treatment of BXSB-Yaa mice with IL-21R-Fc fusion protein minimally attenuates systemic lupus erythematosus. Ann. NY Acad. Sci. 1110, 590–601 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Division of Intramural Research at the National Heart, Lung, and Blood Institute, US National Institutes of Health (NIH). We thank Drs E. E. West and J.-X. Lin for their critical comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosanne Spolski or Warren J. Leonard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

ClinicalTrials.gov website

PowerPoint slides

Glossary

HIV long-term non-progressors

Individuals who have been infected with HIV for long periods of time but can control the infection without the need for antiretroviral therapy. Their viral loads are under 10,000 copies per ml of blood and their CD4+ T cell counts are normal, although they may undergo a slow progression to lower CD4 counts.

Fratricide

The induction of apoptotic death in nearby cells, which normally occurs via a death receptor and its ligand. This occurs naturally in the immune system and other systems, and it can also be induced by chimeric ligands.

Elite controllers

Individuals who are infected with HIV but have extremely low viral loads (<50 copies of RNA per ml). These individuals are believed to have a strong and persistant anti-HIV immune response.

MRL–Faslpr mice

A strain of mice that are deficient for the FAS receptor, which is involved in the induction of cell death. This strain spontaneously develops an autoimmune disease that resembles the human disease systemic lupus erythematosus.

Tape-stripping epicutaneous sensitization

A method for inducing allergic skin inflammation that involves the application of antigen combined with tape stripping, which mimics scratching, leading to skin injury and a heightened allergic response.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spolski, R., Leonard, W. Interleukin-21: a double-edged sword with therapeutic potential. Nat Rev Drug Discov 13, 379–395 (2014). https://doi.org/10.1038/nrd4296

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4296

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer