[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Histone lysine demethylases as targets for anticancer therapy

Key Points

  • There is strong evidence that members of the histone lysine demethylase families are causally linked to cancer and they are therefore considered as potential targets for small-molecule therapeutics.

  • Lysine-specific demethylase 1 (LSD1) is required for the maintenance of acute myeloid leukaemia. Jumonji domain-containing protein 2B (JMJD2B), JMJD2C, Jumonji/ARID domain-containing protein 1B (JARID1B) and F-box and leucine-rich repeat protein 10 (FBXL10) are overexpressed in several cancers and are required for the growth of cancer cell lines.

  • The therapeutic potential of selective demethylase inhibitors has been demonstrated in animal models of cancer through the administration of available demethylase inhibitors or knockdown strategies.

  • Nonselective amine oxidase inhibitors have been derived to yield potent and selective LSD1 inhibitors, and clinical trials will soon be initiated.

  • Potent and subfamily-selective Jumonji C (JMJC) domain-containing demethylase inhibitors have emerged and provide optimism that true drug leads targeting this protein family are attainable.

Abstract

It has recently been demonstrated that the genes controlling the epigenetic programmes that are required for maintaining chromatin structure and cell identity include genes that drive human cancer. This observation has led to an increased awareness of chromatin-associated proteins as potentially interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone lysine demethylase class of enzymes in the development of cancers, discuss the potential and challenges of therapeutically targeting them, and highlight emerging small-molecule inhibitors of these enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Readers, writers and erasers.
Figure 2: Features of the lysine-specific demethylase family.
Figure 3: Enzymatic activities of the JMJC domain-containing demethylase family.
Figure 4: Tranylcypromine-derived LSD1 inhibitors.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. You, J. S. & Jones, P. A. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22, 9–20 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genet. 44, 251–253 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational implications. Nature Rev. Cancer 11, 726–734 (2011).

    CAS  Google Scholar 

  4. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012). References 2 and 4 report on driver mutations in H3.3, which affect K27 and G24 in paediatric glioblastoma.

    Article  CAS  PubMed  Google Scholar 

  5. Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K. & Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nature Rev. Drug Discov. 11, 384–400 (2012).

    Article  CAS  Google Scholar 

  6. Wigle, T. J. & Copeland, R. A. Drugging the human methylome: an emerging modality for reversible control of aberrant gene transcription. Curr. Opin. Chem. Biol. 17, 369–378 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Black, J. C., Van Rechem, C. & Whetstine, J. R. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol. Cell 48, 491–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Bernt, K. M. et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20, 66–78 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Daigle, S. R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Varambally, S. et al. The Polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Bracken, A. P. et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hudlebusch, H. R. et al. MMSET is highly expressed and associated with aggressiveness in neuroblastoma. Cancer Res. 71, 4226–4235 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, P. et al. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol. Cell. Biol. 29, 6074–6085 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dorrance, A. M. et al. The Mll partial tandem duplication: differential, tissue-specific activity in the presence or absence of the wild-type allele. Blood 112, 2508–2511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dorrance, A. M. et al. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J. Clin. Invest. 116, 2707–2716 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Albert, M. & Helin, K. Histone methyltransferases in cancer. Semin. Cell Dev. Biol. 21, 209–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nature Rev. Genet. 13, 343–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, H. et al. Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144, 513–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23, 4061–4071 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Margueron, R. et al. Role of the Polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Kouzarides, T. SnapShot: Histone-modifying enzymes. Cell 131, 822 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Yun, M., Wu, J., Workman, J. L. & Li, B. Readers of histone modifications. Cell Res. 21, 564–578 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Z. & Pugh, B. F. High-resolution genome-wide mapping of the primary structure of chromatin. Cell 144, 175–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Henikoff, S. & Shilatifard, A. Histone modification: cause or cog? Trends Genet. 27, 389–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Tsukada, Y.-i. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Whetstine, J. R. et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Klose, R. J. et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442, 312–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Cloos, P. A. C. et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Fodor, B. D. et al. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev. 20, 1557–1562 (2006).

    CAS  Google Scholar 

  35. Kooistra, S. M. & Helin, K. Molecular mechanisms and potential functions of histone demethylases. Nature Rev. Mol. Cell Biol. 13, 297–311 (2012).

    Article  CAS  Google Scholar 

  36. Zee, B. M. et al. In vivo residue-specific histone methylation dynamics. J. Biol. Chem. 285, 3341–3350 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Barth, T. K. & Imhof, A. Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem. Sci. 35, 618–626 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Karytinos, A. et al. A novel mammalian flavin-dependent histone demethylase. J. Biol. Chem. 284, 17775–17782 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fitzpatrick, P. F. Oxidation of amines by flavoproteins. Arch. Biochem. Biophys. 493, 13–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Aravind, L. & Iyer, L. M. The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biol. 3, research0039 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Forneris, F., Binda, C., Vanoni, M. A., Mattevi, A. & Battaglioli, E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579, 2203–2207 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, Y. et al. Crystal structure of human histone lysine-specific demethylase 1 (LSD1). Proc. Natl Acad. Sci. USA 103, 13956–13961 (2006). This structural characterization of LSD1 and its comparison with related amine oxidases is of considerable value in the design of selective inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Forneris, F., Binda, C., Adamo, A., Battaglioli, E. & Mattevi, A. Structural basis of LSD1-CoREST selectivity in histone H3 recognition. J. Biol. Chem. 282, 20070–20074 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Fang, R. et al. LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural and molecular model for regulation of H3K4 demethylation. Mol. Cell 49, 558–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, J. et al. p53 is regulated by the lysine demethylase LSD1. Nature 449, 105–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Kontaki, H. & Talianidis, I. Lysine methylation regulates E2F1-induced cell death. Mol. Cell 39, 152–160 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, J. et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nature Genet. 41, 125–129 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Yoneyama, M. et al. Structural and functional differences of SWIRM domain subtypes. J. Mol. Biol. 369, 222–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, F. et al. Structural insight into substrate recognition by histone demethylase LSD2/KDM1b. Cell Res. 23, 306–309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Q. et al. Structure-function analysis reveals a novel mechanism for regulation of histone demethylase LSD2/AOF1/KDM1b. Cell Res. 23, 225–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Lee, M. G., Wynder, C., Cooch, N. & Shiekhattar, R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Shi, Y.-J. et al. Regulation of LSD1 histone demethylase activity by its associated factors. Mol. Cell 19, 857–864 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Yang, M. et al. Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol. Cell 23, 377–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Hausinger, R. P. FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 21–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. McDonough, M. A., Loenarz, C., Chowdhury, R., Clifton, I. J. & Schofield, C. J. Structural studies on human 2-oxoglutarate dependent oxygenases. Curr. Opin. Struct. Biol. 20, 659–672 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Iyer, L. M., Abhiman, S., de Souza, R. F. & Aravind, L. Origin and evolution of peptide-modifying dioxygenases and identification of the wybutosine hydroxylase/hydroperoxidase. Nucleic Acids Res. 38, 5261–5279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hegg, E. L. & Que, L. The 2-His-1-carboxylate facial triad — an emerging structural motif in mononuclear non-heme iron(II) enzymes. Eur. J. Biochem. 250, 625–629 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Klose, R. J., Kallin, E. M. & Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nature Rev. Genet. 7, 715–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Horton, J. R., Upadhyay, A. K., Hashimoto, H., Zhang, X. & Cheng, X. Structural basis for human PHF2 Jumonji domain interaction with metal ions. J. Mol. Biol. 406, 1–8 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Stender, J. D. et al. Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol. Cell 48, 28–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wen, H. et al. Recognition of histone H3K4 trimethylation by the plant homeodomain of PHF2 modulates histone demethylation. J. Biol. Chem. 285, 9322–9326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Baba, A. et al. PKA-dependent regulation of the histone lysine demethylase complex PHF2–ARID5B. Nature Cell Biol. 13, 668–675 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Del Rizzo, P. A., Krishnan, S. & Trievel, R. C. Crystal structure and functional analysis of JMJD5 indicate an alternate specificity and function. Mol. Cell. Biol. 32, 4044–4052 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Webby, C. J. et al. Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science 325, 90–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Ng, S. S. et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448, 87–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, Z. et al. Structural basis of the recognition of a methylated histone tail by JMJD2A. Proc. Natl Acad. Sci. USA 104, 10818–10823 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Couture, J.-F., Collazo, E., Ortiz-Tello, P. A., Brunzelle, J. S. & Trievel, R. C. Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. Nature Struct. Mol. Biol. 14, 689–695 (2007).

    Article  CAS  Google Scholar 

  69. Krishnan, S. & Trievel, R. C. Structural and functional analysis of JMJD2D reveals molecular basis for site-specific demethylation among JMJD2 demethylases. Structure 21, 98–108 (2013). This paper identifies enzyme–substrate interactions that are important for substrate specificity in a subfamily of JMJC domain-containing demethylases.

    Article  CAS  PubMed  Google Scholar 

  70. Horton, J. R. et al. Enzymatic and structural insights for substrate specificity of a family of Jumonji histone lysine demethylases. Nature Struct. Mol. Biol. 17, 38–43 (2010).

    Article  CAS  Google Scholar 

  71. Yan, J. et al. EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood 121, 4512–4520 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yan, L. et al. Clinical, immunophenotypic, cytogenetic, and molecular genetic features in 117 adult patients with mixed-phenotype acute leukemia defined by WHO-2008 classification. Haematologica 97, 1708–1712 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ley, T. J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nature Genet. 43, 875–878 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nature Genet. 41, 521–523 (2009). This is the first paper to identify somatic mutations in a histone demethylase in cancer.

    Article  CAS  PubMed  Google Scholar 

  77. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. 463, 360–363 (2010).

  78. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature Genet. 42, 181–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Hayami, S. et al. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int. J. Cancer 128, 574–586 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Kauffman, E. C. et al. Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer. Mol. Carcinog. 50, 931–944 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kahl, P. et al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res. 66, 11341–11347 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Harris, W. J. et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21, 473–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Schenk, T. et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nature Med. 18, 605–611 (2012). References 82 and 83 provide evidence for a causal role of LSD1 in AML and explore the therapeutic efficacy of a specific LSD1 inhibitor in an animal model of cancer.

    Article  CAS  PubMed  Google Scholar 

  84. Oryzon Genomics S. A. Phenylcyclopropylamine derivatives and their medical use. WO2010084160A1 (2010).

  85. Yang, Z.-Q. et al. Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. Cancer Res. 60, 4735–4739 (2000).

    CAS  PubMed  Google Scholar 

  86. Liu, G. et al. Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene 28, 4491–4500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ehrbrecht, A. et al. Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J. Pathol. 208, 554–563 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Shi, L. et al. Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proc. Natl Acad. Sci. USA 108, 7541–7546 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kawazu, M. et al. Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development. PloS ONE 6, e17830 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, J. et al. The histone demethylase JMJD2B is regulated by estrogen receptor alpha and hypoxia, and is a key mediator of estrogen induced growth. Cancer Res. 70, 6456–6466 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fu, L. et al. HIF-1α-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism. Carcinogenesis 33, 1664–1673 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Wissmann, M. et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nature Cell Biol. 9, 347–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Rui, L. et al. Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 18, 590–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Albert, M. et al. The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3. PLoS Genet. 9, e1003461 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schmitz, S. U. et al. Jarid1b targets genes regulating development and is involved in neural differentiation. EMBO J. 30, 4586–4600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lu, P. J. et al. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J. Biol. Chem. 274, 15633–15645 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Barrett, A. et al. PLU-1 nuclear protein, which is upregulated in breast cancer, shows restricted expression in normal human adult tissues: a new cancer/testis antigen? Int. J. Cancer 101, 581–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Hayami, S. et al. Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: involvement in the proliferation of cancer cells through the E2F/RB pathway. Mol. Cancer 9, 59 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xiang, Y. et al. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc. Natl Acad. Sci. USA 104, 19226–19231 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yamane, K. et al. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol. Cell 25, 801–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Roesch, A. et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141, 583–594 (2010). This paper provides evidence that JARID1B is required for the growth of slow-cycling melanoma cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu, X., Johansen, J. V. & Helin, K. Fbxl10/Kdm2b recruits Polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49, 1134–1146 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. He, J., Nguyen, A. T. & Zhang, Y. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood 117, 3869–3880 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tzatsos, A. et al. KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. J. Clin. Invest. 123, 727–739 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Farcas, A. M. et al. KDM2B links the Polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLIFE 1, e00205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee, M. G., Wynder, C., Schmidt, D. M., McCafferty, D. G. & Shiekhattar, R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem. Biol. 13, 563–567 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Schmidt, D. M. Z. & McCafferty, D. G. trans-2-phenylcyclopropylamine is a mechanism-based inactivator of the histone demethylase LSD1. Biochemistry 46, 4408–4416 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Yang, M. et al. Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine. Biochemistry 46, 8058–8065 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Shih, J. C., Chen, K. & Ridd, M. J. Monoamine oxidase: from genes to behavior. Annu. Rev. Neurosci. 22, 197–217 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ueda, R. et al. Identification of cell-active lysine specific demethylase 1-selective inhibitors. J. Am. Chem. Soc. 131, 17536–17537 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Mimasu, S. et al. Structurally designed trans-2-phenylcyclopropylamine derivatives potently inhibit histone demethylase LSD1/KDM1. Biochemistry 49, 6494–6503 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Neelamegam, R. et al. Brain-penetrant LSD1 inhibitors can block memory consolidation. ACS Chem. Neurosci. 3, 120–128 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Maes, T. et al. Preclinical characterization of a potent and selective inhibitor of the histone demethylase KDM1A for MLL leukemia. J. Clin. Oncol. Abstr. 31, e13543 (2013).

    Google Scholar 

  114. Lohse, B. et al. Inhibitors of histone demethylases. Bioorg. Med. Chem. 19, 3625–3636 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Huang, Y. et al. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc. Natl Acad. Sci. USA 104, 8023–8028 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huang, Y. et al. Novel oligoamine analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin. Cancer Res. 15, 7217–7228 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Willmann, D. et al. Impairment of prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitor. Int. J. Cancer 131, 2704–2709 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Wang, J. et al. Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res. 71, 7238–7249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cain, C. AML takes LSD1. SciBx http://dx.doi.org/10.1038/scibx.2012.352 (2012).

  120. Fiskus, W. et al. Pre-clinical efficacy of combined therapy with LSD1 antagonist SP-2509 and pan-histone deacetylase inhibitor against AML blast progenitor cells. Abstract 868. 54th American Society of Hematology Annual Meeting and Exposition [online], (2012).

  121. Yu, V. et al. High-throughput TR-FRET assays for identifying inhibitors of LSD1 and JMJD2C histone lysine demethylases. J. Biomol. Screen 17, 27–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Vannini, A. et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl Acad. Sci. USA 101, 15064–15069 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rose, N. R. et al. Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J. Med. Chem. 51, 7053–7056 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. King, O. N. F. et al. Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors. PloS ONE 5, e15535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404–408 (2012). This is the first reported potent and subfamily-selective JMJC demethylase inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liang, Y. et al. Targeting the JMJD2 histone demethylases to epigenetically control herpesvirus infection and reactivation from latency. Sci. Transl. Med. 5, 167ra165 (2013). In this paper, a pan-JMJC demethylase inhibitor is used to block viral infection in cells.

    Article  CAS  Google Scholar 

  127. Wang, L. et al. A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth. Nature Commun. 4, 2035 (2013). This paper identifies a pan-JMJC demethylase inhibitor with in vivo activity in a cell based high-throughput screening assay.

    Article  CAS  Google Scholar 

  128. Brien, G. L. et al. Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nature Struct. Mol. Biol. 19, 1273–1281 (2012).

    Article  CAS  Google Scholar 

  129. Suzuki, C. et al. Identification of Myc-associated protein with JmjC domain as a novel therapeutic target oncogene for lung cancer. Mol. Cancer Ther. 6, 542–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Komiya, K. et al. Expression of Mina53, a novel c-Myc target gene, is a favorable prognostic marker in early stage lung cancer. Lung Cancer 69, 232–238 (2010).

    Article  PubMed  Google Scholar 

  131. Komiya, K. et al. Mina53, a novel c-Myc target gene, is frequently expressed in lung cancers and exerts oncogenic property in NIH/3T3 cells. J. Cancer Res. Clin. Oncol. 136, 465–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Humphrey, G. W. et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J. Biol. Chem. 276, 6817–6824 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. You, A., Tong, J. K., Grozinger, C. M. & Schreiber, S. L. CoREST is an integral component of the CoREST- human histone deacetylase complex. Proc. Natl Acad. Sci. USA 98, 1454–1458 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hakimi, M.-A. et al. A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc. Natl Acad. Sci. USA 99, 7420–7425 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee, M. G. et al. Functional interplay between histone demethylase and deacetylase enzymes. Mol. Cell. Biol. 26, 6395–6402 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lan, F. et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448, 718–722 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Singh, M. M. et al. Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors. Neuro-Oncol. 13, 894–903 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Luger, K., Dechassa, M. L. & Tremethick, D. J. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nature Rev. Mol. Cell Biol. 13, 436–447 (2012).

    Article  CAS  Google Scholar 

  140. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Stavropoulos, P., Blobel, G. & Hoelz, A. Crystal structure and mechanism of human lysine-specific demethylase-1. Nature Struct. Mol. Biol. 13, 626–632 (2006).

    Article  CAS  Google Scholar 

  142. Kong, X. et al. Catalytic mechanism investigation of lysine-specific demethylase 1 (LSD1): a computational study. PloS ONE 6, e25444 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yu, T., Higashi, M., Cembran, A., Gao, J. & Truhlar, D. G. Concerted hydrogen atom and electron transfer mechanism for catalysis by lysine-specific demethylase. J. Phys. Chem. B 117, 8422–8429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schulte, J. H. et al. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res. 69, 2065–2071 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Lim, S. et al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis 31, 512–520 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Ciccone, D. N. et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461, 415–418 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Heidenblad, M. et al. Tiling resolution array CGH and high density expression profiling of urothelial carcinomas delineate genomic amplicons and candidate target genes specific for advanced tumors. BMC Med. Genom. 1, 3 (2008).

    Article  CAS  Google Scholar 

  148. Okada, Y. et al. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 450, 119–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Inagaki, T. et al. Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells 14, 991–1001 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Tateishi, K. et al. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458, 757–761 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu, Z. et al. Jmjd1a demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis. J. Biol. Chem. 285, 2758–2770 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Uemura, M. et al. Jumonji domain containing 1A is a novel prognostic marker for colorectal cancer: in vivo identification from hypoxic tumor cells. Clin. Cancer Res. 6, 4636–4646 (2010).

    Article  CAS  Google Scholar 

  153. Qi, J. et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 18, 23–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Guo, X. et al. The expression of histone demethylase JMJD1A in renal cell carcinoma. Neoplasma 58, 153–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Yamada, D. et al. Role of the hypoxia-related gene, JMJD1A, in hepatocellular carcinoma: clinical impact on recurrence after hepatic resection. Ann. Surg. Oncol. 19 (Suppl. 3) 355–364 (2011).

    Google Scholar 

  156. Zhang, Q.-J. et al. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J. Clin. Invest. 121, 2447–2456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Patani, N., Jiang, W. G., Newbold, R. F. & Mokbel, K. Histone-modifier gene expression profiles are associated with pathological and clinical outcomes in human breast cancer. Anticancer Res. 31, 4115–4125 (2011).

    CAS  PubMed  Google Scholar 

  158. Pryor, J. G. et al. Microarray comparative genomic hybridization detection of copy number changes in desmoplastic melanoma and malignant peripheral nerve sheath tumor. Am. J. Dermatopathol. 33, 780–785 (2011).

    Article  PubMed  Google Scholar 

  159. Vinatzer, U. et al. Mucosa-associated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clin. Cancer Res. 14, 6426–6431 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Iwamori, N., Zhao, M., Meistrich, M. L. & Matzuk, M. M. The testis-enriched histone demethylase, KDM4D, regulates methylation of histone H3 lysine 9 during spermatogenesis in the mouse but is dispensable for fertility. Biol. Reprod. 84, 1225–1234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Satoh, T. et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nature Immunol. 11, 936–944 (2010).

    Article  CAS  Google Scholar 

  162. Agger, K. et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A–ARF locus in response to oncogene- and stress-induced senescence. Genes Dev. 23, 1171–1176 (2009).

    CAS  Google Scholar 

  163. Barradas, M. et al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev. 23, 1177–1182 (2009).

    CAS  Google Scholar 

  164. Ciavatta, D. J. et al. Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis. J. Clin. Invest. 120, 3209–3219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Anderton, J. A. et al. The H3K27me3 demethylase, KDM6B, is induced by Epstein–Barr virus and over-expressed in Hodgkin's lymphoma. Oncogene 30, 2037–2043 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Cox, B. J. et al. Phenotypic annotation of the mouse X chromosome. Genome Res. 20, 1154–1164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lee, S. et al. UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev. Cell 22, 25–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Jankowska, A. M. et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood 118, 3932–3941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lederer, D. et al. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am. J. Hum. Genet. 90, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ishimura, A. et al. Jmjd5, an H3K36me2 histone demethylase, modulates embryonic cell proliferation through the regulation of Cdkn1a expression. Development 139, 749–759 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Fukuda, T., Tokunaga, A., Sakamoto, R. & Yoshida, N. Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol. Cell. Neurosci. 46, 614–624 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Kottakis, F. et al. FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol. Cell 43, 285–298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sinha, S. et al. Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: pathological significance in early- and late-onset breast carcinoma. Mol. Cancer 7, 84 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ghosh, A. et al. Association of FANCC and PTCH1 with the development of early dysplastic lesions of the head and neck. Ann. Surg. Oncol. 19 (Suppl. 3), 528–538 (2011).

    Google Scholar 

  175. Laumonnier, F. et al. Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J. Med. Genet. 42, 780–786 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Abidi, F. E., Miano, M. G., Murray, J. C. & Schwartz, C. E. A novel mutation in the PHF8 gene is associated with X-linked mental retardation with cleft lip/cleft palate. Clin. Genet. 72, 19–22 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Koivisto, A. M. et al. Screening of mutations in the PHF8 gene and identification of a novel mutation in a Finnish family with XLMR and cleft lip/cleft palate. Clin. Genet. 72, 145–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Klose, R. J. et al. The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 128, 889–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Vogt, T. et al. Deficiency of a novel retinoblastoma binding protein 2-homolog is a consistent feature of sporadic human melanoma skin cancer. Lab. Invest. 79, 1615–1627 (1999).

    CAS  PubMed  Google Scholar 

  180. van Zutven, L. J. C. M. et al. Identification of NUP98 abnormalities in acute leukemia: JARID1A (12p13) as a new partner gene. Genes Chromosomes Cancer 45, 437–446 (2006).

    CAS  Google Scholar 

  181. Pointon, J. J. et al. The histone demethylase JARID1A is associated with susceptibility to ankylosing spondylitis. Genes Immun. 12, 395–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Catchpole, S. et al. PLU-1/JARID1B/KDM5B is required for embryonic survival and contributes to cell proliferation in the mammary gland and in ER+ breast cancer cells. Int. J. Oncol. 38, 1267–1277 (2011).

    CAS  PubMed  Google Scholar 

  183. Abidi, F. E. et al. Mutations in JARID1C are associated with X-linked mental retardation, short stature and hyperreflexia. J. Med. Genet. 45, 787–793 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Jensen, L. R. et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am. J. Hum. Genet. 76, 227–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Santos, C. et al. A novel mutation in JARID1C gene associated with mental retardation. Eur. J. Hum. Genet. 14, 583–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Tzschach, A. et al. Novel JARID1C/SMCX mutations in patients with X-linked mental retardation. Hum. Mutat. 27, 389 (2006).

    Article  PubMed  Google Scholar 

  187. Jensen, L. R. et al. A distinctive gene expression fingerprint in mentally retarded male patients reflects disease-causing defects in the histone demethylase KDM5C. PathoGenetics 3, 2 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Santos-Rebouças, C. B. et al. A novel nonsense mutation in KDM5C/JARID1C gene causing intellectual disability, short stature and speech delay. Neurosci. Lett. 498, 67–71 (2011).

    Article  CAS  PubMed  Google Scholar 

  189. Adegbola, A., Gao, H., Sommer, S. & Browning, M. A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am. J. Med. Genet. A 146A, 505–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  190. Perinchery, G. et al. Deletion of Y-chromosome specific genes in human prostate cancer. J. Urol. 163, 1339–1342 (2000).

    Article  CAS  PubMed  Google Scholar 

  191. Takeuchi, T. et al. Jumonji gene is essential for the neurulation and cardiac development of mouse embryos with a C3H/He background. Mechanisms Dev. 86, 29–38 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. T. Pedersen and S. Kooistra for critical comments on the manuscript. J.H. was supported by a fellowship from the Villum Foundation. Work in the Helin laboratory is supported by the Danish National Research Foundation (grant number DNRF 82), the Danish Cancer Society, the Danish Council for Strategic Research (grant number 12-110503), the Novo Nordisk Foundation, the Lundbeck Foundation, the European Union's Seventh Framework Programme, the European Research Council (grant number 294666_DNAMET) and the Excellence Programme of the University of Copenhagen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Helin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Next-generation sequencing

A collective term for various technologies that allow high-throughput and low-cost sequencing.

Exome sequencing

A cheaper alternative to whole-genome sequencing that allows sequencing of all coding genes.

Histone demethylases

Enzymes that catalyse the demethylation of methyl groups from amino acids in histones. Histone demethylases are often also called lysine demethylases or, in short, KDMs.

Histone methyltransferases

Enzymes that catalyse the methylation of arginine and lysine residues in histones. The more correct terminology for these proteins is protein arginine methyltransferases (PRMTs) and protein lysine methyltransferases (PKMTs).

H3K36me3

A short notation for the methylation status of trimethylated lysine 36 on histone H3. This notation style is used to describe the methylation states of specific residues in a histone tail.

Protein domains

Parts of a protein with a conserved sequence that can evolve and sometimes function and exist independently of the rest of the protein.

Catalytic domain

The part of the enzyme where the reaction of the substrate occurs.

Inhibitor

A molecule that blocks the activity of a target protein.

Potency

A measure of drug activity that is defined as the amount of a compound required to elicit an effect of a given strength.

Target selectivity

The degree to which a drug can affect a target protein without affecting other proteins. This is an attribute that is difficult to obtain when proteins that are similar to the target protein exist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Højfeldt, J., Agger, K. & Helin, K. Histone lysine demethylases as targets for anticancer therapy. Nat Rev Drug Discov 12, 917–930 (2013). https://doi.org/10.1038/nrd4154

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4154

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer