[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategies for the discovery and development of therapies for metastatic breast cancer

Key Points

  • Metastasis is the major cause of morbidity for patients with breast cancer, as few curative therapies are available.

  • To develop more effective treatments, a better understanding of metastasis and the genes that regulate the process is necessary.

  • Owing to early tumour cell dissemination before primary tumour diagnosis, target genes need to be identified that have a functional role in metastatic progression after tumour cell entry into the circulation.

  • Current therapies that target the primary tumour may not necessarily target disseminated tumour cells or subsequent metastases. The use of circulating tumour cells to predict and monitor patient response to therapies may be important for improving individualized therapeutics.

  • There are two general ways of identifying metastasis-associated genes as potential therapeutic targets. Human gene expression profiling or tissue arrays of primary tumours, disseminated tumour cells and metastases can be used to find genes whose expression correlates with clinical parameters such as disease-free survival. Assessment of a functional role in the process can be achieved using appropriate animal models of metastatic disease. Alternatively, metastasis-regulating genes can be identified using mouse models and subsequently verified as being relevant in human breast cancer by analysing transcript or protein levels in tissue samples.

  • Approximately 20% of the patients who are diagnosed with breast cancer will subsequently develop metastatic disease. Challenges exist in identifying the patients for whom adjuvant chemotherapy is required. Testing the efficacy of current and emerging therapeutics against disseminated tumour cells in the adjuvant setting is of crucial importance for the future.

Abstract

Nearly all deaths caused by solid cancers occur as a result of metastasis — the formation of secondary tumours in distant organs such as the lungs, liver, brain and bone. A major obstruction to the development of drugs with anti-metastatic efficacy is our fragmented understanding of how tumours 'evolve' and metastasize, at both the biological and genetic levels. Furthermore, although there is significant overlap in the metastatic process among different types of cancer, there are also marked differences in the propensity to metastasize, the extent of metastasis, the sites to which the tumour metastasizes, the kinetics of the process and the mechanisms involved. Here, we consider the case of breast cancer, which has some marked distinguishing features compared with other types of cancer. Considerable progress has been made in the development of preclinical models and in the identification of relevant signalling pathways and genetic regulators of metastatic breast cancer, and we discuss how these might facilitate the development of novel targeted anti-metastatic drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The process of metastasis, depicting current and potential stages of therapeutic intervention.
Figure 2: The contribution of host cells to metastatic progression.
Figure 3: Preclinical models of metastasis used to identify metastasis-regulating genes and to test new therapies.
Figure 4: The process of filtering potential metastasis-regulating genes for the development of targeted therapies.

Similar content being viewed by others

References

  1. American Cancer Society. Cancer Facts & Figures 2011. Atlanta: American Cancer Society (2011).

  2. Bernards, R. & Weinberg, R. A. A progression puzzle. Nature 418, 823 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen, D. X. & Massague, J. Genetic determinants of cancer metastasis. Nature Rev. Genet. 8, 341–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, S. C. & Theodorescu, D. Learning therapeutic lessons from metastasis suppressor proteins. Nature Rev. Cancer 9, 253–264 (2009).

    Article  CAS  Google Scholar 

  6. Erler, J. T. & Weaver, V. M. Three-dimensional context regulation of metastasis. Clin. Exp. Metastasis 26, 35–49 (2009).

    Article  PubMed  Google Scholar 

  7. Fidler, I. J., Kim, S. J. & Langley, R. R. The role of the organ microenvironment in the biology and therapy of cancer metastasis. J. Cell Biochem. 101, 927–936 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Bervar, A. et al. Invasiveness of transformed human breast epithelial cell lines is related to cathepsin B and inhibited by cysteine proteinase inhibitors. Biol. Chem. 384, 447–455 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Chang, C. & Werb, Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 11, S37–S43 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liotta, L. A. & Kohn, E. C. The microenvironment of the tumour–host interface. Nature 411, 375–379 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Caporale, A. et al. Has desmoplastic response extent protective action against tumor aggressiveness in gastric carcinoma? J. Exp. Clin. Cancer Res. 20, 21–24 (2001).

    CAS  PubMed  Google Scholar 

  12. Cardone, A., Tolino, A., Zarcone, R., Borruto Caracciolo, G. & Tartaglia, E. Prognostic value of desmoplastic reaction and lymphocytic infiltration in the management of breast cancer. Panminerva Med. 39, 174–177 (1997).

    CAS  PubMed  Google Scholar 

  13. Iacobuzio-Donahue, C. A., Argani, P., Hempen, P. M., Jones, J. & Kern, S. E. The desmoplastic response to infiltrating breast carcinoma: gene expression at the site of primary invasion and implications for comparisons between tumor types. Cancer Res. 62, 5351–5357 (2002).

    CAS  PubMed  Google Scholar 

  14. Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Werb, Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell 91, 439–442 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. McCarty, O. J., Mousa, S. A., Bray, P. F. & Konstantopoulos, K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 96, 1789–1797 (2000).

    CAS  PubMed  Google Scholar 

  17. Felding-Habermann, B. et al. Integrin activation controls metastasis in human breast cancer. Proc. Natl Acad. Sci. USA 98, 1853–1858 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Heyn, C. et al. In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn. Reson. Med. 55, 23–29 (2006).

    Article  PubMed  Google Scholar 

  20. MacDonald, I. C., Groom, A. C. & Chambers, A. F. Cancer spread and micrometastasis development: quantitative approaches for in vivo models. Bioessays 24, 885–893 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Meng, S. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004).

    Article  PubMed  Google Scholar 

  22. Barkan, D. et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 68, 6241–6250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Almog, N. et al. Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res. 69, 836–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 120, 2030–2039 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nature Rev. Drug Discov. 6, 273–286 (2007).

    Article  CAS  Google Scholar 

  29. Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nature Rev. Cancer 2, 727–739 (2002).

    Article  CAS  Google Scholar 

  30. Bear, H. D. et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N. Engl. J. Med. 366, 310–320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schneider, B. P. & Sledge, G. W. Jr. Drug insight: VEGF as a therapeutic target for breast cancer. Nature Clin. Pract. Oncol. 4, 181–189 (2007).

    Article  CAS  Google Scholar 

  32. Gao, D. et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319, 195–198 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Nolan, D. J. et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 21, 1546–1558 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruzinova, M. B. et al. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell 4, 277–289 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Hattori, K. et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med. 193, 1005–1014 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Banerji, S. et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 144, 789–801 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ordonez, N. G. Podoplanin: a novel diagnostic immunohistochemical marker. Adv. Anat. Pathol. 13, 83–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Saharinen, P., Tammela, T., Karkkainen, M. J. & Alitalo, K. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol. 25, 387–395 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Nathanson, S. D. Insights into the mechanisms of lymph node metastasis. Cancer 98, 413–423 (2003).

    Article  PubMed  Google Scholar 

  40. Sundar, S. S. & Ganesan, T. S. Role of lymphangiogenesis in cancer. J. Clin. Oncol. 25, 4298–4307 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Achen, M. G., Mann, G. B. & Stacker, S. A. Targeting lymphangiogenesis to prevent tumour metastasis. Br. J. Cancer 94, 1355–1360 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang, H. Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA 102, 3738–3743 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    CAS  PubMed  Google Scholar 

  45. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhowmick, N. A. et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Sugimoto, H., Mundel, T. M., Kieran, M. W. & Kalluri, R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol. Ther. 5, 1640–1646 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Grum-Schwensen, B. et al. Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer Res. 65, 3772–3780 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Hu, M. et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genet. 37, 899–905 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Direkze, N. C. et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64, 8492–8495 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer 1, 46–54 (2001).

    Article  CAS  Google Scholar 

  53. Adriance, M. C., Inman, J. L., Petersen, O. W. & Bissell, M. J. Myoepithelial cells: good fences make good neighbors. Breast Cancer Res. 7, 190–197 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Erez, N. & Coussens, L. M. Leukocytes as paracrine regulators of metastasis and determinants of organ-specific colonization. Int. J. Cancer 128, 2536–2544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Diaz-Montero, C. M. et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother. 58, 49–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Solito, S. et al. A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118, 2254–2265 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sinha, P. et al. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J. Immunol. 181, 4666–4675 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Huang, B. et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66, 1123–1131 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. DuPre, S. A. & Hunter, K. W. Jr. Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp. Mol. Pathol. 82, 12–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Yang, L. et al. Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mauti, L. A. et al. Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. J. Clin. Invest. 121, 2794–2807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bingle, L., Brown, N. J. & Lewis, C. E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Murdoch, C., Giannoudis, A. & Lewis, C. E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224–2234 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Allavena, P., Sica, A., Solinas, G., Porta, C. & Mantovani, A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol. 66, 1–9 (2008).

    Article  PubMed  Google Scholar 

  66. Locati, M. et al. Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. J. Immunol. 168, 3557–3562 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Burns, C. J. & Wilks, A. F. c-FMS inhibitors: a patent review. Expert Opin. Ther. Pat. 21, 147–165 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Martin, P. & Leibovich, S. J. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 15, 599–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biol. 8, 1369–1375 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Hiratsuka, S. et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biol. 10, 1349–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Olkhanud, P. B. et al. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res. 69, 5996–6004 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lyden, D., Welch, D. R. & Psaila, B. (eds) Cancer Metastasis: Biologic Basis and Therapeutics (Cambridge University Press, 2011).

    Book  Google Scholar 

  75. Early Breast Cancer Trialists' Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

  76. Iglehart, J. D. & Silver, D. P. Synthetic lethality — a new direction in cancer-drug development. N. Engl. J. Med. 361, 189–191 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Gelmon, K. A. et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a Phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12, 852–861 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Ma, W. W. & Adjei, A. A. Novel agents on the horizon for cancer therapy. CA Cancer J. Clin. 59, 111–137 (2009).

    Article  PubMed  Google Scholar 

  79. de Bono, J. S. & Ashworth, A. Translating cancer research into targeted therapeutics. Nature 467, 543–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Higgins, M. J. & Baselga, J. Breast cancer in 2010: novel targets and therapies for a personalized approach. Nature Rev. Clin. Oncol. 8, 65–66 (2011).

    Article  Google Scholar 

  81. Lin, S. X. et al. Molecular therapy of breast cancer: progress and future directions. Nature Rev. Endocrinol. 6, 485–493 (2010).

    Article  CAS  Google Scholar 

  82. Luu, T., Chung, C. & Somlo, G. Combining emerging agents in advanced breast cancer. Oncologist 16, 760–771 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Welch, D. R. Microarrays bring new insights into understanding of breast cancer metastasis to bone. Breast Cancer Res. 6, 61–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Schardt, J. A. et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8, 227–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Poplawski, A. B. et al. Frequent genetic differences between matched primary and metastatic breast cancer provide an approach to identification of biomarkers for disease progression. Eur. J. Hum. Genet. 18, 560–568 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Colombo, P. E., Milanezi, F., Weigelt, B. & Reis-Filho, J. S. Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Res. 13, 212 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Desmedt, C., Ruiz-Garcia, E. & Andre, F. Gene expression predictors in breast cancer: current status, limitations and perspectives. Eur. J. Cancer 44, 2714–2720 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Zujewski, J. A. & Kamin, L. Trial assessing individualized options for treatment for breast cancer: the TAILORx trial. Future Oncol. 4, 603–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Cardoso, F. et al. Clinical application of the 70-gene profile: the MINDACT trial. J. Clin. Oncol. 26, 729–735 (2008).

    Article  PubMed  Google Scholar 

  90. Knauer, M. et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res. Treat. 120, 655–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Albain, K. S. et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 11, 55–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Harbeck, N. et al. Enhanced benefit from adjuvant chemotherapy in breast cancer patients classified high-risk according to urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (n = 3424). Cancer Res. 62, 4617–4622 (2002).

    CAS  PubMed  Google Scholar 

  93. Gennari, A. et al. HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials. J. Natl Cancer Inst. 100, 14–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Pritchard, K. I. et al. HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N. Engl. J. Med. 354, 2103–2111 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Giuliano, M. et al. Circulating tumor cells as prognostic and predictive markers in metastatic breast cancer patients receiving first-line systemic treatment. Breast Cancer Res. 13, R67 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hartkopf, A., Wagner, P., Wallwiener, D., Fehm, T. & Rothmund, R. Changing levels of circulating tumor cells in monitoring chemotherapy response in patients with metastatic breast cancer. Anticancer Res. 31, 979–984 (2011).

    PubMed  Google Scholar 

  97. Hayes, D. F. et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 12, 4218–4224 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. De Giorgi, U. et al. Circulating tumor cells and [18F]fluorodeoxyglucose positron emission tomography/computed tomography for outcome prediction in metastatic breast cancer. J. Clin. Oncol. 27, 3303–3311 (2009).

    Article  PubMed  Google Scholar 

  99. Dawood, S. et al. Circulating tumor cells in metastatic breast cancer: from prognostic stratification to modification of the staging system? Cancer 113, 2422–2430 (2008).

    Article  PubMed  Google Scholar 

  100. Cristofanilli, M. et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J. Clin. Oncol. 23, 1420–1430 (2005).

    Article  PubMed  Google Scholar 

  101. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Pachmann, K. et al. Monitoring the response of circulating epithelial tumor cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse. J. Clin. Oncol. 26, 1208–1215 (2008).

    Article  PubMed  Google Scholar 

  103. Pachmann, K. et al. Quantification of the response of circulating epithelial cells to neoadjuvant treatment for breast cancer: a new tool for therapy monitoring. Breast Cancer Res. 7, R975–R979 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pierga, J. Y. et al. Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a Phase II randomized trial. Clin. Cancer Res. 14, 7004–7010 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Slade, M. J. et al. Comparison of bone marrow, disseminated tumour cells and blood-circulating tumour cells in breast cancer patients after primary treatment. Br. J. Cancer 100, 160–166 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Fehm, T. et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res. Treat. 124, 403–412 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Wulfing, P. et al. HER2-positive circulating tumor cells indicate poor clinical outcome in stage I to III breast cancer patients. Clin. Cancer Res. 12, 1715–1720 (2006).

    Article  PubMed  Google Scholar 

  108. Tewes, M. et al. Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Res. Treat. 115, 581–590 (2009).

    Article  PubMed  Google Scholar 

  109. Meng, S. et al. HER-2 gene amplification can be acquired as breast cancer progresses. Proc. Natl Acad. Sci. USA 101, 9393–9398 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cabioglu, N. et al. Chemokine receptors in advanced breast cancer: differential expression in metastatic disease sites with diagnostic and therapeutic implications. Ann. Oncol. 20, 1013–1019 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zidan, J. et al. Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease. Br. J. Cancer 93, 552–556 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Braun, S. et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J. Clin. Oncol. 18, 80–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Pantel, K. et al. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J. Natl Cancer Inst. 85, 1419–1424 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. Muller, V., Alix-Panabieres, C. & Pantel, K. Insights into minimal residual disease in cancer patients: implications for anti-cancer therapies. Eur. J. Cancer 46, 1189–1197 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Fehm, T., Muller, V., Alix-Panabieres, C. & Pantel, K. Micrometastatic spread in breast cancer: detection, molecular characterization and clinical relevance. Breast Cancer Res. 10, S1 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Aktas, B. et al. Comparison of estrogen and progesterone receptor status of circulating tumor cells and the primary tumor in metastatic breast cancer patients. Gynecol. Oncol. 122, 356–360 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Folkman, J., Merler, E., Abernathy, C. & Williams, G. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med. 133, 275–288 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nature Rev. Cancer 8, 592–603 (2008).

    Article  CAS  Google Scholar 

  119. Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schneider, B. P. & Sledge, G. W. Jr. Anti-VEGF therapy as adjuvant therapy: clouds on the horizon? Breast Cancer Res. 11, 303 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Loges, S., Mazzone, M., Hohensinner, P. & Carmeliet, P. Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15, 167–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Kerbel, R. S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotech. 25, 911–920 (2007).

    Article  CAS  Google Scholar 

  125. Ahn, G. O. & Brown, J. M. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13, 193–205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Quesada, A. R., Medina, M. A. & Alba, E. Playing only one instrument may be not enough: limitations and future of the antiangiogenic treatment of cancer. Bioessays 29, 1159–1168 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Nguyen, D. X., Bos, P. D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nature Rev. Cancer 9, 274–284 (2009).

    Article  CAS  Google Scholar 

  128. Henderson, M. A. et al. Parathyroid hormone-related protein localization in breast cancers predict improved prognosis. Cancer Res. 66, 2250–2256 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Fleming, N. I. et al. Parathyroid hormone-related protein protects against mammary tumor emergence and is associated with monocyte infiltration in ductal carcinoma in situ. Cancer Res. 69, 7473–7479 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Riethdorf, S., Wikman, H. & Pantel, K. Review: biological relevance of disseminated tumor cells in cancer patients. Int. J. Cancer 123, 1991–2006 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Pantel, K., Brakenhoff, R. H. & Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nature Rev. Cancer 8, 329–340 (2008).

    Article  CAS  Google Scholar 

  132. Ignatiadis, M., Georgoulias, V. & Mavroudis, D. Micrometastatic disease in breast cancer: clinical implications. Eur. J. Cancer 44, 2726–2736 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Watson, M. A. et al. Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clin. Cancer Res. 13, 5001–5009 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lorger, M., Lee, H., Forsyth, J. S. & Felding-Habermann, B. Comparison of in vitro and in vivo approaches to studying brain colonization by breast cancer cells. J. Neurooncol. 104, 689–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Arguello, F., Baggs, R. B. & Frantz, C. N. A murine model of experimental metastasis to bone and bone marrow. Cancer Res. 48, 6876–6881 (1988).

    CAS  PubMed  Google Scholar 

  136. Luzzi, K. J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865–873 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shaeffer, J., El-Mahdi, A. M. & Constable, W. C. An experimental model for the treatment of pulmonary metastases. Eur. J. Cancer 11, 523–525 (1975).

    Article  CAS  PubMed  Google Scholar 

  138. Sharpless, N. E. & Depinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nature Rev. Drug Discov. 5, 741–754 (2006).

    Article  CAS  Google Scholar 

  139. Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., Parslow, T. & Varmus, H. E. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55, 619–625 (1988).

    Article  CAS  PubMed  Google Scholar 

  140. Jeffers, M. et al. The mutationally activated Met receptor mediates motility and metastasis. Proc. Natl Acad. Sci. USA 95, 14417–14422 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Derksen, P. W. et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10, 437–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Shepard, C. R., Kassis, J., Whaley, D. L., Kim, H. G. & Wells, A. PLCγ contributes to metastasis of in situ-occurring mammary and prostate tumors. Oncogene 26, 3020–3026 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Yeh, E. S. et al. Hunk is required for HER2/neu-induced mammary tumorigenesis. J. Clin. Invest. 121, 866–879 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Canaani, D. Methodological approaches in application of synthetic lethality screening towards anticancer therapy. Br. J. Cancer 100, 1213–1218 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Varticovski, L. et al. Accelerated preclinical testing using transplanted tumors from genetically engineered mouse breast cancer models. Clin. Cancer Res. 13, 2168–2177 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Coleman, R. E. & Rubens, R. D. The clinical course of bone metastases from breast cancer. Br. J. Cancer 55, 61–66 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dexter, D. L. et al. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res. 38, 3174–3181 (1978).

    CAS  PubMed  Google Scholar 

  148. Hiraga, T. et al. Effects of oral UFT combined with or without zoledronic acid on bone metastasis in the 4T1/luc mouse breast cancer. Int. J. Cancer 106, 973–979 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Lelekakis, M. et al. A novel orthotopic model of breast cancer metastasis to bone. Clin. Exp. Metastasis 17, 163–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Eckhardt, B. L. et al. Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol. Cancer Res. 3, 1–13 (2005).

    CAS  PubMed  Google Scholar 

  151. Rose, A. A. et al. Osteoactivin promotes breast cancer metastasis to bone. Mol. Cancer Res. 5, 1001–1014 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Ewens, A., Mihich, E. & Ehrke, M. J. Distant metastasis from subcutaneously grown E0771 medullary breast adenocarcinoma. Anticancer Res. 25, 3905–3915 (2005).

    PubMed  Google Scholar 

  153. Brown, G. B., Bendich, A., Roll, P. M. & Kanematsu, S. Utilization of guanine by the C57 black mouse bearing adenocarcinoma Eo771. Proc. Soc. Exp. Biol. Med. 72, 501–502 (1949).

    Article  CAS  PubMed  Google Scholar 

  154. Duss, S. et al. An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Res. 9, R38 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lev, D. C., Kiriakova, G. & Price, J. E. Selection of more aggressive variants of the gI101A human breast cancer cell line: a model for analyzing the metastatic phenotype of breast cancer. Clin. Exp. Metastasis 20, 515–523 (2003).

    Article  PubMed  Google Scholar 

  156. Bandyopadhyay, A. et al. A soluble transforming growth factor β type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res. 59, 5041–5046 (1999).

    CAS  PubMed  Google Scholar 

  157. Wang, H. et al. IL-12 gene-modified bone marrow cell therapy suppresses the development of experimental metastatic prostate cancer. Cancer Gene Ther. 14, 819–827 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Kuperwasser, C. et al. A mouse model of human breast cancer metastasis to human bone. Cancer Res. 65, 6130–6138 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Minn., A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lam, P. et al. A human bone NOD/SCID mouse model to distinguish metastatic potential in primary breast cancers. Cancer Biol. Ther. 8, 1010–1017 (2009).

    Article  PubMed  Google Scholar 

  161. Beckhove, P. et al. Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. Int. J. Cancer 105, 444–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. DeRose, Y. S. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Med. 17, 1514–1520 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. O'Neill, K., Lyons, S. K., Gallagher, W. M., Curran, K. M. & Byrne, A. T. Bioluminescent imaging: a critical tool in pre-clinical oncology research. J. Pathol. 220, 317–327 (2010).

    CAS  PubMed  Google Scholar 

  164. Hoffman, R. M. The multiple uses of fluorescent proteins to visualize cancer in vivo. Nature Rev. Cancer 5, 796–806 (2005).

    Article  CAS  Google Scholar 

  165. Filonov, G. S. et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nature Biotech. 29, 757–761 (2011).

    Article  CAS  Google Scholar 

  166. Solomon, B., McArthur, G., Cullinane, C., Zalcberg, J. & Hicks, R. Applications of positron emission tomography in the development of molecular targeted cancer therapeutics. BioDrugs 17, 339–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Beer, A. J. & Schwaiger, M. Imaging of integrin αvβ3 expression. Cancer Metastasis Rev. 27, 631–644 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Palmieri, D. et al. Brain metastases of breast cancer. Breast Dis. 26, 139–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Sameni, M. et al. Imaging and quantifying the dynamics of tumor-associated proteolysis. Clin. Exp. Metastasis 26, 299–309 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Withana, N. P. et al. Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res. 72, 1199–1209 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  172. Sotiriou, C. et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J. Natl Cancer Inst. 98, 262–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Buffa, F. M. et al. MicroRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res. 71, 5635–5645 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gruvberger, S. et al. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res. 61, 5979–5984 (2001).

    CAS  PubMed  Google Scholar 

  177. Ahr, A. et al. Identification of high risk breast-cancer patients by gene expression profiling. Lancet 359, 131–132 (2002).

    Article  PubMed  Google Scholar 

  178. Hedenfalk, I. et al. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Cimino, A. et al. Epithelial cell adhesion molecule (EpCAM) is overexpressed in breast cancer metastases. Breast Cancer Res. Treat. 123, 701–708 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Steeg, P. S., Ouatas, T., Halverson, D., Palmieri, D. & Salerno, M. Metastasis suppressor genes: basic biology and potential clinical use. Clin. Breast Cancer 4, 51–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Hurst, D. R., Edmonds, M. D. & Welch, D. R. Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res. 69, 7495–7498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Andrews, J. et al. Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number. PLoS One 5, e8665 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hu, G. et al. MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of poor-prognosis breast cancer. Cancer Cell 15, 9–20 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Fang, F. et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci. Transl. Med. 3, 75ra25 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Yan, L. X. et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14, 2348–2360 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Brown, D. M. & Ruoslahti, E. Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell 5, 365–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Bodenstine, T. M. & Welch, D. R. Metastasis suppressors and the tumor microenvironment. Cancer Microenviron. 1, 1–11 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kauffman, E. C., Robinson, V. L., Stadler, W. M., Sokoloff, M. H. & Rinker-Schaeffer, C. W. Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. J. Urol. 169, 1122–1133 (2003).

    Article  PubMed  Google Scholar 

  190. Gupta, P. B. et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nature Genet. 37, 1047–1054 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Jechlinger, M. et al. Autocrine PDGFR signaling promotes mammary cancer metastasis. J. Clin. Invest. 116, 1561–1570 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Waerner, T. et al. ILEI: a cytokine essential for EMT, tumor formation, and late events in metastasis in epithelial cells. Cancer Cell 10, 227–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Cowin, P. & Welch, D. R. Breast cancer progression: controversies and consensus in the molecular mechanisms of metastasis and EMT. J. Mammary Gland Biol. Neoplasia 12, 99–102 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Kalluri, R. & Weinberg, R. A. The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  197. Thiery, J. P. Epithelial–mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 15, 740–746 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Hugo, H. et al. Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J. Cell Physiol. 213, 374–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. Lee, J. M., Dedhar, S., Kalluri, R. & Thompson, E. W. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J. Cell Biol. 172, 973–981 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  202. Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nature Genet. 33, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  203. Wirapati, P. et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 10, R65 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Thakur, D. et al. Microproteomic analysis of 10,000 laser captured microdissected breast tumor cells using short-range sodium dodecyl sulfate-polyacrylamide gel electrophoresis and porous layer open tubular liquid chromatography tandem mass spectrometry. J. Chromatogr. A 1218, 8168–8174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  206. Kolonin, M. G. et al. Ligand-directed surface profiling of human cancer cells with combinatorial peptide libraries. Cancer Res. 66, 34–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  207. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Gumireddy, K. et al. KLF17 is a negative regulator of epithelial–mesenchymal transition and metastasis in breast cancer. Nature Cell Biol. 11, 1297–1304 (2009).

    Article  CAS  PubMed  Google Scholar 

  209. Gumireddy, K. et al. In vivo selection for metastasis promoting genes in the mouse. Proc. Natl Acad. Sci. USA 104, 6696–6701 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Pravtcheva, D. D. & Wise, T. L. Metastasizing mammary carcinomas in H19 enhancers-Igf2 transgenic mice. J. Exp. Zool. 281, 43–57 (1998).

    Article  CAS  PubMed  Google Scholar 

  211. Teuliere, J. et al. Targeted activation of β-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 132, 267–277 (2005).

    Article  CAS  PubMed  Google Scholar 

  212. Guy, C. T. et al. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl Acad. Sci. USA 89, 10578–10582 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell Biol. 12, 954–961 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kitsberg, D. I. & Leder, P. Keratinocyte growth factor induces mammary and prostatic hyperplasia and mammary adenocarcinoma in transgenic mice. Oncogene 13, 2507–2515 (1996).

    CAS  PubMed  Google Scholar 

  215. Liu, C. H. et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J. Biol. Chem. 276, 18563–18569 (2001).

    Article  CAS  PubMed  Google Scholar 

  216. D'Cruz, C. M. et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nature Med. 7, 235–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  217. Kwan, H. et al. Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol. Cell Biol. 12, 147–154 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Zinser, G. M. et al. Mammary-specific Ron receptor overexpression induces highly metastatic mammary tumors associated with β-catenin activation. Cancer Res. 66, 11967–11974 (2006).

    Article  CAS  PubMed  Google Scholar 

  219. Kwak, E. L. et al. Mammary tumorigenesis following transgenic expression of a dominant negative CHK2 mutant. Cancer Res. 66, 1923–1928 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Nielsen, L. L., Discafani, C. M., Gurnani, M. & Tyler, R. D. Histopathology of salivary and mammary gland tumors in transgenic mice expressing a human Ha-ras oncogene. Cancer Res. 51, 3762–3767 (1991).

    CAS  PubMed  Google Scholar 

  221. Gallego, M. I., Bierie, B. & Hennighausen, L. Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways. Oncogene 22, 8498–8508 (2003).

    Article  CAS  PubMed  Google Scholar 

  222. Gallahan, D. et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res. 56, 1775–1785 (1996).

    CAS  PubMed  Google Scholar 

  223. Sloan, E. K. et al. Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res. 8, R20 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Eckhardt, B. L., Parker, B. S., Restall, C. M., Van Laar, R. K. & Anderson, R. L. Identification and characterization of novel genetic regulators of breast cancer metastasis. Clin. Exp. Metastasis 24, 299–300 (2007).

    Google Scholar 

  225. Shevde, L. A. et al. Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp. Cell Res. 273, 229–239 (2002).

    Article  CAS  PubMed  Google Scholar 

  226. Seraj, M. J., Samant, R. S., Verderame, M. F. & Welch, D. R. Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res. 60, 2764–2769 (2000).

    CAS  PubMed  Google Scholar 

  227. Samant, R. S. et al. Analysis of mechanisms underlying BRMS1 suppression of metastasis. Clin. Exp. Metastasis 18, 683–693 (2000).

    Article  CAS  PubMed  Google Scholar 

  228. Lopez, J. I. et al. CD44 attenuates metastatic invasion during breast cancer progression. Cancer Res. 65, 6755–6763 (2005).

    Article  CAS  PubMed  Google Scholar 

  229. Yang, X. et al. Overexpression of KAI1 suppresses in vitro invasiveness and in vivo metastasis in breast cancer cells. Cancer Res. 61, 5284–5288 (2001).

    CAS  PubMed  Google Scholar 

  230. Dong, J. T. et al. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268, 884–886 (1995).

    Article  CAS  PubMed  Google Scholar 

  231. Takaoka, A. et al. Reduced invasive and metastatic potentials of KAI1-transfected melanoma cells. Jpn J. Cancer Res. 89, 397–404 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Jiang, Y. et al. KiSS1 suppresses metastasis in human ovarian cancer via inhibition of protein kinase C alpha. Clin. Exp. Metastasis 22, 369–376 (2005).

    Article  CAS  PubMed  Google Scholar 

  233. Lee, J. H. et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl Cancer Inst. 88, 1731–1737 (1996).

    Article  CAS  PubMed  Google Scholar 

  234. Lee, J. H. & Welch, D. R. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res. 57, 2384–2387 (1997).

    CAS  PubMed  Google Scholar 

  235. Leone, A. et al. Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell 65, 25–35 (1991).

    Article  CAS  PubMed  Google Scholar 

  236. Leone, A., Flatow, U., VanHoutte, K. & Steeg, P. S. Transfection of human nm23-H1 into the human MDA-MB-435 breast carcinoma cell line: effects on tumor metastatic potential, colonization and enzymatic activity. Oncogene 8, 2325–2333 (1993).

    CAS  PubMed  Google Scholar 

  237. Tagashira, H., Hamazaki, K., Tanaka, N., Gao, C. & Namba, M. Reduced metastatic potential and c-myc overexpression of colon adenocarcinoma cells (Colon 26 line) transfected with nm23–R2/rat nucleoside diphosphate kinase alpha isoform. Int. J. Mol. Med. 2, 65–68 (1998).

    CAS  PubMed  Google Scholar 

  238. Miyazaki, H. et al. Overexpression of nm23-H2/NDP kinase B in a human oral squamous cell carcinoma cell line results in reduced metastasis, differentiated phenotype in the metastatic site, and growth factor-independent proliferative activity in culture. Clin. Cancer Res. 5, 4301–4307 (1999).

    CAS  PubMed  Google Scholar 

  239. Li, H. Z. et al. Effects of Raf kinase inhibitor protein expression on metastasis and progression of human breast cancer. Mol. Cancer Res. 7, 832–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  240. Fu, Z. et al. Effects of Raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J. Natl Cancer Inst. 95, 878–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  241. Parker, B. S. et al. Primary tumour expression of the cysteine cathepsin inhibitor stefin A inhibits distant metastasis in breast cancer. J. Pathol. 214, 337–346 (2008).

    Article  CAS  PubMed  Google Scholar 

  242. Sevenich, L. et al. Transgenic expression of human cathepsin B promotes progression and metastasis of polyoma-middle-T-induced breast cancer in mice. Oncogene 30, 54–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  243. Shimo, T. et al. Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer. J. Bone Miner. Res. 21, 1045–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  244. Lin, B. R. et al. Connective tissue growth factor inhibits metastasis and acts as an independent prognostic marker in colorectal cancer. Gastroenterology 128, 9–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  245. Chang, C. C. et al. Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. J. Natl Cancer Inst. 96, 364–375 (2004).

    CAS  PubMed  Google Scholar 

  246. Aikawa, T., Gunn, J., Spong, S. M., Klaus, S. J. & Korc, M. Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol. Cancer Ther. 5, 1108–1116 (2006).

    Article  CAS  PubMed  Google Scholar 

  247. Dornhofer, N. et al. Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 66, 5816–5827 (2006).

    Article  PubMed  Google Scholar 

  248. Deckers, M. et al. The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 66, 2202–2209 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Fellowship support from the National Health and Medical Research Council of Australia (B.S.P.), from the National Breast Cancer Foundation (R.L.A.) and from Susan G. Komen for the Cure (B.L.E.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Belinda S. Parker or Robin L. Anderson.

Ethics declarations

Competing interests

During the past 2 years, Prudence Francis has received travel support from Sanofi and Amgen.

Supplementary information

Supplementary information Table 1

The identification of subtypes of breast cancer with different levels of risk of metastasis. (PDF 128 kb)

Supplementary information Table 2

Current therapies for breast cancer (PDF 141 kb)

Related links

Related links

FURTHER INFORMATION

Peter MacCallum Cancer Centre — Metastasis Research Laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckhardt, B., Francis, P., Parker, B. et al. Strategies for the discovery and development of therapies for metastatic breast cancer. Nat Rev Drug Discov 11, 479–497 (2012). https://doi.org/10.1038/nrd2372

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2372

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer