[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Principles for modulation of the nuclear receptor superfamily

Key Points

  • Many factors have a role in defining the pharmacological profile of the nuclear receptor family of drug targets.

  • The response to a given ligand will be dictated by the set of proteins (from DNA-binding partners to transcriptional coregulators and transcription factors involved in crosstalk) with which this receptor will interact.

  • The potential of developing new ligands with tissue-specific and/or promoter-specific activities, called selective nuclear receptor modulators (SNuRMs), is becoming an attractive prospect for drug discovery.

  • Consideration of the evolution of nuclear receptors and developing an established nomenclature system should aid our understanding of the complex pharmacology of this receptor superfamily.

Abstract

Nuclear receptors are major targets for drug discovery and have key roles in development and homeostasis, as well as in many diseases such as obesity, diabetes and cancer. This review provides a general overview of the mechanism of action of nuclear receptors and explores the various factors that are instrumental in modulating their pharmacology. In most cases, the response of a given receptor to a particular ligand in a specific tissue will be dictated by the set of proteins with which the receptor is able to interact. One of the most promising aspects of nuclear receptor pharmacology is that it is now possible to develop ligands with a large spectrum of full, partial or inverse agonist or antagonist activities, but also compounds, called selective nuclear receptor modulators, that activate only a subset of the functions induced by the cognate ligand or that act in a cell-type-selective manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclear receptors in action.
Figure 2: Ligand binding induces a conformational change of the ligand-binding domain structure of nuclear receptors.
Figure 3: Comparative view of the ligand-binding pockets of the oestrogen receptor-α and -β.
Figure 4: Structural basis of antagonist action.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Laudet, V. & Gronemeyer, H. The Nuclear Receptors Factbooks (Academic, San Diego, 2001).

    Google Scholar 

  2. Gehin, M. et al. Structural basis for engineering of retinoic acid receptor isotype-selective agonists and antagonists. Chem. Biol. 6, 519–529 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Germain, P., Iyer, J., Zechel, C. & Gronemeyer, H. Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature 415, 187–192 (2002). This study demonstrates how receptor–coregulator interactions can be modulated by different types of ligand, and reveals the mechanism of RXR subordination.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, J. Y. et al. RAR-specific agonist/antagonists which dissociate transactivation and AP1 transrepression inhibit anchorage-independent cell proliferation. EMBO J. 14, 1187–1197 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coghlan, M. J. et al. A novel antiinflammatory maintains glucocorticoid efficacy with reduced side effects. Mol. Endocrinol. 17, 860–869 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Herrlich, P. Cross-talk between glucocorticoid receptor and AP-1. Oncogene 20, 2465–2475 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Jordan, V. C. Antioestrogens and selective oestrogen receptor modulators as multifunctional medicines. 1. Receptor interactions. J. Med. Chem. 46, 883–908 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Jordan, V. C. Antioestrogens and selective oestrogen receptor modulators as multifunctional medicines. 2. Clinical considerations and new agents. J. Med. Chem. 46, 1081–1111 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Shang, Y. & Brown, M. Molecular determinants for the tissue specificity of SERMs. Science 295, 2465–2468 (2002). A demonstration of the promoter-selective action of SERMs by chromatin immunoprecipitation.

    Article  CAS  PubMed  Google Scholar 

  10. Hafezi-Moghadam, A. et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nature Med. 8, 473–479 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Simoncini, T. et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407, 538–541 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kumar, R. et al. A naturally occurring MTA1 variant sequesters oestrogen receptor-α in the cytoplasm. Nature 418, 654–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Altucci, L. et al. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nature Med. 7, 680–686 (2001). This study links the known cancer therapeutic and cancer preventive action of retinoids to the induction a death receptor ligand that is known to kill tumour but not normal cells.

    Article  CAS  PubMed  Google Scholar 

  14. Wrange, Ö. & Gustafsson, J. -Å. Separation of the hormone- and DNA-binding sites of the hepatic glucocorticoid receptor by means of proteolysis. J. Biol. Chem. 253, 856–865 (1978). This is the first paper to provide solid evidence for the modular structure of nuclear receptors.

    Article  CAS  PubMed  Google Scholar 

  15. Bourguet, W., Germain, P. & Gronemeyer, H. Nuclear receptor ligand-binding domains: 3D structures, molecular interactions and pharmacological implications. Trends Pharmacol. Sci. 21, 381–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Wurtz, J. M. et al. A canonical structure for the ligand-binding domain of nuclear receptors. Nature Struct. Biol. 3, 87–94 (19996) The first generalization of the structural principles governing the conformational change induced by the ligand in the LBD of nuclear receptors.

    Article  Google Scholar 

  17. He, B. et al. Dependence of selective gene activation on the androgen receptor NH2- and COOH-terminal interaction. J. Biol. Chem. 277, 25631–25639 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Glass, C. K. & Rosenfeld, M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. McKenna, N. J., Lanz, R. B. & O'Malley, B. W. Nuclear receptor coregulators: cellular and molecular biology. Endocrine Rev. 20, 321–344 (1999).

    CAS  Google Scholar 

  20. Métivier, R. et al. Estrogen receptor-α directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751–763 (2003). An amazingly laborious study that reveals, in great detail, the cyclo-temporal interaction of a plethora of transcription factors and molecular machinery with an oestrogen receptor target gene before and after hormone induction.

    Article  PubMed  Google Scholar 

  21. Laudet, V., Hänni, C., Coll, J., Catzeflis, F. & Stéhelin, D. Evolution of the nuclear receptor superfamily. EMBO J. 11, 1003–1013 (1992). The first evolutionary analysis of the nuclear receptor superfamily, and the first classification of the superfamily into several subfamilies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Escriva, H., Bertrand, S. & Laudet, V. The evolution of the nuclear receptor superfamily. Essays Biochem. 40, 11–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S. & Gustafsson, J. -Å. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl Acad. Sci. USA 93, 5925–5230 (1996). This paper is the first report on the novel oestrogen receptor-β. This discovery has led to a paradigm shift in our understanding of oestrogen signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gustafsson, J. -Å. What pharmacologists can learn from recent advances in oestrogen signaling. Trends Pharmacol. Sci. 24, 479–485 (2003). The author summarizes the pharmaceutical potential of oestrogen receptor-β-targeted drugs.

    Article  CAS  PubMed  Google Scholar 

  25. Katzenellenbogen, B. S. et al. Structure-function relationships in oestrogen receptors and the characterization of novel selective oestrogen receptor modulators with unique pharmacological profiles. Ann. NY Acad. Sci. 949, 6–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Matt, N., Ghyselinck, N. B., Wendling, O., Chambon, P. & Mark, M. Retinoic acid-induced developmental defects are mediated by RARβ/RXR heterodimers in the pharyngeal endoderm. Development 130, 2083–2093 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Massaro, G. D., Massaro, D. & Chambon, P. Retinoic acid receptor-α regulates pulmonary alveolus formation in mice after, but not during, perinatal period. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L431–L433 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Chiang, M. Y. et al. An essential role for retinoid receptors RARβ and RXRγ in long-term potentiation and depression. Neuron 21, 1353–1361 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Kastner, P. et al. Positive and negative regulation of granulopoiesis by endogenous RARα. Blood 97, 1314–1320 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Li, M. et al. Skin abnormalities generated by temporally controlled RXRα mutations in mouse epidermis. Nature 407, 633–636 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Zusi, F. C., Lorenzi, M. V. & Vivat-Hannah, V. Selective retinoids and rexinoids in cancer therapy and chemoprevention. Drug Discov. Today 7, 1165–1174 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, J. Y. et al. Two distinct actions of retinoid-receptor ligands. Nature 382, 819–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Nagy, L. et al. Activation of retinoid X receptors induces apoptosis in HL-60 cell lines. Mol. Cell. Biol. 15, 3540–3551 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Renaud, J. P. et al. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature 378, 681–689 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Klaholz, B. P., Mitschler, A. & Moras, D. Structural basis for isotype selectivity of the human retinoic acid nuclear receptor. J. Mol. Biol. 302, 155–170 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Klaholz, B. P. et al. Conformational adaptation of agonists to the human nuclear receptor RAR-γ. Nature Struct. Biol. 5, 199–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Billas, I. M. L. et al. Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 426, 91–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Färnegardh, M. et al. The three-dimensional structure of the liver X receptor-β reveals a flexible ligand-binding pocket that can accommodate fundamentally different ligands. J. Biol. Chem. 278, 38821–38828 (2003)

    Article  PubMed  CAS  Google Scholar 

  39. Paech, K. et al. Differential ligand activation of estrogen receptors ERα and ERβ at AP1 sites. Science 277, 1508–1510 (1997). A landmark study that describes the paradoxical agonist activity of ligands interacting with oestrogen receptor-β on AP1 response element.

    Article  CAS  PubMed  Google Scholar 

  40. Berry, M., Metzger, D. & Chambon, P. Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J. 9, 2811–2818 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kushner, P. J., et al. Estrogen receptor pathways to AP-1. J. Steroid Biochem. Mol. Biol. 74, 311–317 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Saville, B, et al. Ligand-, cell-, and estrogen receptor subtype (α/β)-dependent activation at GC-rich (Sp1) promoter elements. J. Biol. Chem. 275, 5379–5387 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, M. M. et al. Opposing action of estrogen receptors α and β on cyclin D1 gene expression. J. Biol. Chem. 277, 24353–24360 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, H., Tini, M. & Evans, R. M. HATs on and beyond chromatin. Curr. Opin. Cell. Biol. 13, 218–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Shang, Y., Hu, X., Di Renzo, J., Lazar, M. A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000). The first report of the cyclic interaction of transcription factors with a hormone-inducible promoter.

    Article  CAS  PubMed  Google Scholar 

  46. Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Katzenellenbogen, B. S. & Katzenellenbogen, J. A. Defining the 'S' in SERMs. Science 295, 2380–2381 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Bocquel, M. T., Kumar, V., Stricker, C., Chambon, P. & Gronemeyer, H. The contribution of the N- and C-terminal regions of steroid receptors to activation of transcription is both receptor and cell-specific. Nucleic Acids Res. 17, 2581–2595 (1989). On the basis of squelching experiments, the authors predict the existence of transcriptional intermediary factors for nuclear receptors, now referred to as coregulators, which act in a receptor and cell-type-specific manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sporn, M. B., Suh, N. & Mangelsdorf, D. J. Prospects for prevention and treatment of cancer with selective PPARγ modulators (SPARMs). Trends Mol. Med. 7, 395–400 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Negro-Vilar, A. Selective androgen receptor modulators (SARMs): a novel approach to androgen therapy for the new millennium. J. Clin. Endocrinol. Metab. 84, 3459–3462 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Giannoukos, G., Szapary, D., Smith, C. L., Meeker, J. E. & Simons, S. S. New antiprogestins with partial agonist activity: potential selective progesterone receptor modulators (SPRMs) and probes for receptor- and coregulator-induced changes in progesterone receptor induction properties. Mol. Endocrinol. 15, 255–270 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Rocchi, et al. A unique PPARγ ligand with potent insulin-sensitizing yet weak adipogenic activity. Mol. Cell 8, 737–747 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Olive, D. L. Role of progesterone antagonists and new selective progesterone receptor modulators in reproductive health. Obstet. Gynecol. Surv. 57, S55–S63 (2002).

    Article  PubMed  Google Scholar 

  54. Brower, V. A second chance for hormone replacement therapy? EMBO Rep. 4, 1112–1115 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. de Urquiza, A. M. et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290, 2140–2144 (2000). Using a clever genetic strategy, the authors identified docosahexenoic acid as a potential endogenous RXR ligand.

    Article  CAS  PubMed  Google Scholar 

  56. Kurokawa, R. et al. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371, 528–531 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, Z. et al. Ligand- and DNA-induced dissociation of RXR tetramers. J. Mol. Biol. 275, 55–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Kersten, S., Dawson, M. I., Lewis, B. A. & Noy, N. Individual subunits of heterodimers comprised of retinoic acid and retinoid X receptors interact with their ligands independently. Biochemistry 35, 3816–3824 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Minucci, S. et al. Retinoid X receptor (RXR) within the RXR-retinoic acid receptor heterodimer binds its ligand and enhances retinoid-dependent gene expression. Mol. Cell. Biol. 17, 644–655 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Altucci, L. & Gronemeyer, H. The promise of retinoids to fight against cancer. Nature Rev. Cancer 1, 181–193 (2001).

    Article  CAS  Google Scholar 

  61. Germain, P. et al. Rational design of RAR selective ligands revealed by RARβ crystal structure. EMBO Rep. 5, 877–882 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Blumberg, B. & Evans, R. M. Orphan nuclear receptors — new ligands and new possibilities. Genes Dev. 12, 3149–3155 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Wiebel, F. F., Steffensen, K. R., Treuter, E., Feltkamp, D. & Gustafsson, J. -Å. Ligand-independent coregulator recruitment by the triply activatable OR1/Retinoid X receptor-α nuclear receptor heterodimer. Mol. Endocrinol. 13, 1105–1118 (1999).

    CAS  PubMed  Google Scholar 

  64. Esteva, F. J. et al. Multicenter phase II study of oral bexarotene for patients with metastatic breast cancer. J. Clin. Oncol. 21, 999–1006 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Mukherjee, R. et al. Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature 386, 407–410 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Michellys, P. Y. et al. Novel (2E,4E,6Z)-7-(2-alkoxy-3,5-dialkylbenzene)-3-methylocta-2,4,6-trienoic acid retinoid X receptor modulators are active in models of type 2 diabetes. J. Med. Chem. 46, 2683–2696 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Duvic, M. et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II–III trial results. J. Clin. Oncol. 19, 2456–2471 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Krathen, R. A., Ward, S. & Duvic, M. Bexarotene is a new treatment option for lymphomatoid papulosis. Dermatology 206, 142–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Aboulafia, D. M. et al. 9-cis-retinoic acid capsules in the treatment of AIDS-related Kaposi sarcoma: results of a phase 2 multicenter clinical trial. Arch. Dermatol. 139, 178–186 (2003)

    Article  CAS  PubMed  Google Scholar 

  70. Benoit, G. et al. RAR-independent RXR signaling induces t(15;17) leukemia cell maturation. EMBO J. 18, 7011–7018 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dawson, M. I. Synthetic retinoids and their nuclear receptors. Curr. Med. Chem. Anti-Canc. Agents 4, 199–230 (2004).

    Article  CAS  Google Scholar 

  72. Hong, W. K. & Sporn, M. B. Recent advances in chemoprevention of cancer. Science 278, 1073–1077 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Sudbo, J. et al. Molecular based treatment of oral cancer. Oral Oncol. 39, 749–758 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Sun, S. Y. & Lotan, R. Retinoids and their receptors in cancer development and chemoprevention. Crit. Rev. Oncol. Hematol. 41, 41–55 (2002).

    Article  PubMed  Google Scholar 

  75. Shin, D. M. et al. Accumulation of p53 protein and retinoic acid receptor-β in retinoid chemoprevention. Clin. Cancer Res. 3, 875–880 (1997).

    CAS  PubMed  Google Scholar 

  76. Kurie, J. M. et al. Treatment of former smokers with 9-cis-retinoic acid reverses loss of retinoic acid receptor-β expression in the bronchial epithelium: results from a randomized placebo-controlled trial. J. Natl Cancer Inst. 95, 206–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Clarke, N. et al. Tumor suppressor IRF1 mediates retinoid and interferon anti-cancer signalling to death ligand TRAIL. EMBO J. 23, 3051–3060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Giguere, V., Yang, N., Segui, P. & Evans, R. M. Identification of a new class of steroid hormone receptors. Nature 331, 91–94 (1988). This paper provides the first description of an orphan receptor.

    Article  CAS  PubMed  Google Scholar 

  79. Tremblay, G. B. et al. Diethylstilbestrol regulates trophoblast stem cell differentiation as a ligand of orphan nuclear receptor ERRβ. Genes Dev. 15, 833–888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Coward, P., Lee, D., Hull, M. V. & Lehmann, J. M. 4-Hydroxytamoxifen binds to and deactivates the estrogen-related receptor-γ. Proc. Natl Acad. Sci. USA 98, 8880–8884 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Horard, B. & Vanacker, J. -M. ERRs: orphan receptors desperately seeking ligand. J. Mol. Endocrinol. 31, 349–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Vanacker, J. M., Pettersson, K., Gustafsson, J. -Å. & Laudet, V. Transcriptional targets shared by estrogen-receptor related receptors (ERRs) and estrogen receptors (ER)α but not by ERβ. EMBO J. 18, 4270–4279 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bonnelye, E. et al. The ERR-1 orphan receptor is a transcriptional activator expressed during bone formation. Mol. Endocrinol. 11, 905–916 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Bonnelye, E. & Aubin, J. E. Differential expression of estrogen receptor-related receptor-α and estrogen receptors α and β in osteoblasts in vivo and in vitro. J. Bone Miner. Res. 17, 1392–1400 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Chawla, A., Repa, J. J., Evans, R. M. & Mangelsdorf, D. J. Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866–1870 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Lee, C. H., Olson, P. & Evans, R. M. Lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144, 2201–2207 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Solomin, L. et al. Retinoid-X receptor signalling in the developing spinal cord. Nature 395, 398–402 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Conneely, O. M., Mulac-Jericevic, B., Lydon, J. P. & de Mayo, F. J. Reproductive functions of the progesterone receptor isoforms: lessons from knock-out mice. Mol. Cell. Endocrinol. 179, 97–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Kliewer, S. A. et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92, 73–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Dotzlaw, H., Leygue, E., Watson, P. & Murphy, L. C. The human orphan receptor PXR messenger RNA is expressed in both normal and neoplastic breast tissue. Clin. Cancer Res. 5, 2103–2107 (1999).

    CAS  PubMed  Google Scholar 

  91. De Bosscher, K., Vanden Berghe, W. & Haegeman, G. Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators. Mol. Endocrinol. 15, 219–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Kassel, O. et al. A nuclear isoform of the focal adhesion LIM domain protein Trip6 integrates activating and repressing signals at AP-1- and NF-κB-regulated promoters. Genes Dev. 18, 2518–2528 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Reichardt, H. M., Tronche, F., Berger, S., Kellendonk, C. & Schutz, G. New insights into glucocorticoid and mineralocorticoid signaling: lessons from gene targeting. Adv. Pharmacol. 47, 1–21 (2000).

    CAS  PubMed  Google Scholar 

  94. Vayssiere, B. M. et al. Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol. Endocrinol. 11, 1245–1255 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Van den Berghe, W., Francesconi, E., De Bosscher, K., Resche-Rigon, M. & Haegeman, G. Dissociated glucocorticoids with anti-inflammatory potential repress interleukin-6 gene expression by a nuclear factor-κB-dependent mechanism. Mol. Pharmacol. 56, 797–806 (1999).

    CAS  Google Scholar 

  96. Fu, M. et al. Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function. Mol. Cell. Biol. 22, 3373–3388 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, C. et al. Direct acetylation of the oestrogen receptor-α hinge region by p300 regulates transactivation and hormone sensitivity. J. Biol. Chem. 276, 18375–18383 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Couse, J. F. & Korach, K. S. Oestrogen receptor null mice: what have we learned and where will they lead us? Endocr. Rev. 20, 358–417 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Michalides, R. et al. Tamoxifen resistance by a conformational arrest of the estrogen receptor a after PKA activation in breast cancer. Cancer Cell 5, 597–605 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Chambliss, K. L. & Shaul, P. W. Oestrogen modulation of endothelial nitric oxide synthase. Endocr. Rev. 23, 665–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Kousteni, S. et al. Nongenotropic, sex-nonspecific signaling through the oestrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730 (2001).

    CAS  PubMed  Google Scholar 

  102. Stehlin-Gaon, C. et al. All-trans retinoic acid is a ligand for the orphan nuclear receptor RORβ. Nature Struct. Biol. 10, 820–825 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Shaw, N., Elholm, M. & Noy, N. Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptorβ/δ. J. Biol. Chem. 278, 41589–41592 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Escriva, H. et al. Ligand binding was acquired during evolution of nuclear receptors. Proc. Natl Acad. Sci. USA 94, 6803–6808 (1997). The authors demonstrate that nuclear receptors are specific to metazoans. This paper also suggests that the first nuclear receptor was an orphan receptor and that liganded receptors gained ligand-binding capactities independently and at a later stage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Grasso, L. C. et al. The evolution of nuclear receptors: evidence from the coral Acropora. Mol. Phylogenet. Evol. 21, 93–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Kostrouch, Z. et al. Retinoic acid X receptor in the diploblast, Tripedalia cystophora. Proc. Natl Acad. Sci. USA 95, 13442–13447 (1998). The suggestion that RXR is a very ancient receptor, and that the RXR from early metazoans can bind 9- cis retinoic acid in vitro , is put forward by the authors in this paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wiens, M., Batel, R., Korzhev, M. & Muller, W. E. Retinoid X receptor and retinoic acid response in the marine sponge Suberites domuncula. J. Exp. Biol. 206, 3261–3271 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Thornton, J. W., Need, E. & Crews, D. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301, 1714–1717 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Ohtake, F. et al. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423, 545–550 (2003). This study reveals that the dioxin receptor can signal through ERα and ERβ through direct interaction of AhR/Arnt with ERα and ERβ, thereby explaining the oestrogen-related actions of dioxins.

    Article  CAS  PubMed  Google Scholar 

  110. Norris, J. D. et al. Peptide antagonists of the human estrogen receptor. Science 285, 744–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Ferrara, F. F. et al. Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res. 61, 2–7 (2001). A demonstration that HDAC inhibitors can restore antiproliferative retinoic acid signalling in acute myeloid leukaemia cells that are otherwise unresponsive to retinoids. This is an important argument for the development of combination therapies in which one drug prepares the target tissue for the action of the other.

    PubMed  Google Scholar 

  112. Nuclear Receptor Nomenclature Committee. A unified nomenclature system for the nuclear receptors superfamily. Cell 97, 161–163 (1999).

  113. Rochette-Egly, C. Nuclear receptors: integration of multiple signalling pathways through phosphorylation. Cell Signal. 15, 355–366 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Bertrand, S. et al. Evolutionary genomics of nuclear receptors: from 25 ancestral genes to derived endocrine systems Mol. Biol. Evol. 21, 1923–1937 (2004). The most recent evolutionary analysis of the nuclear receptor superfamily based on the evolution of all complete genome sequences available. It suggests that in addition to gene duplication, gene loss has had an important role in nuclear receptor evolution.

    Article  CAS  PubMed  Google Scholar 

  115. Elger, W. et al. International patent application WO-03045396.

  116. Robinson-Rechavi, M. Escriva-Garcia, H. & Laudet, V. The nuclear receptor superfamily. J. Cell Sci. 116, 585–586 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

V.L. thanks S. Watson, J. Samarut and M. Schubert for critical reading of the manuscript as well as H. Escriva and J. Katzenellenbogen for help in preparation. H.G. would like to thank the members of his and D. Moras' lab for discussions and figures. J.-Å.G. also thanks K. Koehler for discussions and for figures. Work in our laboratories is supported by grants from the Association for International Cancer Research, the Association pour la Recherche contre le Cancer, the Fondation de France, the European Community, Bristol-Myers Squibb, The Swedish Cancer Fund, The Swedish Science Council, KaroBio AB, Centre National de la Recherche Scientifique, Ministère de la Recherche et de la Technologie, and Région Rhône-Alpes. This publication is supported by the CASCADE network of excellence of the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Laudet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez Gene

AP1

AR

CAR

CARM1

DAX1

eNOS

EP300

NCOA1

NCOA2

NCOR1

NCOR2

PCAF

PXR

RAR

RXR

SF1

SP1

THR

VDR

FURTHER INFORMATION

Cascade Network of Excellence

e.hormone

Gronemeyer lab

Gustafsson lab

IUPHAR database

Laudet lab

NuclearDB

Nuclear Receptor Nomenclature Homepage

Nuclear Receptor Resource

Nuclear Receptor Signaling Atlas

Nurebase

Glossary

INVERSE (ANT)AGONIST

A ligand that stabilizes an inactive conformation of a receptor — for example, by increasing corepressor interaction, thereby decreasing signalling below basal levels.

SELECTIVE NUCLEAR RECEPTOR MODULATORS

(SNuRMS). Ligands that selectively modulate different receptor subtypes and/or act in a cell-selective manner.

NON-GENOMIC ACTION

Action of a ligand that does not involve the activation of the target genes of its cognate receptor.

TRANSACTIVATION

Activation of transcription by the binding of a transcription factor to a DNA regulatory sequence.

BIO-ISOSTERIC REPLACEMENT

The creation of a new compound with similar biological properties to the parent compound by exchanging an atom or a group of atoms with another, broadly similar atom or group of atoms.

ALL-TRANS RETINOIC ACID SYNDROME

A side effect that occurs in 10–15% of patients that is preceded by increasing leukocyte count and that includes fever, respiratory distress, weight gain and oedema of the lower extremities and which is fatal in at least 10% of cases.

LYMPHOMATOID PAPULOSIS

A chronic lymphoproliferative disease of the skin.

TRANSREPRESSION

Repression of transcription through a mechanism in which a transcriptional activator, such as a nuclear receptor, represses the transcriptional activation potential of another transactivator, such as AP1, without binding to DNA or altering the DNA-binding activity of AP1. Several mechanisms have been proposed (see text), but none explains all of the experimental observations.

APTAMERS

Protein-based recognition agents that block protein–protein interactions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gronemeyer, H., Gustafsson, JÅ. & Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3, 950–964 (2004). https://doi.org/10.1038/nrd1551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing