[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insight into oxidative stress in varicocele-associated male infertility: part 1

Abstract

Varicocele is recognized as the leading cause of male infertility because it can impair spermatogenesis through several distinct pathophysiological mechanisms. Current evidence supports oxidative stress as a key element in the pathophysiology of varicocele-related infertility, although these mechanisms have not yet been fully described. Measurement of the reactive oxygen species and other markers of oxidative stress, including the levels of the antioxidant enzymes catalase and superoxide dismutase, can provide valuable information on the extent of oxidative stress and might guide therapeutic management strategies. The testis can respond to varicocele-associated cell stressors, such as heat stress, ischaemia or production of vasodilators (for example, nitric oxide) at the expense of the generation of excessive reactive oxygen species. These responses have their own implications in exacerbating the underlying oxidative stress and on the subsequent infertility.

Key Points

  • Oxidative stress is a key element in the pathophysiology of varicocele-related infertility and several mechanisms by which this operates have been studied but have not yet been fully described

  • Although small quantities of reactive oxygen species (ROS) have important roles in sperm function, a disproportionate increase in ROS usually leads to oxidative stress

  • Heat stress, hypoxia, reflux of adrenal and renal metabolites and hormonal disturbances have all been proposed as mechanisms to explain the pathophysiological effects of varicocele on testicular function

  • Several intrinsic mechanisms are available—including the antioxidant enzymes catalase or superoxide dismutase—that counteract the actions of ROS; disruption of these protective antioxidants can also lead to oxidative stress

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reactive oxygen and nitrogen species generation in infertile men with varicocele.
Figure 2: Varicocele-induced sperm biochemical pathways of ROS generation.

Similar content being viewed by others

References

  1. Jarow, J. P. et al. Best practice policies for male infertility. J. Urol. 167, 2138–2144 (2002).

    Article  PubMed  Google Scholar 

  2. Thonneau, P. et al. Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988–1989). Hum. Reprod. 6, 811–816 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Madgar, I., Weissenberg, R., Lunenfeld, B., Karasik, A. & Goldwasser, B. Controlled trial of high spermatic vein ligation for varicocele in infertile men. Fertil. Steril. 63, 120–124 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Witt, M. A. & Lipshultz, L. I. Varicocele: a progressive or static lesion? Urology 42, 541–543 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Goldstein, M., Gilbert, B. R., Dicker, A. P., Dwosh, J. & Gnecco, C. Microsurgical inguinal varicocelectomy with delivery of the testis: an artery and lymphatic sparing technique. J. Urol. 148, 1808–1811 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Miyaoka, R. & Esteves, S. C. A critical appraisal on the role of varicocele in male infertility. Adv. Urol. 2012, 597495 (2012).

    Article  PubMed  Google Scholar 

  7. Gat, Y. et al. Azoospermia and maturation arrest: malfunction of valves in erect poster of humans leads to hypoxia in sperm production site. Andrologia 42, 389–394 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Sylora, J. A. & Pryor, J. L. Varicocele. Curr. Ther. Endocrinol. Metab. 5, 309–314 (1994).

    CAS  PubMed  Google Scholar 

  9. Green, K. F., Turner, T. T. & Howards, S. S. Varicocele: reversal of the testicular blood flow and temperature effects by varicocele repair. J. Urol. 131, 1208–1211 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Griveau, J. F. & Le Lannou, D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int. J. Androl. 20, 61–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Hamada, A., Esteves, S. C. & Agarwal, A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat. Rev. Urol. http://dx.doi.org/10.1038/nrurol.2012.198.

  12. Akbay, E., Cayan, S., Doruk, E., Duce, M. N. & Bozlu, M. The prevalence of varicocele and varicocele-related testicular atrophy in Turkish children and adolescents. BJU Int. 86, 490–493 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Gat, Y., Zukerman, Z., Chakraborty, J. & Gornish, M. Varicocele, hypoxia and male infertility. Fluid mechanics analysis of the impaired testicular venous drainage system. Hum. Reprod. 20, 2614–2619 (2005).

    Article  PubMed  Google Scholar 

  14. Gat, Y. et al. Right varicocele and hypoxia, crucial factors in male infertility: fluid mechanics analysis of the impaired testicular drainage system. Reprod. Biomed. Online 13, 510–515 (2006).

    Article  PubMed  Google Scholar 

  15. The influence of varicocele on parameters of fertility in a large group of men presenting to infertility clinics. World Health Organization. Fertil. Steril. 57, 1289–1293 (1992).

  16. Dubin, L. & Amelar, R. D. Etiologic factors in 1294 consecutive cases of male infertility. Fertil. Steril. 22, 469–474 (1971).

    Article  CAS  PubMed  Google Scholar 

  17. Agarwal, A. et al. Efficacy of varicocelectomy in improving semen parameters: new meta-analytical approach. Urology 70, 532–538 (2007).

    Article  PubMed  Google Scholar 

  18. Baazeem, A. et al. Varicocele and male factor infertility treatment: a new meta-analysis and review of the role of varicocele repair. Eur. Urol. 60, 796–808 (2011).

    Article  PubMed  Google Scholar 

  19. Evers, J. L., Collins, J. A. & Vandekerckhove, P. Surgery or embolisation for varicocele in subfertile men. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD000479.

  20. Ficarra, V. et al. Treatment of varicocele in subfertile men: The Cochrane Review—a contrary opinion. Eur. Urol. 49, 258–263 (2006).

    Article  PubMed  Google Scholar 

  21. Marmar, J. L. et al. Reassessing the value of varicocelectomy as a treatment for male subfertility with a new meta-analysis. Fertil. Steril. 88, 639–648 (2007).

    Article  PubMed  Google Scholar 

  22. Inci, K. et al. Sperm retrieval and intracytoplasmic sperm injection in men with nonobstructive azoospermia, and treated and untreated varicocele. J. Urol. 182, 1500–1505 (2009).

    Article  PubMed  Google Scholar 

  23. Esteves, S. C. & Glina, S. Recovery of spermatogenesis after microsurgical subinguinal varicocele repair in azoospermic men based on testicular histology. Int. Braz. J. Urol. 31, 541–548 (2005).

    Article  PubMed  Google Scholar 

  24. Esteves, S. C., Miyaoka, R. & Agarwal, A. Sperm retrieval techniques for assisted reproduction. Int. Braz. J. Urol. 37, 570–583 (2011).

    Article  PubMed  Google Scholar 

  25. Esteves, S. C., Oliveira, F. V. & Bertolla, R. P. Clinical outcome of intracytoplasmic sperm injection in infertile men with treated and untreated clinical varicocele. J. Urol. 184, 1442–1446 (2010).

    Article  PubMed  Google Scholar 

  26. Sharma, R. K. & Agarwal, A. Role of reactive oxygen species in male infertility. Urology 48, 835–850 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Aitken, R. J., Ryan, A. L., Baker, M. A. & McLaughlin, E. A. Redox activity associated with the maturation and capacitation of mammalian spermatozoa. Free Radic. Biol. Med. 36, 994–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Roveri, A., Ursini, F., Flohe, L. & Maiorino, M. PHGPx and spermatogenesis. Biofactors 14, 213–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Bize, I., Santander, G., Cabello, P., Driscoll, D. & Sharpe, C. Hydrogen peroxide is involved in hamster sperm capacitation in vitro. Biol. Reprod. Mar. 44, 398–403 (1991).

    Article  CAS  Google Scholar 

  30. de Lamirande, E. & Gagnon, C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic. Biol. Med. 14, 157–166 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Sun, J. G., Jurisicova, A. & Casper, R. F. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol. Reprod. Mar. 56, 602–607 (1997).

    Article  CAS  Google Scholar 

  32. Aitken, R. J. & Krausz, C. Oxidative stress, DNA damage and the Y chromosome. Reproduction 122, 497–506 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Shiraishi, K., Takihara, H. & Naito, K. Testicular volume, scrotal temperature, and oxidative stress in fertile men with left varicocele. Fertil. Steril. 91 (Suppl. 4), 1388–1391 (2009).

    Article  PubMed  Google Scholar 

  34. Salisz, J. A., Kass, E. J. & Steinert, B. W. The significance of elevated scrotal temperature in an adolescent with a varicocele. Adv. Exp. Med. Biol. 286, 245–251 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Yamaguchi, M., Sakatoku, J. & Takihara, H. The application of intrascrotal deep body temperature measurement for the noninvasive diagnosis of varicoceles. Fertil. Steril. 52, 295–301 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Mariotti, A. et al. Scrotal thermoregulatory model and assessment of the impairment of scrotal temperature control in varicocele. Ann. Biomed. Eng. 39, 664–673 (2011).

    Article  PubMed  Google Scholar 

  37. Alvarez, J. G. & Storey, B. T. Spontaneous lipid peroxidation in rabbit and mouse epididymal spermatozoa: dependence of rate on temperature and oxygen concentration. Biol. Reprod. Mar. 32, 342–351 (1985).

    Article  CAS  Google Scholar 

  38. Morgan, D. et al. Temperature dependence of NADPH oxidase in human eosinophils. J. Physiol. 550, 447–458 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shin, M. H. et al. Reactive oxygen species produced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shock-induced MMP-1 and MMP-9 expression. Free Radic. Biol. Med. 44, 635–645 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Guo, J. et al. Expression of nitric oxide synthase during germ cell apoptosis in testis of cynomolgus monkey after testosterone and heat treatment. J. Androl. 30, 190–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Hadziselimovic, F. & Herzog, B. The importance of both an early orchidopexy and germ cell maturation for fertility. Lancet 358, 1156–1157 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Rosselli, M., Dubey, R. K., Imthurn, B., Macas, E. & Keller, P. J. Effects of nitric oxide on human spermatozoa: evidence that nitric oxide decreases sperm motility and induces sperm toxicity. Hum. Reprod. 10, 1786–1790 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, T. P., Huang, B. M., Tsai, H. C., Lui, M. C. & Liu, M. Y. Effects of nitric oxide on human spermatozoa activity, fertilization and mouse embryonic development. Arch. Androl. 50, 173–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Zini, A., O'Bryan, M. K., Magid, M. S. & Schlegel, P. N. Immunohistochemical localization of endothelial nitric oxide synthase in human testis, epididymis, and vas deferens suggests a possible role for nitric oxide in spermatogenesis, sperm maturation, and programmed cell death. Biol. Reprod. 55, 935–941 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, Y. et al. An alternative promoter of the human neuronal nitric oxide synthase gene is expressed specifically in Leydig cells. Am. J. Pathol. 160, 369–380 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cos¸tur, P. et al. Expression of inducible nitric oxide synthase (iNOS) in the azoospermic human testis. Andrologia 44 (Suppl. 1), 654–660 (2012).

    Article  CAS  Google Scholar 

  47. Türker Köksal, I. et al. The potential role of inducible nitric oxide synthase (iNOS) activity in the testicular dysfunction associated with varicocele: an experimental study. Int. Urol. Nephrol. 36, 67–72 (2004).

    Article  PubMed  Google Scholar 

  48. Santoro, G. et al. Nitric oxide synthase patterns in normal and varicocele testis in adolescents. BJU Int. 88, 967–973 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Shiraishi, K. & Naito, K. Nitric oxide produced in the testis is involved in dilatation of the internal spermatic vein that compromises spermatogenesis in infertile men with varicocele. BJU Int. 99, 1086–1090 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Shiratsuchi, A., Umeda, M., Ohba, Y. & Nakanishi, Y. Recognition of phosphatidylserine on the surface of apoptotic spermatogenic cells and subsequent phagocytosis by Sertoli cells of the rat. J. Biol. Chem. 272, 2354–2358 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Lue, Y. et al. Transient testicular warming enhances the suppressive effect of testosterone on spermatogenesis in adult cynomolgus monkeys (Macaca fascicularis). J. Clin. Endocrinol. Metab. 91, 539–545 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Allen, J. D. & Gow, A. J. Nitrite, NO and hypoxic vasodilation. Br. J. Pharmacol. 158, 1653–1654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pryor, W. A. & Squadrito, G. L. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268, L699–L722 (1995).

    CAS  PubMed  Google Scholar 

  54. Jourd'heuil, D. et al. Reaction of superoxide and nitric oxide with peroxynitrite. Implications for peroxynitrite-mediated oxidation reactions in vivo. J. Biol. Chem. 276, 28799–28805 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Bates, T. E., Loesch, A., Burnstock, G. & Clark, J. B. Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochem. Biophys. Res. Commun. 213, 896–900 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Kobzik, L., Stringer, B., Balligand, J. L., Reid, M. B. & Stamler, J. S. Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem. Biophys. Res. Commun. 211, 375–381 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Clementi, E., Brown, G. C., Feelisch, M. & Moncada, S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S.-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl Acad. Sci. USA 95, 7631–7636 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Poderoso, J. J. et al. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch. Biochem. Biophys. 328, 85–92 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Beltrán, B., Orsi, A., Clementi, E. & Moncada, S. Oxidative stress and S-nitrosylation of proteins in cells. Br. J. Pharmacol. 129, 953–960 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Abbasi, M. et al. Aminoguanidine improves epididymal sperm parameters in varicocelized rats. Urol. Int. 86, 302–306 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Abbasi, M. et al. Effect of aminoguanidine in sperm DNA fragmentation in varicocelized rats: role of nitric oxide. Reprod. Sci. 18, 545–550 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Alizadeh, N. et al. Effects of aminoguanidine on infertile varicocelized rats: A functional and morphological study. Daru. 18, 51–56 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gao, X. K. et al. Protective effect of nitric oxide synthase inhibitor (L-NAME) on germ cell apoptosis in experimentally cryptorchid rats [Chinese]. Zhonghua Nan Ke Xue 9, 684–686, 689 (2003).

    CAS  PubMed  Google Scholar 

  64. DeFoor, W. R., Kuan, C. Y., Pinkerton, M., Sheldon, C. A. & Lewis, A. G. Modulation of germ cell apoptosis with a nitric oxide synthase inhibitor in a murine model of congenital cryptorchidism. J. Urol. 172, 1731–1735 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Lue, Y., Sinha Hikim, A. P., Wang, C., Leung, A. & Swerdloff, R. S. Functional role of inducible nitric oxide synthase in the induction of male germ cell apoptosis, regulation of sperm number, and determination of testes size: evidence from null mutant mice. Endocrinology 144, 3092–3100 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Paul, C., Teng, S. & Saunders, P. T. A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol. Reprod. 80, 913–919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ebeid, T. A. Organic selenium enhances the antioxidative status and quality of cockerel semen under high ambient temperature. Br. Poult. Sci. 50, 641–647 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Ishii, T. et al. Accelerated impairment of spermatogenic cells in SOD1-knockout mice under heat stress. Free Radic. Res. 39, 697–705 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Ghasemi, N., Babaei, H., Azizallahi, S. & Kheradmand, A. Effect of long-term administration of zinc after scrotal heating on mice spermatozoa and subsequent offspring quality. Andrologia 41, 222–228 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Abele, D., Heise, K., Pörtner, H. O. & Puntarulo, S. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J. Exp. Biol. 205, 1831–1841 (2002).

    CAS  PubMed  Google Scholar 

  71. Ikeda, M. et al. Role of radical oxygen species in rat testicular germ cell apoptosis induced by heat stress. Biol. Reprod. 61, 393–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Venkataraman, S. et al. Overexpression of manganese superoxide dismutase promotes the survival of prostate cancer cells exposed to hyperthermia. Free Radic. Res. 38, 1119–1132 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Tan, G. Y., Yang, L., Fu, Y. Q., Feng, J. H. & Zhang, M. H. Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens. Poult. Sci. 89, 115–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Voglmayr, J. K., Setchell, B. P. & White, I. G. The effects of heat on the metabolism and ultrastructure of ram testicular spermatozoa. J. Reprod. Fertil. 24, 71–80 (1971).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, K. et al. Uncoupling protein 2 protects testicular germ cells from hyperthermia-induced apoptosis. Biochem. Biophys. Res. Commun. 360, 327–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Rial, E. et al. Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2. EMBO J. 18, 5827–5833 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dridi, S., Temim, S., Derouet, M., Tesseraud, S. & Taouis, M. Acute cold- and chronic heat-exposure upregulate hepatic leptin and muscle uncoupling protein (UCP) gene expression in broiler chickens. J. Exp. Zool. A Ecol. Genet. Physiol. 309, 381–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Echtay, K. S., Winkler, E., Frischmuth, K. & Klingenberg, M. Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc. Natl Acad. Sci. USA 98, 1416–1421 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mancini, A., Conte, G., Milardi, D., De Marinis, L. & Littarru, G. P. Relationship between sperm cell ubiquinone and seminal parameters in subjects with and without varicocele. Andrologia 30, 1–4 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Skibba, J. L., Stadnicka, A., Kalbfleisch, J. H. & Powers, R. H. Effects of hyperthermia on xanthine oxidase activity and glutathione levels in the perfused rat liver. J. Biochem. Toxicol. 4, 119–125 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Hille, R. & Nishino, T. Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. FASEB J. 9, 995–1003 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. McKelvey, T. G. et al. Mechanisms of conversion of xanthine dehydrogenase to xanthine oxidase in ischemic rat liver and kidney. Am. J. Physiol. 254, G753–G760 (1988).

    CAS  PubMed  Google Scholar 

  83. Bruder, G., Heid, H. W., Jarasch, E. D. & Mather, I. H. Immunological identification and determination of xanthine oxidase in cells and tissues. Differentiation 23, 218–225 (1983).

    Article  CAS  PubMed  Google Scholar 

  84. Kawaguchi, S., Fukuda, J., Kumagai, J., Shimizu, Y. & Tanaka, T. Expression of xanthine oxidase in testicular cells. Akita J. Med. 36, 99–105 (2009).

    CAS  Google Scholar 

  85. Yaman, Ö. et al. The significance of testicular reactive oxygen species on testicular histology in infertile patients. Int. Urol. Nephrol. 31, 395–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Mitropoulos, D. et al. Nitric oxide synthase and xanthine oxidase activities in the spermatic vein of patients with varicocele: a potential role for nitric oxide and peroxynitrite in sperm dysfunction. J. Urol. 156, 1952–1958 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. McCoubrey, W. K. Jr & Maines, M. D. The structure, organization and differential expression of the gene encoding rat heme oxygenase-2. Gene 139, 155–161 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Rotenberg, M. O. & Maines, M. D. Isolation, characterization, and expression in Escherichia coli of a cDNA encoding rat heme oxygenase-2. J. Biol. Chem. 265, 7501–7506 (1990).

    CAS  PubMed  Google Scholar 

  89. Yoshida, T., Biro, P., Cohen, T., Müller, R. M. & Shibahara, S. Human heme oxygenase cDNA and induction of its mRNA by hemin. Eur. J. Biochem. 171, 457–461 (1988).

    Article  CAS  PubMed  Google Scholar 

  90. Shibahara, S., Sato, M., Muller, R. M. & Yoshida, T. Structural organization of the human heme oxygenase gene and the function of its promoter. Eur. J. Biochem. 179, 557–563 (1989).

    Article  CAS  PubMed  Google Scholar 

  91. Lin, Q. S. et al. Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress. Free Radic. Biol. Med. Mar. 44, 847–855 (2008).

    Article  CAS  Google Scholar 

  92. Maines, M. D. The heme oxygenase system and its functions in the brain. Cell. Mol. Biol. (Noisy-le-grand) 46, 573–585 (2000).

    CAS  Google Scholar 

  93. Udono-Fujimori, R. et al. Expression of heme oxygenase-1 is repressed by interferon-gamma and induced by hypoxia in human retinal pigment epithelial cells. Eur. J. Biochem. 271, 3076–3084 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Okinaga, S. et al. Regulation of human heme oxygenase-1 gene expression under thermal stress. Blood 87, 5074–5084 (1996).

    CAS  PubMed  Google Scholar 

  95. Kitamuro, T. et al. Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J. Biol. Chem. 278, 9125–9133 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Nakayama, M. et al. Repression of heme oxygenase-1 by hypoxia in vascular endothelial cells. Biochem. Biophys. Res. Commun. 271, 665–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Shibahara, S. Regulation of heme oxygenase gene expression. Semin. Hematol. 25, 370–376 (1988).

    CAS  PubMed  Google Scholar 

  98. Ewing, J. F. & Maines, M. D. Distribution of constitutive (HO-2) and heat-inducible (HO-1) heme oxygenase isozymes in rat testes: HO-2 displays stage-specific expression in germ cells. Endocrinology 136, 2294–2302 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Ozawa, N. et al. Leydig cell-derived heme oxygenase-1 regulates apoptosis of premeiotic germ cells in response to stress. J. Clin. Invest. 109, 457–467 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Abdel Aziz, M. T. et al. Heme oxygenase enzyme activity in seminal plasma of oligoasthenoteratozoospermic males with varicocele. Andrologia 42, 236–241 (2008).

    Article  Google Scholar 

  101. Shiraishi, K. & Naito, K. Increased expression of Leydig cell haem oxygenase-1 preserves spermatogenesis in varicocele. Hum. Reprod. 20, 2608–2613 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Parsell, D. A. & Lindquist, S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437–496 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Yes¸illi, C. et al. Effect of varicocelectomy on sperm creatine kinase, HspA2 chaperone protein (creatine kinase-M type), LDH, LDH-X, and lipid peroxidation product levels in infertile men with varicocele. Urology 66, 610–615 (2005).

    Article  Google Scholar 

  104. Lima, S. B. et al. Expression of the HSPA2 gene in ejaculated spermatozoa from adolescents with and without varicocele. Fertil. Steril. 86, 1659–1663 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Esfahani, M. A. H. et al. Can altered expression of HSPA2 in varicocele patients lead to abnormal spermatogenesis. Int. J. Fertil. Steril. 4, 104–113 (2010).

    Google Scholar 

  106. Ferlin, A. et al. Heat shock protein and heat shock factor expression in sperm: relation to oligozoospermia and varicocele. J. Urol. 183, 1248–1252 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Nakai, A., Suzuki, M. & Tanabe, M. Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. EMBO J. 19, 1545–1554 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kilinç, F. et al. Experimental varicocele induces hypoxia inducible factor-1α, vascular endothelial growth factor expression and angiogenesis in the rat testis. J. Urol. 172, 1188–1191 (2004).

    Article  PubMed  Google Scholar 

  109. Horiuchi, A. et al. Hypoxia-induced changes in the expression of VEGF, HIF-1α and cell cycle-related molecules in ovarian cancer cells. Anticancer Res. 22, 2697–2702 (2002).

    CAS  PubMed  Google Scholar 

  110. Lee, J. D., Jeng, S. Y. & Lee, T. H. Increased expression of hypoxia-inducible factor-1α in the internal spermatic vein of patients with varicocele. J. Urol. 175, 1045–1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Paick, J. S. et al. Increased expression of hypoxia-inducible factor-1α and connective tissue growth factor accompanied by fibrosis in the rat testis of varicocele [Spanish]. Actas Urol. Esp. 36, 282–288 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Wang, H. et al. Hypoxia-induced apoptosis in the bilateral testes of rats with left-sided varicocele: a new way to think about the varicocele. J. Androl. 31, 299–305 (2010).

    Article  PubMed  Google Scholar 

  113. Wang, H. F. et al. Expression of hypoxia induced factor-1alpha and function of epididymis in varicocele: experiment with rats [Chinese]. Zhonghua Yi Xue Za Zhi 88, 1670–1672 (2008).

    CAS  PubMed  Google Scholar 

  114. Brunelle, J. K. et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 1, 409–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Jung, S.-N. et al. Reactive oxygen species stabilize hypoxia-inducible factor-1α protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 29, 713–721 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Hierholzer, C. et al. Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J. Exp. Med. 187, 917–928 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Moore, W. M. et al. L-N6-(1-iminoethyl)lysine: a selective inhibitor of inducible nitric oxide synthase. J. Med. Chem. 37, 3886–3888 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Guzy, R. D. & Schumacker, P. T. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 91, 807–819 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Sohn, H. Y. et al. Differential regulation of xanthine and NAD(P)H oxidase by hypoxia in human umbilical vein endothelial cells. Role of nitric oxide and adenosine. Cardiovasc. Res. 58, 638–646 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Jones, R. D., Hancock, J. T. & Morice, A. H. NADPH oxidase: a universal oxygen sensor? Free Radic. Biol. Med. 29, 416–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Neidlinger, N. A. et al. Postinjury serum secretory phospholipase A2 correlates with hypoxemia and clinical status at 72 hours. J. Am. Coll. Surg. 200, 173–178 (2005).

    Article  PubMed  Google Scholar 

  123. Girgis, S. M. et al. Lactate and pyruvate levels in the testicular vein of subfertile males with varicocele as a test for the theory of underlying hypoxia. Andrologia 13, 6–9 (1981).

    Google Scholar 

  124. Ibrahim, A. A., Hamada, T. A. & Moussa, M. M. Effect of varicocele on sperm respiration and metabolism. Andrologia 13, 253–259 (1981).

    Article  CAS  PubMed  Google Scholar 

  125. Buonaguidi, A. et al. Experience with the determination of LDH-X in seminal plasma as diagnostic and prognostic factor in varicocele [Spanish]. Arch. Esp. Urol. 46, 35–39 (1993).

    CAS  PubMed  Google Scholar 

  126. Padgett, C. M. & Whorton, A. R. Glutathione redox cycle regulates nitric oxide-mediated glyceraldehyde-3-phosphate dehydrogenase inhibition. Am. J. Physiol. 272, C99–108 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Ghabili, K., Shoja, M. M., Agutter, P. S. & Agarwal, A. Hypothesis: intracellular acidification contributes to infertility in varicocele. Fertil. Steril. 92, 399–401 (2009).

    Article  PubMed  Google Scholar 

  128. Arena, S. et al. Aquaporin-9 immunohistochemistry in varicocele testes as a consequence of hypoxia in the sperm production site. Andrologia 43, 34–37 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Ishikawa, T., Fujioka, H., Ishimura, T., Takenaka, A. & Fujisawa, M. Expression of leptin and leptin receptor in the testis of fertile and infertile patients. Andrologia 39, 22–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Sahin, Z. et al. Increased expression of interleukin-1α and interleukin-1β is associated with experimental varicocele. Fertil. Steril. 85 (Suppl. 1), 1265–1275 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Nallella, K. P. et al. Relationship of interleukin-6 with semen characteristics and oxidative stress in patients with varicocele. Urology 64, 1010–1013 (2004).

    Article  PubMed  Google Scholar 

  132. Ambrosini, G., Nath, A. K., Sierra-Honigmann, M. R. & Flores-Riveros, J. Transcriptional activation of the human leptin gene in response to hypoxia. Involvement of hypoxia!inducible factor 1. J. Biol. Chem. 277, 34601–34609 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Konukoglu, D., Serin, O. & Turhan, M. S. Plasma leptin and its relationship with lipid peroxidation and nitric oxide in obese female patients with or without hypertension. Arch. Med. Res. 37, 602–606 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Yamagishi, S. I. et al. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J. Biol. Chem. 276, 25096–25100 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Chen, L. P. et al. The changes of IL-1 and NO levels in the testes of rats with experimental varicocele [Chinese]. Zhonghua Nan Ke Xue 8, 125–126 (2002).

    PubMed  Google Scholar 

  136. Moretti, E. et al. Semen characteristics and inflammatory mediators in infertile men with different clinical diagnoses. Int. J. Androl. 32, 637–646 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Zalata, A., Hafez, T., Van Hoecke, M. J. & Comhaire, F. Evaluation of β-endorphin and interleukin-6 in seminal plasma of patients with certain andrological diseases. Hum. Reprod. 10, 3161–3165 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Romano, M. et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6, 315–325 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Basu, S., Aballa, T. C., Ferrell, S. M., Lynne, C. M. & Brackett, N. L. Inflammatory cytokine concentrations are elevated in seminal plasma of men with spinal cord injuries. J. Androl. 25, 250–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Tortolero, I. et al. The effect of seminal leukocytes on semen quality in subfertile males with and without varicocele [Spanish]. Arch. Esp. Urol. 57, 921–928 (2004).

    PubMed  Google Scholar 

  141. Li, Y.-Y., Hwang, I. S., O, W.-S. & Tang, F. Adrenomedullin peptide: gene expression of adrenomedullin, its receptors and receptor activity modifying proteins, and receptor binding in rat testis--actions on testosterone secretion. Biol. Reprod. 75, 183–188 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Marinoni, E. et al. Adrenomedullin in human male reproductive system. Eur. J. Obstet. Gynecol. Reprod. Biol. 122, 195–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Sugo, S. et al. Endothelial cells actively synthesize and secrete adrenomedullin. Biochem. Biophys. Res. Commun. 201, 1160–1166 (1994).

    Article  CAS  PubMed  Google Scholar 

  144. Jougasaki, M., Schirger, J. A., Simari, R. D. & Burnett, J. C. Jr. Autocrine role for the endothelin-B receptor in the secretion of adrenomedullin. Hypertension 32, 917–922 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Kitamura, K. et al. Complete amino acid sequence of porcine adrenomedullin and cloning of cDNA encoding its precursor. FEBS Lett. 338, 306–310 (1994).

    Article  CAS  PubMed  Google Scholar 

  146. Fujita, M., Kuwaki, T., Ando, K. & Fujita, T. Sympatho-inhibitory action of endogenous adrenomedullin through inhibition of oxidative stress in the brain. Hypertension 45, 1165–1172 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Yurekli, M. et al. Adrenomedullin reduces antioxidant defense system and enhances kidney tissue damage in cadmium and lead exposed rats. Environ. Toxicol. 24, 279–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Hurtado de Catalfo, G. E., Ranieri-Casilla, A., Marra, F. A., de Alaniz, M. J. & Marra, C. A. Oxidative stress biomarkers and hormonal profile in human patients undergoing varicocelectomy. Int. J. Androl. 30, 519–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Evereklioglu, C. et al. Increased plasma adrenomedullin levels in patients with Behçet's disease. Dermatology 201, 312–315 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Chan, Y. F., O, W.-S. & Tang, F. Adrenomedullin in the rat testis. I: Its production, actions on testosterone secretion, regulation by human chorionic gonadotropin, and its interaction with endothelin 1 in the leydig cell. Biol. Reprod. 78, 773–779 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Zhang, C. et al. Oligozoospermia with normal fertility in male mice lacking the androgen receptor in testis peritubular myoid cells. Proc. Natl Acad. Sci. USA 103, 17718–17723 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ozbek, E., Yurekli, M., Soylu, A., Davarci, M. & Balbay, M. D. The role of adrenomedullin in varicocele and impotence. BJU Int. 86, 694–698 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Ito, H. et al. Internal spermatic vein prostaglandins in varicocele patients. Fertil. Steril. 37, 218–222 (1982).

    Article  CAS  PubMed  Google Scholar 

  154. Adamopoulos, D. A., Kontogeorgos, L., Abrahamian-Michalakis, A., Terzis, T. & Vassilopoulos, P. Raised sodium, potassium, and urea concentrations in spermatic venous blood: an additional causative factor in the testicular dysfunction of varicocele? Fertil. Steril. 48, 331–333 (1987).

    Article  CAS  PubMed  Google Scholar 

  155. Zhang, Z., Dmitrieva, N. I., Park, J.-H., Levine, R. L. & Burg, M. B. High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their, DNA. Proc. Natl Acad. Sci. USA 101, 9491–9496 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jeng, S. Y., Wu, S. M. & Lee, J. D. Cadmium accumulation and metallothionein overexpression in internal spermatic vein of patients with varicocele. Urology 73, 1231–1235 (2009).

    Article  PubMed  Google Scholar 

  157. Benoff, S. H., Millan, C., Hurley, I. R., Napolitano, B. & Marmar, J. L. Bilateral increased apoptosis and bilateral accumulation of cadmium in infertile men with left varicocele. Hum. Reprod. 19, 616–627 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Benoff, S. et al. A potential role for cadmium in the etiology of varicocele-associated infertility. Fertil. Steril. 67, 336–347 (1997).

    Article  CAS  PubMed  Google Scholar 

  159. Benoff, S., Auborn, K., Marmar, J. L. & Hurley, I. R. Link between low-dose environmentally relevant cadmium exposures and asthenozoospermia in a rat model. Fertil. Steril. 89 (Suppl. 2), e73–e79 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Free, M. J., Schluntz, G. A. & Jaffe, R. A. Respiratory gas tensions in tissues and fluids of the male rat reproductive tract. Biol. Reprod. 14, 481–488 (1976).

    Article  CAS  PubMed  Google Scholar 

  161. Suzuki, F. Microvasculature of the mouse testis and excurrent duct system. Am. J. Anat. 163, 309–325 (1982).

    Article  CAS  PubMed  Google Scholar 

  162. Hinton, B. T., Palladino, M. A., Rudolph, D., Lan, Z. J. & Labus, J. C. The role of the epididymis in the protection of spermatozoa. Curr. Top. Dev. Biol. 33, 61–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  163. Ozturk, U. et al. The effects of experimental left varicocele on the epididymis. Syst. Biol. Reprod. Med. 54, 177–184 (2008).

    Article  PubMed  Google Scholar 

  164. Zhang, Q. Y., Qiu, S. D., Ma, X. N., Yu, H. M. & Wu, Y. W. Effect of experimental varicocele on structure and function of epididymis in adolescent rats. Asian J. Androl. 5, 108–112 (2003).

    PubMed  Google Scholar 

  165. Mahmoud, S. A. & Zahran, N. M. Electron microscopic study of the left caput epididymal epithelium of adult albino rats in an experimental left varicocele model. Egypt. J. Histol. 34, 483–495 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are supported in part by research funds from the Center for Reproductive Medicine, Department of Urology, Cleveland Clinic, OH, USA.

Author information

Authors and Affiliations

Authors

Contributions

A. Hamada researched the data for the article and wrote the manuscript. All authors contributed to the discussion of the article content and edited the manuscript before submission.

Corresponding author

Correspondence to Ashok Agarwal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, A., Hamada, A. & Esteves, S. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol 9, 678–690 (2012). https://doi.org/10.1038/nrurol.2012.197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing