Abstract
Varicocele is recognized as the leading cause of male infertility because it can impair spermatogenesis through several distinct pathophysiological mechanisms. Current evidence supports oxidative stress as a key element in the pathophysiology of varicocele-related infertility, although these mechanisms have not yet been fully described. Measurement of the reactive oxygen species and other markers of oxidative stress, including the levels of the antioxidant enzymes catalase and superoxide dismutase, can provide valuable information on the extent of oxidative stress and might guide therapeutic management strategies. The testis can respond to varicocele-associated cell stressors, such as heat stress, ischaemia or production of vasodilators (for example, nitric oxide) at the expense of the generation of excessive reactive oxygen species. These responses have their own implications in exacerbating the underlying oxidative stress and on the subsequent infertility.
Key Points
-
Oxidative stress is a key element in the pathophysiology of varicocele-related infertility and several mechanisms by which this operates have been studied but have not yet been fully described
-
Although small quantities of reactive oxygen species (ROS) have important roles in sperm function, a disproportionate increase in ROS usually leads to oxidative stress
-
Heat stress, hypoxia, reflux of adrenal and renal metabolites and hormonal disturbances have all been proposed as mechanisms to explain the pathophysiological effects of varicocele on testicular function
-
Several intrinsic mechanisms are available—including the antioxidant enzymes catalase or superoxide dismutase—that counteract the actions of ROS; disruption of these protective antioxidants can also lead to oxidative stress
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Jarow, J. P. et al. Best practice policies for male infertility. J. Urol. 167, 2138–2144 (2002).
Thonneau, P. et al. Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988–1989). Hum. Reprod. 6, 811–816 (1991).
Madgar, I., Weissenberg, R., Lunenfeld, B., Karasik, A. & Goldwasser, B. Controlled trial of high spermatic vein ligation for varicocele in infertile men. Fertil. Steril. 63, 120–124 (1995).
Witt, M. A. & Lipshultz, L. I. Varicocele: a progressive or static lesion? Urology 42, 541–543 (1993).
Goldstein, M., Gilbert, B. R., Dicker, A. P., Dwosh, J. & Gnecco, C. Microsurgical inguinal varicocelectomy with delivery of the testis: an artery and lymphatic sparing technique. J. Urol. 148, 1808–1811 (1992).
Miyaoka, R. & Esteves, S. C. A critical appraisal on the role of varicocele in male infertility. Adv. Urol. 2012, 597495 (2012).
Gat, Y. et al. Azoospermia and maturation arrest: malfunction of valves in erect poster of humans leads to hypoxia in sperm production site. Andrologia 42, 389–394 (2010).
Sylora, J. A. & Pryor, J. L. Varicocele. Curr. Ther. Endocrinol. Metab. 5, 309–314 (1994).
Green, K. F., Turner, T. T. & Howards, S. S. Varicocele: reversal of the testicular blood flow and temperature effects by varicocele repair. J. Urol. 131, 1208–1211 (1984).
Griveau, J. F. & Le Lannou, D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int. J. Androl. 20, 61–69 (1997).
Hamada, A., Esteves, S. C. & Agarwal, A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat. Rev. Urol. http://dx.doi.org/10.1038/nrurol.2012.198.
Akbay, E., Cayan, S., Doruk, E., Duce, M. N. & Bozlu, M. The prevalence of varicocele and varicocele-related testicular atrophy in Turkish children and adolescents. BJU Int. 86, 490–493 (2000).
Gat, Y., Zukerman, Z., Chakraborty, J. & Gornish, M. Varicocele, hypoxia and male infertility. Fluid mechanics analysis of the impaired testicular venous drainage system. Hum. Reprod. 20, 2614–2619 (2005).
Gat, Y. et al. Right varicocele and hypoxia, crucial factors in male infertility: fluid mechanics analysis of the impaired testicular drainage system. Reprod. Biomed. Online 13, 510–515 (2006).
The influence of varicocele on parameters of fertility in a large group of men presenting to infertility clinics. World Health Organization. Fertil. Steril. 57, 1289–1293 (1992).
Dubin, L. & Amelar, R. D. Etiologic factors in 1294 consecutive cases of male infertility. Fertil. Steril. 22, 469–474 (1971).
Agarwal, A. et al. Efficacy of varicocelectomy in improving semen parameters: new meta-analytical approach. Urology 70, 532–538 (2007).
Baazeem, A. et al. Varicocele and male factor infertility treatment: a new meta-analysis and review of the role of varicocele repair. Eur. Urol. 60, 796–808 (2011).
Evers, J. L., Collins, J. A. & Vandekerckhove, P. Surgery or embolisation for varicocele in subfertile men. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD000479.
Ficarra, V. et al. Treatment of varicocele in subfertile men: The Cochrane Review—a contrary opinion. Eur. Urol. 49, 258–263 (2006).
Marmar, J. L. et al. Reassessing the value of varicocelectomy as a treatment for male subfertility with a new meta-analysis. Fertil. Steril. 88, 639–648 (2007).
Inci, K. et al. Sperm retrieval and intracytoplasmic sperm injection in men with nonobstructive azoospermia, and treated and untreated varicocele. J. Urol. 182, 1500–1505 (2009).
Esteves, S. C. & Glina, S. Recovery of spermatogenesis after microsurgical subinguinal varicocele repair in azoospermic men based on testicular histology. Int. Braz. J. Urol. 31, 541–548 (2005).
Esteves, S. C., Miyaoka, R. & Agarwal, A. Sperm retrieval techniques for assisted reproduction. Int. Braz. J. Urol. 37, 570–583 (2011).
Esteves, S. C., Oliveira, F. V. & Bertolla, R. P. Clinical outcome of intracytoplasmic sperm injection in infertile men with treated and untreated clinical varicocele. J. Urol. 184, 1442–1446 (2010).
Sharma, R. K. & Agarwal, A. Role of reactive oxygen species in male infertility. Urology 48, 835–850 (1996).
Aitken, R. J., Ryan, A. L., Baker, M. A. & McLaughlin, E. A. Redox activity associated with the maturation and capacitation of mammalian spermatozoa. Free Radic. Biol. Med. 36, 994–1010 (2004).
Roveri, A., Ursini, F., Flohe, L. & Maiorino, M. PHGPx and spermatogenesis. Biofactors 14, 213–222 (2001).
Bize, I., Santander, G., Cabello, P., Driscoll, D. & Sharpe, C. Hydrogen peroxide is involved in hamster sperm capacitation in vitro. Biol. Reprod. Mar. 44, 398–403 (1991).
de Lamirande, E. & Gagnon, C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic. Biol. Med. 14, 157–166 (1993).
Sun, J. G., Jurisicova, A. & Casper, R. F. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol. Reprod. Mar. 56, 602–607 (1997).
Aitken, R. J. & Krausz, C. Oxidative stress, DNA damage and the Y chromosome. Reproduction 122, 497–506 (2001).
Shiraishi, K., Takihara, H. & Naito, K. Testicular volume, scrotal temperature, and oxidative stress in fertile men with left varicocele. Fertil. Steril. 91 (Suppl. 4), 1388–1391 (2009).
Salisz, J. A., Kass, E. J. & Steinert, B. W. The significance of elevated scrotal temperature in an adolescent with a varicocele. Adv. Exp. Med. Biol. 286, 245–251 (1991).
Yamaguchi, M., Sakatoku, J. & Takihara, H. The application of intrascrotal deep body temperature measurement for the noninvasive diagnosis of varicoceles. Fertil. Steril. 52, 295–301 (1989).
Mariotti, A. et al. Scrotal thermoregulatory model and assessment of the impairment of scrotal temperature control in varicocele. Ann. Biomed. Eng. 39, 664–673 (2011).
Alvarez, J. G. & Storey, B. T. Spontaneous lipid peroxidation in rabbit and mouse epididymal spermatozoa: dependence of rate on temperature and oxygen concentration. Biol. Reprod. Mar. 32, 342–351 (1985).
Morgan, D. et al. Temperature dependence of NADPH oxidase in human eosinophils. J. Physiol. 550, 447–458 (2003).
Shin, M. H. et al. Reactive oxygen species produced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shock-induced MMP-1 and MMP-9 expression. Free Radic. Biol. Med. 44, 635–645 (2008).
Guo, J. et al. Expression of nitric oxide synthase during germ cell apoptosis in testis of cynomolgus monkey after testosterone and heat treatment. J. Androl. 30, 190–199 (2009).
Hadziselimovic, F. & Herzog, B. The importance of both an early orchidopexy and germ cell maturation for fertility. Lancet 358, 1156–1157 (2001).
Rosselli, M., Dubey, R. K., Imthurn, B., Macas, E. & Keller, P. J. Effects of nitric oxide on human spermatozoa: evidence that nitric oxide decreases sperm motility and induces sperm toxicity. Hum. Reprod. 10, 1786–1790 (1995).
Wu, T. P., Huang, B. M., Tsai, H. C., Lui, M. C. & Liu, M. Y. Effects of nitric oxide on human spermatozoa activity, fertilization and mouse embryonic development. Arch. Androl. 50, 173–179 (2004).
Zini, A., O'Bryan, M. K., Magid, M. S. & Schlegel, P. N. Immunohistochemical localization of endothelial nitric oxide synthase in human testis, epididymis, and vas deferens suggests a possible role for nitric oxide in spermatogenesis, sperm maturation, and programmed cell death. Biol. Reprod. 55, 935–941 (1996).
Wang, Y. et al. An alternative promoter of the human neuronal nitric oxide synthase gene is expressed specifically in Leydig cells. Am. J. Pathol. 160, 369–380 (2002).
Cos¸tur, P. et al. Expression of inducible nitric oxide synthase (iNOS) in the azoospermic human testis. Andrologia 44 (Suppl. 1), 654–660 (2012).
Türker Köksal, I. et al. The potential role of inducible nitric oxide synthase (iNOS) activity in the testicular dysfunction associated with varicocele: an experimental study. Int. Urol. Nephrol. 36, 67–72 (2004).
Santoro, G. et al. Nitric oxide synthase patterns in normal and varicocele testis in adolescents. BJU Int. 88, 967–973 (2001).
Shiraishi, K. & Naito, K. Nitric oxide produced in the testis is involved in dilatation of the internal spermatic vein that compromises spermatogenesis in infertile men with varicocele. BJU Int. 99, 1086–1090 (2007).
Shiratsuchi, A., Umeda, M., Ohba, Y. & Nakanishi, Y. Recognition of phosphatidylserine on the surface of apoptotic spermatogenic cells and subsequent phagocytosis by Sertoli cells of the rat. J. Biol. Chem. 272, 2354–2358 (1997).
Lue, Y. et al. Transient testicular warming enhances the suppressive effect of testosterone on spermatogenesis in adult cynomolgus monkeys (Macaca fascicularis). J. Clin. Endocrinol. Metab. 91, 539–545 (2006).
Allen, J. D. & Gow, A. J. Nitrite, NO and hypoxic vasodilation. Br. J. Pharmacol. 158, 1653–1654 (2009).
Pryor, W. A. & Squadrito, G. L. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268, L699–L722 (1995).
Jourd'heuil, D. et al. Reaction of superoxide and nitric oxide with peroxynitrite. Implications for peroxynitrite-mediated oxidation reactions in vivo. J. Biol. Chem. 276, 28799–28805 (2001).
Bates, T. E., Loesch, A., Burnstock, G. & Clark, J. B. Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochem. Biophys. Res. Commun. 213, 896–900 (1995).
Kobzik, L., Stringer, B., Balligand, J. L., Reid, M. B. & Stamler, J. S. Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem. Biophys. Res. Commun. 211, 375–381 (1995).
Clementi, E., Brown, G. C., Feelisch, M. & Moncada, S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S.-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl Acad. Sci. USA 95, 7631–7636 (1998).
Poderoso, J. J. et al. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch. Biochem. Biophys. 328, 85–92 (1996).
Beltrán, B., Orsi, A., Clementi, E. & Moncada, S. Oxidative stress and S-nitrosylation of proteins in cells. Br. J. Pharmacol. 129, 953–960 (2000).
Abbasi, M. et al. Aminoguanidine improves epididymal sperm parameters in varicocelized rats. Urol. Int. 86, 302–306 (2011).
Abbasi, M. et al. Effect of aminoguanidine in sperm DNA fragmentation in varicocelized rats: role of nitric oxide. Reprod. Sci. 18, 545–550 (2011).
Alizadeh, N. et al. Effects of aminoguanidine on infertile varicocelized rats: A functional and morphological study. Daru. 18, 51–56 (2010).
Gao, X. K. et al. Protective effect of nitric oxide synthase inhibitor (L-NAME) on germ cell apoptosis in experimentally cryptorchid rats [Chinese]. Zhonghua Nan Ke Xue 9, 684–686, 689 (2003).
DeFoor, W. R., Kuan, C. Y., Pinkerton, M., Sheldon, C. A. & Lewis, A. G. Modulation of germ cell apoptosis with a nitric oxide synthase inhibitor in a murine model of congenital cryptorchidism. J. Urol. 172, 1731–1735 (2004).
Lue, Y., Sinha Hikim, A. P., Wang, C., Leung, A. & Swerdloff, R. S. Functional role of inducible nitric oxide synthase in the induction of male germ cell apoptosis, regulation of sperm number, and determination of testes size: evidence from null mutant mice. Endocrinology 144, 3092–3100 (2003).
Paul, C., Teng, S. & Saunders, P. T. A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol. Reprod. 80, 913–919 (2009).
Ebeid, T. A. Organic selenium enhances the antioxidative status and quality of cockerel semen under high ambient temperature. Br. Poult. Sci. 50, 641–647 (2009).
Ishii, T. et al. Accelerated impairment of spermatogenic cells in SOD1-knockout mice under heat stress. Free Radic. Res. 39, 697–705 (2005).
Ghasemi, N., Babaei, H., Azizallahi, S. & Kheradmand, A. Effect of long-term administration of zinc after scrotal heating on mice spermatozoa and subsequent offspring quality. Andrologia 41, 222–228 (2009).
Abele, D., Heise, K., Pörtner, H. O. & Puntarulo, S. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J. Exp. Biol. 205, 1831–1841 (2002).
Ikeda, M. et al. Role of radical oxygen species in rat testicular germ cell apoptosis induced by heat stress. Biol. Reprod. 61, 393–399 (1999).
Venkataraman, S. et al. Overexpression of manganese superoxide dismutase promotes the survival of prostate cancer cells exposed to hyperthermia. Free Radic. Res. 38, 1119–1132 (2004).
Tan, G. Y., Yang, L., Fu, Y. Q., Feng, J. H. & Zhang, M. H. Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens. Poult. Sci. 89, 115–122 (2010).
Voglmayr, J. K., Setchell, B. P. & White, I. G. The effects of heat on the metabolism and ultrastructure of ram testicular spermatozoa. J. Reprod. Fertil. 24, 71–80 (1971).
Zhang, K. et al. Uncoupling protein 2 protects testicular germ cells from hyperthermia-induced apoptosis. Biochem. Biophys. Res. Commun. 360, 327–332 (2007).
Rial, E. et al. Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2. EMBO J. 18, 5827–5833 (1999).
Dridi, S., Temim, S., Derouet, M., Tesseraud, S. & Taouis, M. Acute cold- and chronic heat-exposure upregulate hepatic leptin and muscle uncoupling protein (UCP) gene expression in broiler chickens. J. Exp. Zool. A Ecol. Genet. Physiol. 309, 381–388 (2008).
Echtay, K. S., Winkler, E., Frischmuth, K. & Klingenberg, M. Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc. Natl Acad. Sci. USA 98, 1416–1421 (2001).
Mancini, A., Conte, G., Milardi, D., De Marinis, L. & Littarru, G. P. Relationship between sperm cell ubiquinone and seminal parameters in subjects with and without varicocele. Andrologia 30, 1–4 (1998).
Skibba, J. L., Stadnicka, A., Kalbfleisch, J. H. & Powers, R. H. Effects of hyperthermia on xanthine oxidase activity and glutathione levels in the perfused rat liver. J. Biochem. Toxicol. 4, 119–125 (1989).
Hille, R. & Nishino, T. Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. FASEB J. 9, 995–1003 (1995).
McKelvey, T. G. et al. Mechanisms of conversion of xanthine dehydrogenase to xanthine oxidase in ischemic rat liver and kidney. Am. J. Physiol. 254, G753–G760 (1988).
Bruder, G., Heid, H. W., Jarasch, E. D. & Mather, I. H. Immunological identification and determination of xanthine oxidase in cells and tissues. Differentiation 23, 218–225 (1983).
Kawaguchi, S., Fukuda, J., Kumagai, J., Shimizu, Y. & Tanaka, T. Expression of xanthine oxidase in testicular cells. Akita J. Med. 36, 99–105 (2009).
Yaman, Ö. et al. The significance of testicular reactive oxygen species on testicular histology in infertile patients. Int. Urol. Nephrol. 31, 395–399 (1999).
Mitropoulos, D. et al. Nitric oxide synthase and xanthine oxidase activities in the spermatic vein of patients with varicocele: a potential role for nitric oxide and peroxynitrite in sperm dysfunction. J. Urol. 156, 1952–1958 (1996).
McCoubrey, W. K. Jr & Maines, M. D. The structure, organization and differential expression of the gene encoding rat heme oxygenase-2. Gene 139, 155–161 (1994).
Rotenberg, M. O. & Maines, M. D. Isolation, characterization, and expression in Escherichia coli of a cDNA encoding rat heme oxygenase-2. J. Biol. Chem. 265, 7501–7506 (1990).
Yoshida, T., Biro, P., Cohen, T., Müller, R. M. & Shibahara, S. Human heme oxygenase cDNA and induction of its mRNA by hemin. Eur. J. Biochem. 171, 457–461 (1988).
Shibahara, S., Sato, M., Muller, R. M. & Yoshida, T. Structural organization of the human heme oxygenase gene and the function of its promoter. Eur. J. Biochem. 179, 557–563 (1989).
Lin, Q. S. et al. Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress. Free Radic. Biol. Med. Mar. 44, 847–855 (2008).
Maines, M. D. The heme oxygenase system and its functions in the brain. Cell. Mol. Biol. (Noisy-le-grand) 46, 573–585 (2000).
Udono-Fujimori, R. et al. Expression of heme oxygenase-1 is repressed by interferon-gamma and induced by hypoxia in human retinal pigment epithelial cells. Eur. J. Biochem. 271, 3076–3084 (2004).
Okinaga, S. et al. Regulation of human heme oxygenase-1 gene expression under thermal stress. Blood 87, 5074–5084 (1996).
Kitamuro, T. et al. Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J. Biol. Chem. 278, 9125–9133 (2003).
Nakayama, M. et al. Repression of heme oxygenase-1 by hypoxia in vascular endothelial cells. Biochem. Biophys. Res. Commun. 271, 665–671 (2000).
Shibahara, S. Regulation of heme oxygenase gene expression. Semin. Hematol. 25, 370–376 (1988).
Ewing, J. F. & Maines, M. D. Distribution of constitutive (HO-2) and heat-inducible (HO-1) heme oxygenase isozymes in rat testes: HO-2 displays stage-specific expression in germ cells. Endocrinology 136, 2294–2302 (1995).
Ozawa, N. et al. Leydig cell-derived heme oxygenase-1 regulates apoptosis of premeiotic germ cells in response to stress. J. Clin. Invest. 109, 457–467 (2002).
Abdel Aziz, M. T. et al. Heme oxygenase enzyme activity in seminal plasma of oligoasthenoteratozoospermic males with varicocele. Andrologia 42, 236–241 (2008).
Shiraishi, K. & Naito, K. Increased expression of Leydig cell haem oxygenase-1 preserves spermatogenesis in varicocele. Hum. Reprod. 20, 2608–2613 (2005).
Parsell, D. A. & Lindquist, S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437–496 (1993).
Yes¸illi, C. et al. Effect of varicocelectomy on sperm creatine kinase, HspA2 chaperone protein (creatine kinase-M type), LDH, LDH-X, and lipid peroxidation product levels in infertile men with varicocele. Urology 66, 610–615 (2005).
Lima, S. B. et al. Expression of the HSPA2 gene in ejaculated spermatozoa from adolescents with and without varicocele. Fertil. Steril. 86, 1659–1663 (2006).
Esfahani, M. A. H. et al. Can altered expression of HSPA2 in varicocele patients lead to abnormal spermatogenesis. Int. J. Fertil. Steril. 4, 104–113 (2010).
Ferlin, A. et al. Heat shock protein and heat shock factor expression in sperm: relation to oligozoospermia and varicocele. J. Urol. 183, 1248–1252 (2010).
Nakai, A., Suzuki, M. & Tanabe, M. Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. EMBO J. 19, 1545–1554 (2000).
Kilinç, F. et al. Experimental varicocele induces hypoxia inducible factor-1α, vascular endothelial growth factor expression and angiogenesis in the rat testis. J. Urol. 172, 1188–1191 (2004).
Horiuchi, A. et al. Hypoxia-induced changes in the expression of VEGF, HIF-1α and cell cycle-related molecules in ovarian cancer cells. Anticancer Res. 22, 2697–2702 (2002).
Lee, J. D., Jeng, S. Y. & Lee, T. H. Increased expression of hypoxia-inducible factor-1α in the internal spermatic vein of patients with varicocele. J. Urol. 175, 1045–1048 (2006).
Paick, J. S. et al. Increased expression of hypoxia-inducible factor-1α and connective tissue growth factor accompanied by fibrosis in the rat testis of varicocele [Spanish]. Actas Urol. Esp. 36, 282–288 (2012).
Wang, H. et al. Hypoxia-induced apoptosis in the bilateral testes of rats with left-sided varicocele: a new way to think about the varicocele. J. Androl. 31, 299–305 (2010).
Wang, H. F. et al. Expression of hypoxia induced factor-1alpha and function of epididymis in varicocele: experiment with rats [Chinese]. Zhonghua Yi Xue Za Zhi 88, 1670–1672 (2008).
Brunelle, J. K. et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 1, 409–414 (2005).
Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000).
Jung, S.-N. et al. Reactive oxygen species stabilize hypoxia-inducible factor-1α protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 29, 713–721 (2008).
Hierholzer, C. et al. Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J. Exp. Med. 187, 917–928 (1998).
Moore, W. M. et al. L-N6-(1-iminoethyl)lysine: a selective inhibitor of inducible nitric oxide synthase. J. Med. Chem. 37, 3886–3888 (1994).
Guzy, R. D. & Schumacker, P. T. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 91, 807–819 (2006).
Sohn, H. Y. et al. Differential regulation of xanthine and NAD(P)H oxidase by hypoxia in human umbilical vein endothelial cells. Role of nitric oxide and adenosine. Cardiovasc. Res. 58, 638–646 (2003).
Jones, R. D., Hancock, J. T. & Morice, A. H. NADPH oxidase: a universal oxygen sensor? Free Radic. Biol. Med. 29, 416–424 (2000).
Neidlinger, N. A. et al. Postinjury serum secretory phospholipase A2 correlates with hypoxemia and clinical status at 72 hours. J. Am. Coll. Surg. 200, 173–178 (2005).
Girgis, S. M. et al. Lactate and pyruvate levels in the testicular vein of subfertile males with varicocele as a test for the theory of underlying hypoxia. Andrologia 13, 6–9 (1981).
Ibrahim, A. A., Hamada, T. A. & Moussa, M. M. Effect of varicocele on sperm respiration and metabolism. Andrologia 13, 253–259 (1981).
Buonaguidi, A. et al. Experience with the determination of LDH-X in seminal plasma as diagnostic and prognostic factor in varicocele [Spanish]. Arch. Esp. Urol. 46, 35–39 (1993).
Padgett, C. M. & Whorton, A. R. Glutathione redox cycle regulates nitric oxide-mediated glyceraldehyde-3-phosphate dehydrogenase inhibition. Am. J. Physiol. 272, C99–108 (1997).
Ghabili, K., Shoja, M. M., Agutter, P. S. & Agarwal, A. Hypothesis: intracellular acidification contributes to infertility in varicocele. Fertil. Steril. 92, 399–401 (2009).
Arena, S. et al. Aquaporin-9 immunohistochemistry in varicocele testes as a consequence of hypoxia in the sperm production site. Andrologia 43, 34–37 (2011).
Ishikawa, T., Fujioka, H., Ishimura, T., Takenaka, A. & Fujisawa, M. Expression of leptin and leptin receptor in the testis of fertile and infertile patients. Andrologia 39, 22–27 (2007).
Sahin, Z. et al. Increased expression of interleukin-1α and interleukin-1β is associated with experimental varicocele. Fertil. Steril. 85 (Suppl. 1), 1265–1275 (2006).
Nallella, K. P. et al. Relationship of interleukin-6 with semen characteristics and oxidative stress in patients with varicocele. Urology 64, 1010–1013 (2004).
Ambrosini, G., Nath, A. K., Sierra-Honigmann, M. R. & Flores-Riveros, J. Transcriptional activation of the human leptin gene in response to hypoxia. Involvement of hypoxia!inducible factor 1. J. Biol. Chem. 277, 34601–34609 (2002).
Konukoglu, D., Serin, O. & Turhan, M. S. Plasma leptin and its relationship with lipid peroxidation and nitric oxide in obese female patients with or without hypertension. Arch. Med. Res. 37, 602–606 (2006).
Yamagishi, S. I. et al. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J. Biol. Chem. 276, 25096–25100 (2001).
Chen, L. P. et al. The changes of IL-1 and NO levels in the testes of rats with experimental varicocele [Chinese]. Zhonghua Nan Ke Xue 8, 125–126 (2002).
Moretti, E. et al. Semen characteristics and inflammatory mediators in infertile men with different clinical diagnoses. Int. J. Androl. 32, 637–646 (2009).
Zalata, A., Hafez, T., Van Hoecke, M. J. & Comhaire, F. Evaluation of β-endorphin and interleukin-6 in seminal plasma of patients with certain andrological diseases. Hum. Reprod. 10, 3161–3165 (1995).
Romano, M. et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6, 315–325 (1997).
Basu, S., Aballa, T. C., Ferrell, S. M., Lynne, C. M. & Brackett, N. L. Inflammatory cytokine concentrations are elevated in seminal plasma of men with spinal cord injuries. J. Androl. 25, 250–254 (2004).
Tortolero, I. et al. The effect of seminal leukocytes on semen quality in subfertile males with and without varicocele [Spanish]. Arch. Esp. Urol. 57, 921–928 (2004).
Li, Y.-Y., Hwang, I. S., O, W.-S. & Tang, F. Adrenomedullin peptide: gene expression of adrenomedullin, its receptors and receptor activity modifying proteins, and receptor binding in rat testis--actions on testosterone secretion. Biol. Reprod. 75, 183–188 (2006).
Marinoni, E. et al. Adrenomedullin in human male reproductive system. Eur. J. Obstet. Gynecol. Reprod. Biol. 122, 195–198 (2005).
Sugo, S. et al. Endothelial cells actively synthesize and secrete adrenomedullin. Biochem. Biophys. Res. Commun. 201, 1160–1166 (1994).
Jougasaki, M., Schirger, J. A., Simari, R. D. & Burnett, J. C. Jr. Autocrine role for the endothelin-B receptor in the secretion of adrenomedullin. Hypertension 32, 917–922 (1998).
Kitamura, K. et al. Complete amino acid sequence of porcine adrenomedullin and cloning of cDNA encoding its precursor. FEBS Lett. 338, 306–310 (1994).
Fujita, M., Kuwaki, T., Ando, K. & Fujita, T. Sympatho-inhibitory action of endogenous adrenomedullin through inhibition of oxidative stress in the brain. Hypertension 45, 1165–1172 (2005).
Yurekli, M. et al. Adrenomedullin reduces antioxidant defense system and enhances kidney tissue damage in cadmium and lead exposed rats. Environ. Toxicol. 24, 279–286 (2009).
Hurtado de Catalfo, G. E., Ranieri-Casilla, A., Marra, F. A., de Alaniz, M. J. & Marra, C. A. Oxidative stress biomarkers and hormonal profile in human patients undergoing varicocelectomy. Int. J. Androl. 30, 519–530 (2007).
Evereklioglu, C. et al. Increased plasma adrenomedullin levels in patients with Behçet's disease. Dermatology 201, 312–315 (2000).
Chan, Y. F., O, W.-S. & Tang, F. Adrenomedullin in the rat testis. I: Its production, actions on testosterone secretion, regulation by human chorionic gonadotropin, and its interaction with endothelin 1 in the leydig cell. Biol. Reprod. 78, 773–779 (2008).
Zhang, C. et al. Oligozoospermia with normal fertility in male mice lacking the androgen receptor in testis peritubular myoid cells. Proc. Natl Acad. Sci. USA 103, 17718–17723 (2006).
Ozbek, E., Yurekli, M., Soylu, A., Davarci, M. & Balbay, M. D. The role of adrenomedullin in varicocele and impotence. BJU Int. 86, 694–698 (2000).
Ito, H. et al. Internal spermatic vein prostaglandins in varicocele patients. Fertil. Steril. 37, 218–222 (1982).
Adamopoulos, D. A., Kontogeorgos, L., Abrahamian-Michalakis, A., Terzis, T. & Vassilopoulos, P. Raised sodium, potassium, and urea concentrations in spermatic venous blood: an additional causative factor in the testicular dysfunction of varicocele? Fertil. Steril. 48, 331–333 (1987).
Zhang, Z., Dmitrieva, N. I., Park, J.-H., Levine, R. L. & Burg, M. B. High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their, DNA. Proc. Natl Acad. Sci. USA 101, 9491–9496 (2004).
Jeng, S. Y., Wu, S. M. & Lee, J. D. Cadmium accumulation and metallothionein overexpression in internal spermatic vein of patients with varicocele. Urology 73, 1231–1235 (2009).
Benoff, S. H., Millan, C., Hurley, I. R., Napolitano, B. & Marmar, J. L. Bilateral increased apoptosis and bilateral accumulation of cadmium in infertile men with left varicocele. Hum. Reprod. 19, 616–627 (2004).
Benoff, S. et al. A potential role for cadmium in the etiology of varicocele-associated infertility. Fertil. Steril. 67, 336–347 (1997).
Benoff, S., Auborn, K., Marmar, J. L. & Hurley, I. R. Link between low-dose environmentally relevant cadmium exposures and asthenozoospermia in a rat model. Fertil. Steril. 89 (Suppl. 2), e73–e79 (2008).
Free, M. J., Schluntz, G. A. & Jaffe, R. A. Respiratory gas tensions in tissues and fluids of the male rat reproductive tract. Biol. Reprod. 14, 481–488 (1976).
Suzuki, F. Microvasculature of the mouse testis and excurrent duct system. Am. J. Anat. 163, 309–325 (1982).
Hinton, B. T., Palladino, M. A., Rudolph, D., Lan, Z. J. & Labus, J. C. The role of the epididymis in the protection of spermatozoa. Curr. Top. Dev. Biol. 33, 61–102 (1996).
Ozturk, U. et al. The effects of experimental left varicocele on the epididymis. Syst. Biol. Reprod. Med. 54, 177–184 (2008).
Zhang, Q. Y., Qiu, S. D., Ma, X. N., Yu, H. M. & Wu, Y. W. Effect of experimental varicocele on structure and function of epididymis in adolescent rats. Asian J. Androl. 5, 108–112 (2003).
Mahmoud, S. A. & Zahran, N. M. Electron microscopic study of the left caput epididymal epithelium of adult albino rats in an experimental left varicocele model. Egypt. J. Histol. 34, 483–495 (2011).
Acknowledgements
The authors are supported in part by research funds from the Center for Reproductive Medicine, Department of Urology, Cleveland Clinic, OH, USA.
Author information
Authors and Affiliations
Contributions
A. Hamada researched the data for the article and wrote the manuscript. All authors contributed to the discussion of the article content and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Agarwal, A., Hamada, A. & Esteves, S. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol 9, 678–690 (2012). https://doi.org/10.1038/nrurol.2012.197
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrurol.2012.197
This article is cited by
-
A narrative literature review of remaining male reproductive health concerns as an aspect of persistent/late-onset complications of COVID-19
Middle East Fertility Society Journal (2023)
-
Nanomaterials for neurodegenerative diseases: Molecular mechanisms guided design and applications
Nano Research (2022)
-
Expression of Hypoxia-Inducible Factor1-α in Varicocele Disease: a Comprehensive Systematic Review
Reproductive Sciences (2022)
-
Genetic instability and anti-HPV immune response as drivers of infertility associated with HPV infection
Infectious Agents and Cancer (2021)
-
Male Factors: the Role of Sperm in Preimplantation Embryo Quality
Reproductive Sciences (2021)