[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low-divergence single-mode terahertz quantum cascade laser

Abstract

The operation of quantum cascade lasers has to date been demonstrated over a broad frequency range in the terahertz spectrum (from 4.4 THz to 1.2 THz)1,2,3. Most potential applications of terahertz quantum cascade lasers require a source that has an excellent spatial and spectral control of the radiated emission4,5,6,7. Here, we present a distributed feedback design of a double-metal waveguide quantum cascade laser8,9,10 that features a grating resonant with the third-order Bragg condition. We show that an improvement of the extraction efficiency results in control of the laser emission wavelength and enhanced output power. Moreover, the grating can act as an array of phased linear sources, reshaping the typical wide and patterned far-field of double-metal waveguides into a narrow beam of 10° divergence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vector diagram for a third-order DFB in the wave vector space k.
Figure 2: Finite-element simulations of the third-order DFB waveguide.
Figure 3: Light emission characteristics of typical third-order DFB devices.
Figure 4: Far-field measurements.
Figure 5: Beam pattern for all the devices in which a fundamental lateral mode propagates in the waveguide.

Similar content being viewed by others

References

  1. Kohler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  2. Williams, B. S. Terahertz quantum-cascade lasers. Nature Photon. 1, 517–525 (2007).

    Article  ADS  Google Scholar 

  3. Scalari, G. et al. THz and sub-THz quantum cascade lasers. Laser Photon. Rev. 3, 45–66 (2009).

    Article  ADS  Google Scholar 

  4. Siegel, P. H. Terahertz technology. IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).

    Article  ADS  Google Scholar 

  5. Sakai, K. Topics in Applied Physics: Terahertz Optoelectronics (ed. Sakai, K.) (Springer, 2005).

  6. Mittleman, D. Sensing with terahertz radiation. Springer Series in Optical Sciences, vol. 85 (Springer, 2004).

    Google Scholar 

  7. Khosropanah, P. et al. 3.4 THz heterodyne receiver using a hot electron bolometer and a distributed feedback quantum cascade laser. J. Appl. Phys. 104, 113106 (2008).

    Article  ADS  Google Scholar 

  8. Bjorkholm, J. E. & Shank, C. V. Higher-order distributed feedback oscillators. Appl. Phys. Lett. 20, 306–308 (1972).

    Article  ADS  Google Scholar 

  9. Carrol, J., Witheaway, J. & Plumb, D. Distributed Feedback Semiconductor Lasers (IEE, 1998).

    Book  Google Scholar 

  10. Yariv, A. Optical Electronics 4th edn, Ch 13 (Saunders College Publishing, 1991).

    Google Scholar 

  11. Williams, B. S., Kumar, S., Huand, Q. & Reno, J. L. Operation of terahertz quantum cascade laser at 164 K in pulsed mode and at 117 K in continuous-wave mode. Opt. Express 1, 3331–3339 (2005).

    Article  ADS  Google Scholar 

  12. Belkin, M. A. et al. Terahertz quantum cascade lasers with copper metal–metal waveguides operating up to 178 K. Opt. Express 16, 3242–3248 (2008).

    Article  ADS  Google Scholar 

  13. Adam, A. J. L., Kasalynas, I., Hovenier, J. N., Klaasser, T. O. & Gao, J. R. Beam pattern of terahertz quantum cascade lasers with subwavelength cavity dimensions. Appl. Phys. Lett. 88, 151105 (2006).

    Article  ADS  Google Scholar 

  14. Amanti, M. I., Fischer, M., Walther, C., Scalari, G. & Faist, J. Horn antennas for terahertz quantum cascade lasers. Electron. Lett. 43, 573–574 (2007).

    Article  Google Scholar 

  15. Wilfried, M. et al. Metal–metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna. Appl. Phys. Lett. 93, 183508 (2008).

    Article  Google Scholar 

  16. Lee, A. W. et al. High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal–metal waveguides. Opt. Lett. 32, 2840–2842 (2007).

    Article  ADS  Google Scholar 

  17. Kumar, S. et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal–metal waveguides. Opt. Express 15, 113–128 (2006).

    Article  ADS  Google Scholar 

  18. Fan, J. A. et al. Surface emitting terahertz quantum cascade laser with a double-metal waveguide. Opt. Express 14, 11672–11680 (2006).

    Article  ADS  Google Scholar 

  19. Chassagneux, Y. et al. Electrically pumped photonic crystal terahertz semiconductor lasers controlled by boundary conditions. Nature 457, 174–178 (2009).

    Article  ADS  Google Scholar 

  20. Finger, N., Schrenk, W. & Gornik, E. Analysis of TM-polarized DFB laser structures with metal surface gratings. IEEE J. Quantum Electron. 36, 780–786 (2000).

    Article  ADS  Google Scholar 

  21. Schubert, M. & Rana, F. Analysis of terahertz surface emitting quantum cascade lasers. IEEE J. Quantum Electron. 42, 257–265 (2006).

    Article  ADS  Google Scholar 

  22. Balanis, C. A. Antenna Theory Ch 6 (Wiley-Interscience, 2005).

    Google Scholar 

  23. Scalari, G., Hoyler, N., Giovannini, M. & Faist, J. Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction. Appl. Phys. Lett. 86, 181101 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Foundation under the NCCR project Quantum Photonics. The authors thank A. Bismuto for support in the processing of the devices, J. Lloyd-Hughes for careful reading of the manuscript and Y. Chassagneux and F. Castellano for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.I.A. carried out the modelling of the structures, fabricated the samples, performed the measurements and wrote the manuscript. M.B. and M.F. conducted MBE growth of the samples. G.S. contributed to data interpretation and experimental work. The idea was developed by J.F., and all the work has been done under his supervision.

Corresponding author

Correspondence to M. I. Amanti.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amanti, M., Fischer, M., Scalari, G. et al. Low-divergence single-mode terahertz quantum cascade laser. Nature Photon 3, 586–590 (2009). https://doi.org/10.1038/nphoton.2009.168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing