[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nod-like proteins in immunity, inflammation and disease

Abstract

The intracellular Nod-like proteins or receptors are a family of sensors of intracellularly encountered microbial motifs and 'danger signals' that have emerged as being critical components of the innate immune responses and of inflammation in mammals. Several Nod-like receptors, including Nod1, Nod2, NALP3, Ipaf and Naip, are strongly associated with host responses to intracellular invasion by bacteria or the intracellular presence of specific bacterial products. An additional key function of Nod-like receptors is in inflammatory conditions, which has been emphasized by the identification of several different mutations in the genes encoding Nod1, Nod2 and NALP3 that are associated with susceptibility to inflammatory disorders. Those and other issues related to the Nod-like receptor family are discussed here.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NLRs, homologs and adaptors.
Figure 2: NLR activation by microbes, PAMPs and danger signals in mammalian cells.

Similar content being viewed by others

References

  1. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  PubMed  Google Scholar 

  2. Uematsu, S. & Akira, S. Toll-like receptors and innate immunity. J. Mol. Med. 84, 712–725 (2006).

    CAS  PubMed  Google Scholar 

  3. Philpott, D.J., Yamaoka, S., Israel, A. & Sansonetti, P.J. Invasive Shigella flexneri activates NF-κB through a lipopolysaccharide-dependent innate intracellular response and leads to IL-8 expression in epithelial cells. J. Immunol. 165, 903–914 (2000).

    CAS  PubMed  Google Scholar 

  4. Girardin, S.E. et al. CARD4/Nod1 mediates NF-κB and JNK activation by invasive Shigella flexneri. EMBO Rep. 2, 736–742 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Werts, C., Girardin, S.E. & Philpott, D.J. TIR, CARD and PYRIN: three domains for an antimicrobial triad. Cell Death Differ. 13, 798–815 (2006).

    CAS  PubMed  Google Scholar 

  6. Belkhadir, Y., Subramaniam, R. & Dangl, J.L. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr. Opin. Plant Biol. 7, 391–399 (2004).

    CAS  PubMed  Google Scholar 

  7. DeYoung, B. & Innes, R.W. Plant NBS-LRR proteins: similarity to animal systems more than a 'Nod', Nat. Immunol. 7, 000–000 (2006).

    CAS  Google Scholar 

  8. Hibino, T. et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev. Biol. published online 3 September 2006 (doi:10.1016/j.ydbio.2006.08.065).

  9. Barnich, N., Aguirre, J.E., Reinecker, H.C., Xavier, R. & Podolsky, D.K. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-κB activation in muramyl dipeptide recognition. J. Cell Biol. 170, 21–26 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kufer, T.A., Kremmer, E., Banks, D.J. & Philpott, D.J. Role for erbin in bacterial activation of Nod2. Infect. Immun. 74, 3115–3124 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. McDonald, C. et al. A role for Erbin in the regulation of Nod2-dependent NF-kappaB signaling. J. Biol. Chem. 280, 40301–40309 (2005).

    CAS  PubMed  Google Scholar 

  12. Girardin, S.E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    CAS  PubMed  Google Scholar 

  13. Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512 (2003).

    CAS  PubMed  Google Scholar 

  14. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702–707 (2003).

    CAS  PubMed  Google Scholar 

  15. Girardin, S.E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    CAS  PubMed  Google Scholar 

  16. Girardin, S.E. et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 278, 41702–41708 (2003).

    CAS  PubMed  Google Scholar 

  17. Magalhaes, J.G. et al. Murine Nod1 but not its human orthologue mediates innate immune detection of tracheal cytotoxin. EMBO Rep. 6, 1201–1207 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Uehara, A. et al. Meso-diaminopimelic acid and meso-lanthionine, amino acids specific to bacterial peptidoglycans, activate human epithelial cells through NOD1. J. Immunol. 177, 1796–1804 (2006).

    CAS  PubMed  Google Scholar 

  19. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    CAS  PubMed  Google Scholar 

  20. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    CAS  PubMed  Google Scholar 

  21. Sutterwala, F.S. et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006).

    CAS  PubMed  Google Scholar 

  22. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    CAS  PubMed  Google Scholar 

  23. Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F.G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126, 1135–1145 (2006).

    CAS  PubMed  Google Scholar 

  24. Kanneganti, T.D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233–236 (2006).

    CAS  PubMed  Google Scholar 

  25. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat. Immunol. 7, 576–582 (2006).

    CAS  PubMed  Google Scholar 

  26. Miao, E.A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 7, 569–575 (2006).

    CAS  PubMed  Google Scholar 

  27. Molofsky, A.B. et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J. Exp. Med. 203, 1093–1104 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ren, T., Zamboni, D.S., Roy, C.R., Dietrich, W.F. & Vance, R.E. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog. 2, e18 (2006).

    PubMed  PubMed Central  Google Scholar 

  29. Derre, I. & Isberg, R.R. Macrophages from mice with the restrictive Lgn1 allele exhibit multifactorial resistance to Legionella pneumophila. Infect. Immun. 72, 6221–6229 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Diez, E. et al. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat. Genet. 33, 55–60 (2003).

    CAS  PubMed  Google Scholar 

  31. Wright, E.K. et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol. 13, 27–36 (2003).

    CAS  PubMed  Google Scholar 

  32. Zamboni, D.S. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat. Immunol. 7, 318–325 (2006).

    CAS  PubMed  Google Scholar 

  33. Boyden, E.D. & Dietrich, W.F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38, 240–244 (2006).

    CAS  PubMed  Google Scholar 

  34. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    CAS  PubMed  Google Scholar 

  35. Martinon, F. & Glimcher, L.H. Gout: new insights into an old disease. J. Clin. Invest. 116, 2073–2075 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schafer, Z.T. & Kornbluth, S. The apoptosome: physiological, developmental, and pathological modes of regulation. Dev. Cell 10, 549–561 (2006).

    CAS  PubMed  Google Scholar 

  37. Kufer, T.A., Fritz, J.H. & Philpott, D.J. NACHT-LRR proteins (NLRs) in bacterial infection and immunity. Trends Microbiol. 13, 381–388 (2005).

    CAS  PubMed  Google Scholar 

  38. Dufner, A., Pownall, S. & Mak, T.W. Caspase recruitment domain protein 6 is a microtubule-interacting protein that positively modulates NF-κB activation. Proc. Natl. Acad. Sci. USA 103, 988–993 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, L. et al. TRIP6 is a RIP2-associated common signaling component of multiple NF-κB activation pathways. J. Cell Sci. 118, 555–563 (2005).

    CAS  PubMed  Google Scholar 

  40. Barnich, N. et al. GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells. J. Biol. Chem. 280, 19021–19026 (2005).

    CAS  PubMed  Google Scholar 

  41. Chen, C.M., Gong, Y., Zhang, M. & Chen, J.J. Reciprocal cross-talk between Nod2 and TAK1 signaling pathways. J. Biol. Chem. 279, 25876–25882 (2004).

    CAS  PubMed  Google Scholar 

  42. Abbott, D.W., Wilkins, A., Asara, J.M. & Cantley, L.C. The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr. Biol. 14, 2217–2227 (2004).

    CAS  PubMed  Google Scholar 

  43. Masumoto, J. et al. Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo. J. Exp. Med. 203, 203–213 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Martinon, F. & Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561–574 (2004).

    CAS  PubMed  Google Scholar 

  45. Kim, J.G., Lee, S.J. & Kagnoff, M.F. Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by Toll-like receptors. Infect. Immun. 72, 1487–1495 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Opitz, B. et al. Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae. Circ. Res. 96, 319–326 (2005).

    CAS  PubMed  Google Scholar 

  47. Welter-Stahl, L. et al. Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell. Microbiol. 8, 1047–1057 (2006).

    CAS  PubMed  Google Scholar 

  48. Opitz, B. et al. Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J. Biol. Chem. 279, 36426–36432 (2004).

    CAS  PubMed  Google Scholar 

  49. Ferwerda, G. et al. NOD2 and Toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog. 1, e34 (2005).

    PubMed Central  Google Scholar 

  50. Travassos, L.H. et al. Nod1 participates in the innate immune response to Pseudomonas aeruginosa. J. Biol. Chem. 280, 36714–36718 (2005).

    CAS  PubMed  Google Scholar 

  51. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. 5, 1166–1174 (2004).

    CAS  PubMed  Google Scholar 

  52. Greene, C.M. et al. TLR-induced inflammation in cystic fibrosis and non-cystic fibrosis airway epithelial cells. J. Immunol. 174, 1638–1646 (2005).

    CAS  PubMed  Google Scholar 

  53. Hirata, Y. et al. MyD88 and TNF receptor-associated factor 6 are critical signal transducers in Helicobacter pylori-infected human epithelial cells. J. Immunol. 176, 3796–3803 (2006).

    CAS  PubMed  Google Scholar 

  54. Mariathasan, S., Weiss, D.S., Dixit, V.M. & Monack, D.M. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J. Exp. Med. 202, 1043–1049 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lara-Tejero, M. et al. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J. Exp. Med. 203, 1407–1412 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sterka, D., Jr., Rati, D.M. & Marriott, I. Functional expression of NOD2, a novel pattern recognition receptor for bacterial motifs, in primary murine astrocytes. Glia 53, 322–330 (2006).

    PubMed  Google Scholar 

  57. Sterka, D., Jr. & Marriott, I. Characterization of nucleotide-binding oligomerization domain (NOD) protein expression in primary murine microglia. J. Neuroimmunol. 179, 65–75 (2006).

    CAS  PubMed  Google Scholar 

  58. Marriott, I., Rati, D.M., McCall, S.H. & Tranguch, S.L. Induction of Nod1 and Nod2 intracellular pattern recognition receptors in murine osteoblasts following bacterial challenge. Infect. Immun. 73, 2967–2973 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Otte, J.M., Rosenberg, I.M. & Podolsky, D.K. Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology 124, 1866–1878 (2003).

    CAS  PubMed  Google Scholar 

  60. Opitz, B. et al. Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J. Immunol. 176, 484–490 (2006).

    CAS  PubMed  Google Scholar 

  61. Boughan, P.K. et al. Nucleotide-binding oligomerization domain-1 and epidermal growth factor receptor: critical regulators of β-defensins during Helicobacter pylori infection. J. Biol. Chem. 281, 11637–11648 (2006).

    CAS  PubMed  Google Scholar 

  62. Kobayashi, K.S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    CAS  PubMed  Google Scholar 

  63. LeibundGut-Landmann, S. et al. Mini-review: Specificity and expression of CIITA, the master regulator of MHC class II genes. Eur. J. Immunol. 34, 1513–1525 (2004).

    CAS  PubMed  Google Scholar 

  64. Wright, K.L. & Ting, J.P. Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol. 27, 405–412 (2006).

    CAS  PubMed  Google Scholar 

  65. Reith, W. & Mach, B. The bare lymphocyte syndrome and the regulation of MHC expression. Annu. Rev. Immunol. 19, 331–373 (2001).

    CAS  PubMed  Google Scholar 

  66. Hysi, P. et al. NOD1 variation, immunoglobulin E, and asthma. Hum. Mol. Genet. 14, 935–941 (2005).

    CAS  PubMed  Google Scholar 

  67. McGovern, D.P. et al. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum. Mol. Genet. 14, 1245–1250 (2005).

    CAS  PubMed  Google Scholar 

  68. Hugot, J-P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    CAS  PubMed  Google Scholar 

  69. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    CAS  PubMed  Google Scholar 

  70. Miceli-Richard, C. et al. CARD15 mutations in Blau syndrome. Nat. Genet. 29, 19–20 (2001).

    CAS  PubMed  Google Scholar 

  71. Kanazawa, N. et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-κB activation: common genetic etiology with Blau syndrome. Blood 105, 1195–1197 (2005).

    CAS  PubMed  Google Scholar 

  72. Pauleau, A.L. & Murray, P.J. Role of Nod2 in the response of macrophages to Toll-like receptor agonists. Mol. Cell. Biol. 23, 7531–7539 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Watanabe, T., Kitani, A., Murray, P.J. & Strober, W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol. 5, 800–808 (2004).

    CAS  PubMed  Google Scholar 

  74. Watanabe, T. et al. Nucleotide binding oligomerization domain 2 deficiency leads to dysregulated TLR2 signaling and Induction of antigen-specific colitis. Immunity 25, 473–485 (2006).

    CAS  PubMed  Google Scholar 

  75. Maeda, S. et al. Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1β processing. Science 307, 734–738 (2005).

    CAS  PubMed  Google Scholar 

  76. Li, J. et al. Regulation of IL-8 and IL-1β expression in Crohn's disease associated NOD2/CARD15 mutations. Hum. Mol. Genet. 13, 1715–1725 (2004).

    CAS  PubMed  Google Scholar 

  77. Marks, D.J. et al. Defective acute inflammation in Crohn's disease: a clinical investigation. Lancet 367, 668–678 (2006).

    CAS  PubMed  Google Scholar 

  78. Netea, M.G. et al. The frameshift mutation in Nod2 results in unresponsiveness not only to Nod2- but also Nod1-activating peptidoglycan agonists. J. Biol. Chem. 280, 35859–35867 (2005).

    CAS  PubMed  Google Scholar 

  79. Uehara, A. et al. Muramyldipeptide and diaminopimelic acid-containing desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NOD1-dependent manner, respectively, in human monocytic cells in culture. Cell. Microbiol. 7, 53–61 (2005).

    CAS  PubMed  Google Scholar 

  80. Hasegawa, M. et al. Differential release and distribution of Nod1 and Nod2 immunostimulatory molecules among bacterial species and environments. J. Biol. Chem. 281, 29054–29063 (2006).

    CAS  PubMed  Google Scholar 

  81. Glomski, I.J. et al. Inflammatory cytokines in a MyD88-dependent response to Bacillus anthracis spores. Cell. Microbiol. published online 18 September 2006 (doi:10.1111/j.1462-5822.2006.00806.x).

  82. Hasegawa, M. et al. ASC-mediated NF-κB activation leading to interleukin-8 production requires caspase-8 and is inhibited by CLARP. J. Biol. Chem. 280, 15122–15130 (2005).

    CAS  PubMed  Google Scholar 

  83. Hisamatsu, T. et al. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124, 993–1000 (2003).

    CAS  PubMed  Google Scholar 

  84. Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14, 1929–1934 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the National Health and Medical Research Council of Australia (R.L.F.), the ANZ Charitable Trust (R.L.F.), the Canadian Institutes for Health Research (D.J.P. and S.E.G.) and the Austrian Science Fund (Erwin Schrödinger Research Fellowship J2630 to J.H.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana J Philpott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, J., Ferrero, R., Philpott, D. et al. Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7, 1250–1257 (2006). https://doi.org/10.1038/ni1412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1412

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing