[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4

Abstract

T cells recognizing self proteins exist without causing autoimmunity in healthy individuals. These autoreactive T cells are kept in check by peripheral tolerance. Using a model for peripheral CD8+ T cell tolerance resulting from antigen presentation by resting dendritic cells in vivo, we show here that CD8+ T cell tolerance operates through T cell–intrinsic mechanisms such as deletion or functional inactivation. Peripheral CD8+ T cell tolerance depended on signaling via the costimulatory molecule PD-1, as an absence of PD-1 converted tolerance induction into priming. Blocking of the costimulatory molecule CTLA-4 resulted in impaired tolerance and enhanced the effect of the absence of PD-1, suggesting that PD-1 and CTLA-4 act synergistically. Thus PD-1 and CTLA-4 are crucial molecules for peripheral CD8+ T cell tolerance induced by resting dendritic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antigen presentation by resting DCs induces antigen-specific CD8+ T cell tolerance.
Figure 2: CD8+ T cell tolerance induced by antigen-presenting resting DCs operates through T cell–intrinsic mechanisms.
Figure 3: An absence of PD-1 engagement impairs peripheral tolerance by resting DCs.
Figure 4: Blocking of CTLA-4 diminishes peripheral CD8+ T cell tolerance induced by resting DCs.
Figure 5: An absence of signaling through PD-1 and CTLA-4 converts tolerance induction into priming.
Figure 6: Expansion of transgene-specific CD8+ T cell populations in the absence of signaling through PD-1 and CTLA-4 represents genuine priming of effector CTLs.

Similar content being viewed by others

References

  1. Mondino, A., Khoruts, A. & Jenkins, M.K. The anatomy of T-cell activation and tolerance. Proc. Natl. Acad. Sci. USA 93, 2245–2252 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kyewski, B., Derbinski, J., Gotter, J. & Klein, L. Promiscuous gene expression and central T-cell tolerance: more than meets the eye. Trends Immunol. 23, 364–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Bjorses, P., Aaltonen, J., Horelli-Kuitunen, N., Yaspo, M.L. & Peltonen, L. Gene defect behind APECED: a new clue to autoimmunity. Hum. Mol. Genet. 7, 1547–1553 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13, 829–840 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Walker, L.S. & Abbas, A.K. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat. Rev. Immunol. 2, 11–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Steinman, R.M. et al. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann. NY Acad. Sci. 987, 15–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Tivol, E.A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Perez, V.L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Walunas, T.L. & Bluestone, J.A. CTLA-4 regulates tolerance induction and T cell differentiation in vivo. J. Immunol. 160, 3855–3860 (1998).

    CAS  PubMed  Google Scholar 

  15. Lindsten, T. et al. Characterization of CTLA-4 structure and expression on human T cells. J. Immunol. 151, 3489–3499 (1993).

    CAS  PubMed  Google Scholar 

  16. Brunner, M.C. et al. CTLA-4-mediated inhibition of early events of T cell proliferation. J. Immunol. 162, 5813–5820 (1999).

    CAS  PubMed  Google Scholar 

  17. Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8, 765–772 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Okazaki, T., Iwai, Y. & Honjo, T. New regulatory co-receptors: inducible co-stimulator and PD-1. Curr. Opin. Immunol. 14, 779–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, L. Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nat. Rev. Immunol. 4, 336–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Probst, H.C., Lagnel, J., Kollias, G. & van den Broek, M. Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 18, 713–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Moser, M. Dendritic cells in immunity and tolerance-do they display opposite functions? Immunity 19, 5–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Scheinecker, C., McHugh, R., Shevach, E.M. & Germain, R.N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Belz, G.T. et al. The CD8α+ dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med. 196, 1099–1104 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin, Y., Roberts, T.J., Sriram, V., Cho, S. & Brutkiewicz, R.R. Myeloid marker expression on antiviral CD8+ T cells following an acute virus infection. Eur. J. Immunol. 33, 2736–2743 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Probst, H.C. et al. Immunodominance of an antiviral cytotoxic T cell response is shaped by the kinetics of viral protein expression. J. Immunol. 171, 5415–5422 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Hou, W.S. & Van Parijs, L. A Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells. Nat. Immunol. 5, 583–589 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Ingulli, E., Mondino, A., Khoruts, A. & Jenkins, M.K. In vivo detection of dendritic cell antigen presentation to CD4+ T cells. J. Exp. Med. 185, 2133–2141 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Robinson, S.P., Langan-Fahey, S.M., Johnson, D.A. & Jordan, V.C. Metabolites, pharmacodynamics, and pharmacokinetics of tamoxifen in rats and mice compared to the breast cancer patient. Drug Metab. Dispos. 19, 36–43 (1991).

    CAS  PubMed  Google Scholar 

  35. Krummel, M.F. & Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Dhodapkar, M.V. & Steinman, R.M. Antigen-bearing immature dendritic cells induce peptide-specific CD8+ regulatory T cells in vivo in humans. Blood 100, 174–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A.H. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mahnke, K., Qian, Y., Knop, J. & Enk, A.H. Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 101, 4862–4869 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Groux, H. et al. A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells. J. Immunol. 162, 1723–1729 (1999).

    CAS  PubMed  Google Scholar 

  40. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196, 1627–1638 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Misra, N., Bayry, J., Lacroix-Desmazes, S., Kazatchkine, M.D. & Kaveri, S.V. Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J. Immunol. 172, 4676–4680 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Albert, M.L. Death-defying immunity: do apoptotic cells influence antigen processing and presentation? Nat. Rev. Immunol. 4, 223–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Hernandez, J., Aung, S., Redmond, W.L. & Sherman, L.A. Phenotypic and functional analysis of CD8+ T cells undergoing peripheral deletion in response to cross-presentation of self-antigen. J. Exp. Med. 194, 707–717 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hugues, S. et al. Tolerance to islet antigens and prevention from diabetes induced by limited apoptosis of pancreatic beta cells. Immunity 16, 169–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Kurts, C., Kosaka, H., Carbone, F.R., Miller, J.F. & Heath, W.R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morgan, D.J., Kreuwel, H.T. & Sherman, L.A. Antigen concentration and precursor frequency determine the rate of CD8+ T cell tolerance to peripherally expressed antigens. J. Immunol. 163, 723–727 (1999).

    CAS  PubMed  Google Scholar 

  48. Lo, D. et al. Peripheral tolerance to an islet cell-specific hemagglutinin transgene affects both CD4+ and CD8+ T cells. Eur. J. Immunol. 22, 1013–1022 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. McCoy, K.D., Hermans, I.F., Fraser, J.H., Le Gros, G. & Ronchese, F. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) can regulate dendritic cell-induced activation and cytotoxicity of CD8+ T cells independently of CD4+ T cell help. J. Exp. Med. 189, 1157–1162 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nishimura, H., Honjo, T. & Minato, N. Facilitation of beta selection and modification of positive selection in the thymus of PD-1-deficient mice. J. Exp. Med. 191, 891–898 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blank, C. et al. Absence of programmed death receptor 1 alters thymic development and enhances generation of CD4/CD8 double-negative TCR-transgenic T cells. J. Immunol. 171, 4574–4581 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Walunas, T.L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Lehmann-Grube, F. Lymphocytic Choriomeningitis Virus. Virol. Monogr. 10, 1–173 (1971).

    Google Scholar 

  54. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Probst, H.C., Dumrese, T. & van den Broek, M.F. Cutting edge: competition for APC by CTLs of different specificities is not functionally important during induction of antiviral responses. J. Immunol. 168, 5387–5391 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Battegay, M. et al. Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. J. Virol. Methods 33, 191–198 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Tschannen for technical assistance; M. Delic, J. Fehr and W. Kehrli for animal husbandry; A. Macpherson for reviewing this manuscript and for discussions; and R. Zinkernagel and H. Hengartner for discussions and support. Supported by the Swiss National Science Foundation, the Max Cloëtta Foundation Zurich, the European Community (QLG1-CT-1999-2002) and the Swiss Bundesamt für Bildung und Wissenschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maries van den Broek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Probst, H., McCoy, K., Okazaki, T. et al. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol 6, 280–286 (2005). https://doi.org/10.1038/ni1165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1165

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing