[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mast cell–derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection

Abstract

Palpable swelling of regional lymph nodes is a common sequela of microbial infections but the mechanism responsible for the sequestration and subsequent coordination of lymphocyte responses within these dynamic structures remains poorly understood. Here we show that draining lymph nodes of mast cell–deficient mice did not demonstrate swelling after intradermal bacterial challenge. Testing of individual mast cell–derived products in this model indicated that tumor necrosis factor was the main mediator of nodal hypertrophy, whereas tryptase and histamine had no effect. After peripheral mast cell activation, both tumor necrosis factor concentrations and the recruitment of circulating T cells were increased within draining nodes. These results show a critical function for peripheral mast cell–derived tumor necrosis factor in regulating the hypertrophy of draining lymph nodes during infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lymph node hypertrophy after bacterial infection.
Figure 2: Quantification of local mast cell numbers in footpads after infection.
Figure 3: Regulation of lymph node hypertrophy by mast cells and mast cell–derived TNF during infection.
Figure 4: Regulation of lymph node hypertrophy by mast cell–derived TNF.
Figure 5: TNF accumulation in lymph nodes after bacterial infection or specific mast cell activation.
Figure 6: Mast cell–mediated lymph node hypertrophy involves increased sequestration of T cells and increased expression of VCAM-1 in lymph nodes.

Similar content being viewed by others

References

  1. Gordon, J.R. & Galli, S.J. Release of both preformed and newly synthesized tumor necrosis factor α (TNF-α)/cachectin by mouse mast cells stimulated via the Fcε RI. A mechanism for the sustained action of mast cell-derived TNF-α during IgE-dependent biological responses. J. Exp. Med. 174, 103–107 (1991).

    Article  CAS  Google Scholar 

  2. Gordon, J.R. & Galli, S.J. Mast cells as a source of both preformed and immunologically inducible TNF-α/cachectin. Nature 346, 274–276 (1990).

    Article  CAS  Google Scholar 

  3. Zhang, Y., Ramos, B.F. & Jakschik, B.A. Neutrophil recruitment by tumor necrosis factor from mast cells in immune complex peritonitis. Science 258, 1957–1959 (1992).

    Article  CAS  Google Scholar 

  4. Finlay-Jones, J.J., Davies, K.V., Sturm, L.P., Kenny, P.A. & Hart, P.H. Inflammatory processes in a murine model of intra-abdominal abscess formation. J. Leukoc. Biol. 66, 583–587 (1999).

    Article  CAS  Google Scholar 

  5. Marshall, J.S. & Bienenstock, J. The role of mast cells in inflammatory reactions of the airways, skin and intestine. Curr. Opin. Immunol. 6, 853–859 (1994).

    Article  CAS  Google Scholar 

  6. Padawer, J. Mast cells: extended lifespan and lack of granule turnover under normal in vivo conditions. Exp. Mol. Pathol. 20, 269–280 (1974).

    Article  CAS  Google Scholar 

  7. Malaviya, R., Ikeda, T., Ross, E. & Abraham, S.N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature 381, 77–80 (1996).

    Article  CAS  Google Scholar 

  8. Echtenacher, B., Mannel, D.N. & Hultner, L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381, 75–77 (1996).

    Article  CAS  Google Scholar 

  9. Malaviya, R. et al. Mast cell phagocytosis of FimH-expressing enterobacteria. J. Immunol. 152, 1907–1914 (1994).

    CAS  PubMed  Google Scholar 

  10. Huang, C. et al. Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J. Immunol. 160, 1910–1919 (1998).

    CAS  PubMed  Google Scholar 

  11. Huang, C. et al. Evaluation of the substrate specificity of human mast cell tryptase βI and demonstration of its importance in bacterial infections of the lung. J. Biol. Chem. 276, 26276–26284 (2001).

    Article  CAS  Google Scholar 

  12. Marone, G., Gentile, M., Petraroli, A., De Rosa, N. & Triggiani, M. Histamine-induced activation of human lung macrophages. Int. Arch. Allergy Immunol. 124, 249–252 (2001).

    Article  CAS  Google Scholar 

  13. Burns, A.R. et al. P-selectin mediates neutrophil adhesion to endothelial cell borders. J. Leukoc. Biol. 65, 299–306 (1999).

    Article  CAS  Google Scholar 

  14. Jenkins, M.K. et al. In vivo activation of antigen-specific CD4 T cells. Annu. Rev. Immunol. 19, 23–45 (2001).

    Article  CAS  Google Scholar 

  15. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  16. Palframan, R.T. et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194, 1361–1373 (2001).

    Article  CAS  Google Scholar 

  17. Keith, B.R., Maurer, L., Spears, P.A. & Orndorff, P.E. Receptor-binding function of type 1 pili effects bladder colonization by a clinical isolate of Escherichia coli. Infect. Immun. 53, 693–696 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Baorto, D.M. et al. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389, 636–639 (1997).

    Article  CAS  Google Scholar 

  19. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  Google Scholar 

  20. Tomoe, S., Iwamoto, I., Tomioka, H. & Yoshida, S. Comparison of substance P-induced and compound 48/80-induced neutrophil infiltrations in mouse skin. Int. Arch. Allergy Immunol. 97, 237–242 (1992).

    Article  CAS  Google Scholar 

  21. Guo, Y., Hedqvist, P. & Gustafsson, L.E. Absence of mast cell involvement in active systemic anaphylaxis in rats. Eur. J. Pharmacol. 430, 305–310 (2001).

    Article  CAS  Google Scholar 

  22. Diaz, B.L. et al. Alloxan diabetes reduces pleural mast cell numbers and the subsequent eosinophil influx induced by allergen in sensitized rats. Int. Arch. Allergy Immunol. 111, 36–43 (1996).

    Article  CAS  Google Scholar 

  23. Aridor, M., Traub, L.M. & Sagi-Eisenberg, R. Exocytosis in mast cells by basic secretagogues: evidence for direct activation of GTP-binding proteins. J. Cell Biol. 111, 909–917 (1990).

    Article  CAS  Google Scholar 

  24. Getting, S.J. et al. Molecular determinants of monosodium urate crystal-induced murine peritonitis: a role for endogenous mast cells and a distinct requirement for endothelial-derived selectins. J. Pharmacol. Exp. Ther. 283, 123–130 (1997).

    CAS  PubMed  Google Scholar 

  25. McLean, P.G., Ahluwalia, A. & Perretti, M. Association between kinin B1 receptor expression and leukocyte trafficking across mouse mesenteric postcapillary venules. J. Exp. Med. 192, 367–380 (2000).

    Article  CAS  Google Scholar 

  26. Cyster, J.G. & Goodnow, C.C. Pertussis toxin inhibits migration of B and T lymphocytes into splenic white pulp cords. J. Exp. Med. 182, 581–586 (1995).

    Article  CAS  Google Scholar 

  27. Bargatze, R.F. & Butcher, E.C. Rapid G protein-regulated activation event involved in lymphocyte binding to high endothelial venules. J. Exp. Med. 178, 367–372 (1993).

    Article  CAS  Google Scholar 

  28. Warnock, R.A., Askari, S., Butcher, E.C. & von Andrian, U.H. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med. 187, 205–216 (1998).

    Article  CAS  Google Scholar 

  29. Berlin-Rufenach, C. et al. Lymphocyte migration in lymphocyte function-associated antigen (LFA)-1-deficient mice. J. Exp. Med. 189, 1467–1478 (1999).

    Article  CAS  Google Scholar 

  30. Faveeuw, C., Di Mauro, M.E., Price, A.A. & Ager, A. Roles of α4 integrins/VCAM-1 and LFA-1/ICAM-1 in the binding and transendothelial migration of T lymphocytes and T lymphoblasts across high endothelial venules. Int. Immunol. 12, 241–251 (2000).

    Article  CAS  Google Scholar 

  31. Watanabe, C. et al. Spatial heterogeneity of TNF-α-induced T cell migration to colonic mucosa is mediated by MAdCAM-1 and VCAM-1. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G1379–1387 (2002).

    Article  CAS  Google Scholar 

  32. Ding, Z., Xiong, K. & Issekutz, T.B. Regulation of chemokine-induced transendothelial migration of T lymphocytes by endothelial activation: differential effects on naive and memory T cells. J. Leukoc. Biol. 67, 825–833 (2000).

    Article  CAS  Google Scholar 

  33. Ding, Z., Xiong, K. & Issekutz, T.B. Chemokines stimulate human T lymphocyte transendothelial migration to utilize VLA-4 in addition to LFA-1. J. Leukoc. Biol. 69, 458–466 (2001).

    CAS  PubMed  Google Scholar 

  34. Estess, P., Nandi, A., Mohamadzadeh, M. & Siegelman, M.H. Interleukin 15 induces endothelial hyaluronan expression in vitro and promotes activated T cell extravasation through a CD44-dependent pathway in vivo. J. Exp. Med. 190, 9–19 (1999).

    Article  CAS  Google Scholar 

  35. Carlos, T.M. & Harlan, J.M. Leukocyte-endothelial adhesion molecules. Blood 84, 2068–2101 (1994).

    CAS  PubMed  Google Scholar 

  36. van der Poll, T. & van Deventer, S.J. Cytokines and anticytokines in the pathogenesis of sepsis. Infect. Dis. Clin. North Am. 13, 413–426 (1999).

    Article  CAS  Google Scholar 

  37. Wang, H.W., Tedla, N., Lloyd, A.R., Wakefield, D. & McNeil, P.H. Mast cell activation and migration to lymph nodes during induction of an immune response in mice. J. Clin. Invest. 102, 1617–1626 (1998).

    Article  CAS  Google Scholar 

  38. Robbie-Ryan, M. & Brown, M. The role of mast cells in allergy and autoimmunity. Curr. Opin. Immunol. 14, 728–733 (2002).

    Article  CAS  Google Scholar 

  39. Lee, D.M. et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297, 1689–1692 (2002).

    Article  CAS  Google Scholar 

  40. Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNF-α-deficient mice: a critical requirement for TNF-α in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

    Article  CAS  Google Scholar 

  41. Pasparakis, M. et al. Peyer's patch organogenesis is intact yet formation of B lymphocyte follicles is defective in peripheral lymphoid organs of mice deficient for tumor necrosis factor and its 55-kDa receptor. Proc. Natl. Acad. Sci. USA 94, 6319–6323 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Yanagita, R. Goyal, the Duke Photopath Lab and the Duke Human Vaccine Institute Flow Cytometry Core Facility for their assistance with experiments. Supported by funds from the National Institutes of Health and from the Sandler Foundation for Asthma Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soman N Abraham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLachlan, J., Hart, J., Pizzo, S. et al. Mast cell–derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat Immunol 4, 1199–1205 (2003). https://doi.org/10.1038/ni1005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1005

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing