[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

From IL-10 to IL-12: how pathogens and their products stimulate APCs to induce TH1 development

The authors recount their discovery of how pathogen-induced interleukin 12 production leads to TH1 T cell polarization. Simultaneously they discovered the suppressive cytokine interleukin 10 inhibits antigen-presenting cells, thus regulating development of TH1 cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Players in the story.

References

  1. Liew, F.Y. TH1 and TH2 cells: a historical perspective. Nat. Rev. Immunol. 2, 55–60 (2002).

    Article  CAS  Google Scholar 

  2. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. & Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  Google Scholar 

  3. Mosmann, T.R. & Coffman, R.L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  Google Scholar 

  4. Fiorentino, D.F., Bond, M.W. & Mosmann, T.R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med. 170, 2081–2095 (1989).

    Article  CAS  Google Scholar 

  5. Moore, K.W. et al. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science 248, 1230–1234 (1990).

    Article  CAS  Google Scholar 

  6. Vieira, P. et al. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc. Natl. Acad. Sci. USA 88, 1172–1176 (1991).

    Article  CAS  Google Scholar 

  7. Moore, K.W., O'Garra, A., de Waal Malefyt, R., Vieira, P. & Mosmann, T.R. Interleukin-10. Annu. Rev. Immunol. 11, 165–190 (1993).

    Article  CAS  Google Scholar 

  8. O'Garra, A. et al. Production of cytokines by mouse B cells: B lymphomas and normal B cells produce interleukin 10. Int. Immunol. 2, 821–832 (1990).

    Article  CAS  Google Scholar 

  9. O'Garra, A. et al. Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur. J. Immunol. 22, 711–717 (1992).

    Article  CAS  Google Scholar 

  10. O'Garra, A., Umland, S., De France, T. & Christiansen, J. 'B-cell factors' are pleiotropic. Immunol. Today 9, 45–54 (1988).

    Article  CAS  Google Scholar 

  11. Fiorentino, D.F. et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol. 146, 3444–3451 (1991).

    CAS  PubMed  Google Scholar 

  12. Macatonia, S.E., Doherty, T.M., Knight, S.C. & O'Garra, A. Differential effect of IL-10 on dendritic cell-induced T cell proliferation and IFN-γ production. J. Immunol. 150, 3755–3765 (1993).

    CAS  PubMed  Google Scholar 

  13. Fiorentino, D.F., Zlotnik, A., Mosmann, T.R., Howard, M. & O'Garra, A. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147, 3815–3822 (1991).

    CAS  PubMed  Google Scholar 

  14. Moore, K.W., de Waal Malefyt, R., Coffman, R.L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  Google Scholar 

  15. Murphy, K.M., Heimberger, A.B. & Loh, D.Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720–1723 (1990).

    Article  CAS  Google Scholar 

  16. Le Gros, G., Ben-Sasson, S.Z., Seder, R., Finkelman, F.D. & Paul, W.E. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J. Exp. Med. 172, 921–929 (1990).

    Article  CAS  Google Scholar 

  17. Swain, S.L., Weinberg, A.D., English, M. & Huston, G. IL-4 directs the development of Th2-like helper effectors. J. Immunol. 145, 3796–3806 (1990).

    CAS  PubMed  Google Scholar 

  18. Hsieh, C.S., Heimberger, A.B., Gold, J.S., O'Garra, A. & Murphy, K.M. Differential regulation of T helper phenotype development by interleukins 4 and 10 in an αβ T-cell-receptor transgenic system. Proc. Natl. Acad. Sci. USA 89, 6065–6069 (1992).

    Article  CAS  Google Scholar 

  19. Janeway, C.A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    Article  CAS  Google Scholar 

  20. Hsieh, C.S., Macatonia, S.E., O'Garra, A. & Murphy, K.M. Pathogen-induced Th1 phenotype development in CD4+ αβ-TCR transgenic T cells is macrophage dependent. Int. Immunol. 5, 371–382 (1993).

    Article  CAS  Google Scholar 

  21. Chan, S.H. et al. Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J. Exp. Med. 173, 869–879 (1991).

    Article  CAS  Google Scholar 

  22. Wolf, S.F. et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J. Immunol. 146, 3074–3081 (1991).

    CAS  PubMed  Google Scholar 

  23. Hsieh, C.S. et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

    Article  CAS  Google Scholar 

  24. Macatonia, S.E., Hsieh, C.S., Murphy, K.M. & O'Garra, A. Dendritic cells and macrophages are required for Th1 development of CD4+ T cells from αβ TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-γ production is IFN-γ-dependent. Int. Immunol. 5, 1119–1128 (1993).

    Article  CAS  Google Scholar 

  25. Murphy, E.E. et al. B7 and interleukin 12 cooperate for proliferation and interferon γ production by mouse T helper clones that are unresponsive to B7 costimulation. J. Exp. Med. 180, 223–231 (1994).

    Article  CAS  Google Scholar 

  26. Macatonia, S.E. et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol. 154, 5071–5079 (1995).

    CAS  PubMed  Google Scholar 

  27. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  Google Scholar 

  28. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  Google Scholar 

  29. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  Google Scholar 

  30. Rock, F.L., Hardiman, G., Timans, J.C., Kastelein, R.A. & Bazan, J.F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95, 588–593 (1998).

    Article  CAS  Google Scholar 

  31. Murphy, T.L., Cleveland, M.G., Kulesza, P., Magram, J. & Murphy, K.M. Regulation of interleukin 12 p40 expression through an NF-kappa B half-site. Mol. Cell. Biol. 15, 5258–5267 (1995).

    Article  CAS  Google Scholar 

  32. Jacobson, N.G. et al. Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J. Exp. Med. 181, 1755–1762 (1995).

    Article  CAS  Google Scholar 

  33. Szabo, S.J., Jacobson, N.G., Dighe, A.S., Gubler, U. & Murphy, K.M. Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity 2, 665–675 (1995).

    Article  CAS  Google Scholar 

  34. Murphy, E. et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J. Exp. Med. 183, 901–913 (1996).

    Article  CAS  Google Scholar 

  35. Murphy, K.M. et al. Signaling and transcription in T helper development. Annu. Rev. Immunol. 18, 451–494 (2000).

    Article  CAS  Google Scholar 

  36. Robinson, D.S. & O'Garra, A. Further checkpoints in Th1 development. Immunity 16, 755–758 (2002).

    Article  CAS  Google Scholar 

  37. O'Garra, A., Barrat, F.J., Castro, A.G., Vicari, A. & Hawrylowicz, C. Strategies for use of IL-10 or its antagonists in human disease. Immunol. Rev. 223, 114–131 (2008).

    Article  CAS  Google Scholar 

  38. Hawrylowicz, C.M. & O'Garra, A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat. Rev. Immunol. 5, 271–283 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank other research assistants, PhD students, postdoctoral fellows and collaborators who have worked with us through the years and contributed to our work and apologize that we have not been able to include all here. We also thank our colleagues at DNAX and in the Department of Pathology at Washington University for their support and interaction. We thank P. Vieira for comments and reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Garra, A., Murphy, K. From IL-10 to IL-12: how pathogens and their products stimulate APCs to induce TH1 development. Nat Immunol 10, 929–932 (2009). https://doi.org/10.1038/ni0909-929

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0909-929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing