[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T cell exhaustion

Abstract

T cell exhaustion is a state of T cell dysfunction that arises during many chronic infections and cancer. It is defined by poor effector function, sustained expression of inhibitory receptors and a transcriptional state distinct from that of functional effector or memory T cells. Exhaustion prevents optimal control of infection and tumors. Recently, a clearer picture of the functional and phenotypic profile of exhausted T cells has emerged and T cell exhaustion has been defined in many experimental and clinical settings. Although the pathways involved remain to be fully defined, advances in the molecular delineation of T cell exhaustion are clarifying the underlying causes of this state of differentiation and also suggest promising therapeutic opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hierarchical T cell exhaustion during chronic infection.
Figure 2: Subsets of exhausted T cells and combinatorial strategies to reverse exhaustion.

Similar content being viewed by others

References

  1. Zajac, A.J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Virgin, H.W., Wherry, E.J. & Ahmed, R. Redefining chronic viral infection. Cell 138, 30–50 (2009).

    CAS  PubMed  Google Scholar 

  4. Williams, M.A. & Bevan, M.J. Effector and memory CTL differentiation. Annu. Rev. Immunol. 25, 171–192 (2007).

    CAS  PubMed  Google Scholar 

  5. Jameson, S.C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Wherry, E.J., Blattman, J.N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Wherry, E.J. & Ahmed, R. Memory CD8 T-cell differentiation during viral infection. J. Virol. 78, 5535–5545 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Fuller, M.J. & Zajac, A.J. Ablation of CD8 and CD4 T cell responses by high viral loads. J. Immunol. 170, 477–486 (2003).

    CAS  PubMed  Google Scholar 

  9. Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R.M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761 (1993).

    CAS  PubMed  Google Scholar 

  10. Blattman, J.N., Wherry, E.J., Ha, S.J., van der Most, R.G. & Ahmed, R. Impact of epitope escape on PD-1 expression and CD8 T-cell exhaustion during chronic infection. J. Virol. 83, 4386–4394 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Brooks, D.G., Teyton, L., Oldstone, M.B. & McGavern, D.B. Intrinsic functional dysregulation of CD4 T cells occurs rapidly following persistent viral infection. J. Virol. 79, 10514–10527 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Oxenius, A., Zinkernagel, R.M. & Hengartner, H. Comparison of activation versus induction of unresponsiveness of virus-specific CD4+ and CD8+ T cells upon acute versus persistent viral infection. Immunity 9, 449–457 (1998).

    CAS  PubMed  Google Scholar 

  13. Kaufmann, D.E. et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat. Immunol. 8, 1246–1254 (2007).

    CAS  PubMed  Google Scholar 

  14. Urbani, S. et al. Outcome of acute hepatitis C is related to virus-specific CD4 function and maturation of antiviral memory CD8 responses. Hepatology 44, 126–139 (2006).

    CAS  PubMed  Google Scholar 

  15. Frohlich, A. et al. IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324, 1576–1580 (2009).

    PubMed  Google Scholar 

  16. Yi, J.S., Du, M. & Zajac, A.J. A vital role for interleukin-21 in the control of a chronic viral infection. Science 324, 1572–1576 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Elsaesser, H., Sauer, K. & Brooks, D.G. IL-21 is required to control chronic viral infection. Science 324, 1569–1572 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Blackburn, S.D. & Wherry, E.J. IL-10, T cell exhaustion and viral persistence. Trends Microbiol. 15, 143–146 (2007).

    CAS  PubMed  Google Scholar 

  19. Brooks, D.G. et al. Interleukin-10 determines viral clearance or persistence in vivo. Nat. Med. 12, 1301–1309 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Betts, M.R. et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107, 4781–4789 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Lechner, F. et al. Analysis of successful immune responses in persons infected with hepatitis C virus. J. Exp. Med. 191, 1499–1512 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Bowen, D.G. & Walker, C.M. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 436, 946–952 (2005).

    CAS  PubMed  Google Scholar 

  23. Mueller, S.N. et al. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proc. Natl. Acad. Sci. USA 104, 15430–15435 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, B., Woltman, A.M., Janssen, H.L. & Boonstra, A. Modulation of dendritic cell function by persistent viruses. J. Leukoc. Biol. 85, 205–214 (2009).

    CAS  PubMed  Google Scholar 

  25. Sevilla, N., Kunz, S., McGavern, D. & Oldstone, M.B. Infection of dendritic cells by lymphocytic choriomeningitis virus. Curr. Top. Microbiol. Immunol. 276, 125–144 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Matter, M., Odermatt, B., Yagita, H., Nuoffer, J.M. & Ochsenbein, A.F. Elimination of chronic viral infection by blocking CD27 signaling. J. Exp. Med. 203, 2145–2155 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Schacker, T. The role of secondary lymphatic tissue in immune deficiency of HIV infection. AIDS 22 (Suppl 3), S13–S18 (2008).

    CAS  PubMed  Google Scholar 

  28. Zeng, M. et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J. Clin. Invest. 121, 998–1008 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Shin, H. & Wherry, E.J. CD8 T cell dysfunction during chronic viral infection. Curr. Opin. Immunol. 19, 408–415 (2007).

    CAS  PubMed  Google Scholar 

  30. Shin, H., Blackburn, S.D., Blattman, J.N. & Wherry, E.J. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J. Exp. Med. 204, 941–949 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Wherry, E.J., Barber, D.L., Kaech, S.M., Blattman, J.N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl. Acad. Sci. USA 101, 16004–16009 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Migueles, S.A. et al. Defective human immunodeficiency virus-specific CD8+ T-cell polyfunctionality, proliferation, and cytotoxicity are not restored by antiretroviral therapy. J. Virol. 83, 11876–11889 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Kasprowicz, V. et al. Hepatitis C virus (HCV) sequence variation induces an HCV-specific T-cell phenotype analogous to spontaneous resolution. J. Virol. 84, 1656–1663 (2010).

    CAS  PubMed  Google Scholar 

  34. Streeck, H. et al. Antigen load and viral sequence diversification determine the functional profile of HIV-1-specific CD8+ T cells. PLoS Med. 5, e100 (2008).

    PubMed Central  PubMed  Google Scholar 

  35. Vezys, V. et al. Continuous recruitment of naïve T cells contributes to heterogeneity of antiviral CD8 T cells during persistent infection. J. Exp. Med. 10, 2263–2269 (2006).

    Google Scholar 

  36. Miller, N.E., Bonczyk, J.R., Nakayama, Y. & Suresh, M. Role of thymic output in regulating CD8 T-cell homeostasis during acute and chronic viral infection. J. Virol. 79, 9419–9429 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Trimble, L.A., Kam, L.W., Friedman, R.S., Xu, Z. & Lieberman, J. CD3zeta and CD28 down-modulation on CD8 T cells during viral infection. Blood 96, 1021–1029 (2000).

    CAS  PubMed  Google Scholar 

  38. Reignat, S. et al. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. J. Exp. Med. 195, 1089–1101 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Freeman, G.J., Wherry, E.J., Ahmed, R. & Sharpe, A.H. Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J. Exp. Med. 203, 2223–2227 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Barber, D.L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    CAS  PubMed  Google Scholar 

  41. Petrovas, C. et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J. Exp. Med. 203, 2281–2292 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Trautmann, L. et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat. Med. 12, 1198–1202 (2006).

    CAS  PubMed  Google Scholar 

  43. Day, C.L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    CAS  PubMed  Google Scholar 

  44. Velu, V. et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458, 206–210 (2009).

    CAS  PubMed  Google Scholar 

  45. Brahmer, J.R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Blackburn, S.D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009).

    CAS  PubMed  Google Scholar 

  47. Crawford, A. & Wherry, E.J. The diversity of costimulatory and inhibitory receptor pathways and the regulation of antiviral T cell responses. Curr. Opin. Immunol. 21, 179–186 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Nakamoto, N. et al. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog. 5, e1000313 (2009).

    PubMed Central  PubMed  Google Scholar 

  49. Jin, H.T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl. Acad. Sci. USA 107, 14733–14738 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kassu, A. et al. Regulation of virus-specific CD4+ T cell function by multiple costimulatory receptors during chronic HIV infection. J. Immunol. 185, 3007–3018 (2010).

    CAS  PubMed  Google Scholar 

  51. Grosso, J.F. et al. Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells. J. Immunol. 182, 6659–6669 (2009).

    CAS  PubMed  Google Scholar 

  52. Matsuzaki, J. et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl. Acad. Sci. USA 107, 7875–7880 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med. 207, 2175–2186 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187–2194 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Petrovas, C. et al. SIV-specific CD8+ T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIVmac251 infection. Blood 110, 928–936 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Blackburn, S.D. et al. Tissue specific differences in PD-1 and PD-L1 expression during chronic viral infection: implications for CD8 T cell exhaustion. J. Virol. 84, 2078–2089 (2010).

    CAS  PubMed  Google Scholar 

  57. Blackburn, S.D., Shin, H., Freeman, G.J. & Wherry, E.J. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc. Natl. Acad. Sci. USA 105, 15016–15021 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Workman, C.J. et al. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J. Immunol. 172, 5450–5455 (2004).

    CAS  PubMed  Google Scholar 

  59. Pentcheva-Hoang, T., Egen, J.G., Wojnoonski, K. & Allison, J.P. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 21, 401–413 (2004).

    CAS  PubMed  Google Scholar 

  60. Okazaki, T., Maeda, A., Nishimura, H., Kurosaki, T. & Honjo, T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl. Acad. Sci. USA 98, 13866–13871 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chemnitz, J.M., Parry, R.V., Nichols, K.E., June, C.H. & Riley, J.L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173, 945–954 (2004).

    CAS  PubMed  Google Scholar 

  62. Parry, R.V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Quigley, M. et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat. Med. 16, 1147–1151 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Zhou, S., Ou, R., Huang, L. & Moskophidis, D. Critical role for perforin-, Fas/FasL-, and TNFR1-mediated cytotoxic pathways in down-regulation of antigen-specific T cells during persistent viral infection. J. Virol. 76, 829–840 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Bucks, C.M., Norton, J.A., Boesteanu, A.C., Mueller, Y.M. & Katsikis, P.D. Chronic antigen stimulation alone is sufficient to drive CD8+ T cell exhaustion. J. Immunol. 182, 6697–6708 (2009).

    CAS  PubMed  Google Scholar 

  66. Ejrnaes, M. et al. Resolution of a chronic viral infection after interleukin-10 receptor blockade. J. Exp. Med. 203, 2461–2472 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Said, E.A. et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat. Med. 16, 452–459 (2011).

    Google Scholar 

  68. Tinoco, R., Alcalde, V., Yang, Y., Sauer, K. & Zuniga, E.I. Cell-intrinsic transforming growth factor-β signaling mediates virus-specific CD8+ T cell deletion and viral persistence in vivo. Immunity 31, 145–157 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Alatrakchi, N. et al. Hepatitis C virus (HCV)-specific CD8+ cells produce transforming growth factor β that can suppress HCV-specific T-cell responses. J. Virol. 81, 5882–5892 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Garba, M.L., Pilcher, C.D., Bingham, A.L., Eron, J. & Frelinger, J.A. HIV antigens can induce TGF-β(1)-producing immunoregulatory CD8+ T cells. J. Immunol. 168, 2247–2254 (2002).

    CAS  PubMed  Google Scholar 

  71. Leone, A., Picker, L.J. & Sodora, D.L. IL-2, IL-7 and IL-15 as immuno-modulators during SIV/HIV vaccination and treatment. Curr. HIV Res. 7, 83–90 (2009).

    CAS  PubMed  Google Scholar 

  72. Blattman, J.N. et al. Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat. Med. 9, 540–547 (2003).

    CAS  PubMed  Google Scholar 

  73. Pellegrini, M. et al. IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 144, 601–613 (2011).

    CAS  PubMed  Google Scholar 

  74. Nanjappa, S.G., Kim, E.H. & Suresh, M. Immunotherapeutic effects of IL-7 during a chronic viral infection in mice. Blood published online, doi:10.1182/blood-2010-12-323154 (23 March 2011).

  75. Yue, F.Y. et al. HIV-specific IL-21 producing CD4+ T cells are induced in acute and chronic progressive HIV infection and are associated with relative viral control. J. Immunol. 185, 498–506 (2011).

    Google Scholar 

  76. Chevalier, M.F. et al. HIV-1-specific interleukin-21+ CD4+ T cell responses contribute to durable viral control through the modulation of HIV-specific CD8+ T cell function. J. Virol. 85, 733–741 (2011).

    CAS  PubMed  Google Scholar 

  77. Williams, L.D. et al. Interleukin-21-producing HIV-1-specific CD8 T cells are preferentially seen in elite controllers. J. Virol. 85, 2316–2324 (2011).

    CAS  PubMed  Google Scholar 

  78. Punkosdy, G.A. et al. Regulatory T-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens. Proc. Natl. Acad. Sci. USA 108, 3677–3682 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Belkaid, Y. & Rouse, B.T. Natural regulatory T cells in infectious disease. Nat. Immunol. 6, 353–360 (2005).

    CAS  PubMed  Google Scholar 

  80. Collison, L.W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566–569 (2007).

    CAS  PubMed  Google Scholar 

  81. Collison, L.W. et al. IL-35-mediated induction of a potent regulatory T cell population. Nat. Immunol. 11, 1093–1101 (2011).

    Google Scholar 

  82. Rifa'i, M., Kawamoto, Y., Nakashima, I. & Suzuki, H. Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J. Exp. Med. 200, 1123–1134 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Joosten, S.A. et al. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc. Natl. Acad. Sci. USA 104, 8029–8034 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Martinez, F.O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451–483 (2009).

    CAS  PubMed  Google Scholar 

  85. Mellor, A.L. & Munn, D.H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762–774 (2004).

    CAS  PubMed  Google Scholar 

  86. Haining, W.N. & Wherry, E.J. Integrating genomic signatures for immunologic discovery. Immunity 32, 152–161 (2010).

    CAS  PubMed  Google Scholar 

  87. Wherry, E.J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    CAS  PubMed  Google Scholar 

  88. Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Martins, G. & Calame, K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu. Rev. Immunol. 26, 133–169 (2008).

    CAS  PubMed  Google Scholar 

  90. Bikoff, E.K., Morgan, M.A. & Robertson, E.J. An expanding job description for Blimp-1/PRDM1. Curr. Opin. Genet. Dev. 19, 379–385 (2009).

    CAS  PubMed  Google Scholar 

  91. Kallies, A., Xin, A., Belz, G.T. & Nutt, S.L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31, 283–295 (2009).

    CAS  PubMed  Google Scholar 

  92. Rutishauser, R.L. et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Joshi, N.S. & Kaech, S.M. Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J. Immunol. 180, 1309–1315 (2008).

    CAS  PubMed  Google Scholar 

  94. Kao, C. et al. T-bet represses expression of PD-1 and sustains virus-specific CD8 T cell responses during chronic infection. Nat. Immunol. (in the press).

  95. Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719–731 (2002).

    CAS  PubMed  Google Scholar 

  96. Agnellini, P. et al. Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection. Proc. Natl. Acad. Sci. USA 104, 4565–4570 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Migueles, S.A. et al. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity 29, 1009–1021 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Oestreich, K.J., Yoon, H., Ahmed, R. & Boss, J.M. NFATc1 regulates PD-1 expression upon T cell activation. J. Immunol. 181, 4832–4839 (2008).

    CAS  PubMed  Google Scholar 

  99. Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat. Immunol. 3, 643–651 (2002).

    CAS  PubMed  Google Scholar 

  100. Mehta, D.S., Wurster, A.L., Weinmann, A.S. & Grusby, M.J. NFATc2 and T-bet contribute to T-helper-cell-subset-specific regulation of IL-21 expression. Proc. Natl. Acad. Sci. USA 102, 2016–2021 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Williams, K.L. et al. Characterization of murine BATF: a negative regulator of activator protein-1 activity in the thymus. Eur. J. Immunol. 31, 1620–1627 (2001).

    CAS  PubMed  Google Scholar 

  102. Schraml, B.U. et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460, 405–409 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Schwartz, R.H. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003).

    CAS  PubMed  Google Scholar 

  104. Brenchley, J.M. et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101, 2711–2720 (2003).

    CAS  PubMed  Google Scholar 

  105. van Leeuwen, E.M., de Bree, G.J., ten Berge, I.J. & van Lier, R.A. Human virus-specific CD8+ T cells: diversity specialists. Immunol. Rev. 211, 225–235 (2006).

    CAS  PubMed  Google Scholar 

  106. Lichterfeld, M. et al. Telomerase activity of HIV-1-specific CD8+ T cells: constitutive up-regulation in controllers and selective increase by blockade of PD ligand 1 in progressors. Blood 112, 3679–3687 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Akbar, A.N. & Henson, S.M. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat. Rev. Immunol. 11, 289–295 (2011).

    CAS  PubMed  Google Scholar 

  108. Wirth, T.C. et al. Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8+ T cell differentiation. Immunity 33, 128–140 (2011).

    Google Scholar 

  109. Hertoghs, K.M. et al. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. J. Clin. Invest. 120, 4077–4090 (2011).

    Google Scholar 

  110. Brooks, D.G., Lee, A.M., Elsaesser, H., McGavern, D.B. & Oldstone, M.B. IL-10 blockade facilitates DNA vaccine-induced T cell responses and enhances clearance of persistent virus infection. J. Exp. Med. 205, 533–541 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Brooks, D.G. et al. IL-10 and PD-L1 operate through distinct pathways to suppress T-cell activity during persistent viral infection. Proc. Natl. Acad. Sci. USA 105, 20428–20433 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ha, S.J. et al. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J. Exp. Med. 205, 543–555 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Nakamoto, N. et al. Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization. Gastroenterology 134, 1927–1937 (2008).

    CAS  PubMed  Google Scholar 

  114. Lauer, G.M. & Kim, A.Y. Spontaneous resolution of chronic hepatitis C virus infection: are we missing something? Clin. Infect. Dis. 42, 953–954 (2006).

    PubMed  Google Scholar 

  115. Moir, S. et al. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med. 205, 1797–1805 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Weiss, G.E. et al. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J. Immunol. 183, 2176–2182 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank the members of my laboratory and N. Haining for discussions. Supported by the US National Institutes of Health (AI071309, AI083022, AI082630, HHSN226200500030), the Commonwealth of Pennsylvania, the Ellison Medical Foundation and the Dana Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E John Wherry.

Ethics declarations

Competing interests

E.J.W. has a patent licensing agreement for the PD-1 pathway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wherry, E. T cell exhaustion. Nat Immunol 12, 492–499 (2011). https://doi.org/10.1038/ni.2035

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing