[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Complement: a key system for immune surveillance and homeostasis

Abstract

Nearly a century after the significance of the human complement system was recognized, we have come to realize that its functions extend far beyond the elimination of microbes. Complement acts as a rapid and efficient immune surveillance system that has distinct effects on healthy and altered host cells and foreign intruders. By eliminating cellular debris and infectious microbes, orchestrating immune responses and sending 'danger' signals, complement contributes substantially to homeostasis, but it can also take action against healthy cells if not properly controlled. This review describes our updated view of the function, structure and dynamics of the complement network, highlights its interconnection with immunity at large and with other endogenous pathways, and illustrates its multiple roles in homeostasis and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune surveillance functions of complement.
Figure 2: Detailed view of complement activation, amplification, signaling and regulation.
Figure 3: Integrative role of complement in host defense and homeostasis.
Figure 4: Emerging roles of complement in health and disease.

Similar content being viewed by others

References

  1. Sunyer, J.O., Zarkadis, I.K. & Lambris, J.D. Complement diversity: a mechanism for generating immune diversity? Immunol. Today 19, 519–523 (1998).

    CAS  PubMed  Google Scholar 

  2. Gaboriaud, C. et al. Structure and activation of the C1 complex of complement: unraveling the puzzle. Trends Immunol. 25, 368–373 (2004).

    CAS  PubMed  Google Scholar 

  3. Wallis, R., Mitchell, D.A., Schmid, R., Schwaeble, W.J. & Keeble, A.H. Paths reunited: Initiation of the classical and lectin pathways of complement activation. Immunobiology 215, 1–11 (2010).

    CAS  PubMed  Google Scholar 

  4. Chen, C.B. & Wallis, R. Two mechanisms for mannose-binding protein modulation of the activity of its associated serine proteases. J. Biol. Chem. 279, 26058–26065 (2004).

    CAS  PubMed  Google Scholar 

  5. Dobó, J. et al. MASP-1, a promiscuous complement protease: structure of its catalytic region reveals the basis of its broad specificity. J. Immunol. 183, 1207–1214 (2009).

    PubMed  Google Scholar 

  6. Rawal, N., Rajagopalan, R. & Salvi, V.P. Activation of complement component C5: comparison of C5 convertases of the lectin pathway and the classical pathway of complement. J. Biol. Chem. 283, 7853–7863 (2008).

    CAS  PubMed  Google Scholar 

  7. Bexborn, F., Andersson, P.O., Chen, H., Nilsson, B. & Ekdahl, K.N. The tick-over theory revisited: formation and regulation of the soluble alternative complement C3 convertase (C3(H2O)Bb). Mol. Immunol. 45, 2370–2379 (2008).

    CAS  PubMed  Google Scholar 

  8. Pangburn, M.K., Schreiber, R.D. & Muller-Eberhard, H.J. Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J. Exp. Med. 154, 856–867 (1981).

    CAS  PubMed  Google Scholar 

  9. Pangburn, M.K., Ferreira, V.P. & Cortes, C. Discrimination between host and pathogens by the complement system. Vaccine 26 Suppl 8, I15–I21 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sahu, A., Kozel, T.R. & Pangburn, M.K. Specificity of the thioester-containing reactive site of human C3 and its significance to complement activation. Biochem. J. 302, 429–436 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Spitzer, D., Mitchell, L.M., Atkinson, J.P. & Hourcade, D.E. Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J. Immunol. 179, 2600–2608 (2007).

    CAS  PubMed  Google Scholar 

  12. Fearon, D.T. & Austen, K.F. Properdin: binding to C3b and stabilization of the C3b-dependent C3 convertase. J. Exp. Med. 142, 856–863 (1975).

    CAS  PubMed  Google Scholar 

  13. Harboe, M. & Mollnes, T.E. The alternative complement pathway revisited. J. Cell. Mol. Med. 12, 1074–1084 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lutz, H.U. & Jelezarova, E. Complement amplification revisited. Mol. Immunol. 43, 2–12 (2006).

    CAS  PubMed  Google Scholar 

  15. Müller-Eberhard, H.J. The killer molecule of complement. J. Invest. Dermatol. 85, 47s–52s (1985).

    PubMed  Google Scholar 

  16. Markiewski, M.M., Nilsson, B., Ekdahl, K.N., Mollnes, T.E. & Lambris, J.D. Complement and coagulation: strangers or partners in crime? Trends Immunol. 28, 184–192 (2007).

    CAS  PubMed  Google Scholar 

  17. Huber-Lang, M. et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat. Med. 12, 682–687 (2006).

    CAS  PubMed  Google Scholar 

  18. Selander, B. et al. Mannan-binding lectin activates C3 and the alternative complement pathway without involvement of C2. J. Clin. Invest. 116, 1425–1434 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Atkinson, J.P. & Frank, M.M. Bypassing complement: evolutionary lessons and future implications. J. Clin. Invest. 116, 1215–1218 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lambris, J.D., Ricklin, D. & Geisbrecht, B.V. Complement evasion by human pathogens. Nat. Rev. Microbiol. 6, 132–142 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cole, D.S. & Morgan, B.P. Beyond lysis: how complement influences cell fate. Clin. Sci. (Lond.) 104, 455–466 (2003).

    CAS  Google Scholar 

  22. Ward, P.A. Functions of C5a receptors. J. Mol. Med. 87, 375–378 (2009).

    CAS  PubMed  Google Scholar 

  23. Rittirsch, D. et al. Functional roles for C5a receptors in sepsis. Nat. Med. 14, 551–557 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bamberg, C.E. et al. The C5a receptor (C5aR) C5L2 is a modulator of C5aR-mediated signal transduction. J. Biol. Chem. 285, 7633–7644 (2010).

    CAS  PubMed  Google Scholar 

  25. Scola, A.M. et al. The role of the N-terminal domain of the complement fragment receptor C5L2 in ligand binding. J. Biol. Chem. 282, 3664–3671 (2007).

    CAS  PubMed  Google Scholar 

  26. Klos, A. et al. The role of the anaphylatoxins in health and disease. Mol. Immunol. 46, 2753–2766 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Haas, P.J. & van Strijp, J. Anaphylatoxins: their role in bacterial infection and inflammation. Immunol. Res. 37, 161–175 (2007).

    CAS  PubMed  Google Scholar 

  28. van Lookeren Campagne, M., Wiesmann, C. & Brown, E.J. Macrophage complement receptors and pathogen clearance. Cell. Microbiol. 9, 2095–2102 (2007).

    CAS  PubMed  Google Scholar 

  29. Krych-Goldberg, M. & Atkinson, J.P. Structure-function relationships of complement receptor type 1. Immunol. Rev. 180, 112–122 (2001).

    CAS  PubMed  Google Scholar 

  30. Helmy, K.Y. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915–927 (2006).

    CAS  PubMed  Google Scholar 

  31. He, J.Q., Wiesmann, C. & van Lookeren Campagne, M. A role of macrophage complement receptor CRIg in immune clearance and inflammation. Mol. Immunol. 45, 4041–4047 (2008).

    CAS  PubMed  Google Scholar 

  32. Roozendaal, R. & Carroll, M.C. Complement receptors CD21 and CD35 in humoral immunity. Immunol. Rev. 219, 157–166 (2007).

    CAS  PubMed  Google Scholar 

  33. Carroll, M.C. Complement and humoral immunity. Vaccine 26 Suppl. 8, I28–I33 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ogden, C.A. et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 194, 781–795 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tarr, J. & Eggleton, P. Immune function of C1q and its modulators CD91 and CD93. Crit. Rev. Immunol. 25, 305–330 (2005).

    CAS  PubMed  Google Scholar 

  36. Lillis, A.P. et al. Murine low-density lipoprotein receptor-related protein 1 (LRP) is required for phagocytosis of targets bearing LRP ligands but is not required for C1q-triggered enhancement of phagocytosis. J. Immunol. 181, 364–373 (2008).

    CAS  PubMed  Google Scholar 

  37. Norsworthy, P.J. et al. Murine CD93 (C1qRp) contributes to the removal of apoptotic cells in vivo but is not required for C1q-mediated enhancement of phagocytosis. J. Immunol. 172, 3406–3414 (2004).

    CAS  PubMed  Google Scholar 

  38. Zipfel, P.F. & Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9, 729–740 (2009).

    CAS  PubMed  Google Scholar 

  39. Inal, J.M. et al. Complement C2 receptor inhibitor trispanning: a novel human complement inhibitory receptor. J. Immunol. 174, 356–366 (2005).

    CAS  PubMed  Google Scholar 

  40. Kim, D.D. & Song, W.C. Membrane complement regulatory proteins. Clin. Immunol. 118, 127–136 (2006).

    CAS  PubMed  Google Scholar 

  41. Jalili, A. et al. Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: Further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells. Exp. Hematol. 38, 321–332 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ratajczak, M.Z., Reca, R., Wysoczynski, M., Yan, J. & Ratajczak, J. Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)—implications for trafficking of CXCR4+ stem cells. Exp. Hematol. 34, 986–995 (2006).

    CAS  PubMed  Google Scholar 

  43. MacLaren, R., Cui, W. & Cianflone, K. Adipokines and the immune system: an adipocentric view. Adv. Exp. Med. Biol. 632, 1–21 (2008).

    CAS  PubMed  Google Scholar 

  44. Sahu, A. & Lambris, J.D. Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol. Rev. 180, 35–48 (2001).

    CAS  PubMed  Google Scholar 

  45. Rooijakkers, S.H. et al. Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat. Immunol. 10, 721–727 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, J. et al. Structure of complement fragment C3b-factor H and implications for host protection by complement regulators. Nat. Immunol. 10, 728–733 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Oliva, C., Turnbough, C.L. Jr. & Kearney, J.F. CD14-Mac-1 interactions in Bacillus anthracis spore internalization by macrophages. Proc. Natl. Acad. Sci. USA 106, 13957–13962 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, M. et al. Fimbrial proteins of Porphyromonas gingivalis mediate in vivo virulence and exploit TLR2 and complement receptor 3 to persist in macrophages. J. Immunol. 179, 2349–2358 (2007).

    CAS  PubMed  Google Scholar 

  49. Flierman, R. & Daha, M.R. The clearance of apoptotic cells by complement. Immunobiology 212, 363–370 (2007).

    CAS  PubMed  Google Scholar 

  50. Trouw, L.A., Blom, A.M. & Gasque, P. Role of complement and complement regulators in the removal of apoptotic cells. Mol. Immunol. 45, 1199–1207 (2008).

    CAS  PubMed  Google Scholar 

  51. Cole, D.S., Hughes, T.R., Gasque, P. & Morgan, B.P. Complement regulator loss on apoptotic neuronal cells causes increased complement activation and promotes both phagocytosis and cell lysis. Mol. Immunol. 43, 1953–1964 (2006).

    CAS  PubMed  Google Scholar 

  52. Gullstrand, B., Martensson, U., Sturfelt, G., Bengtsson, A.A. & Truedsson, L. Complement classical pathway components are all important in clearance of apoptotic and secondary necrotic cells. Clin. Exp. Immunol. 156, 303–311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gershov, D., Kim, S., Brot, N. & Elkon, K.B. C-reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: implications for systemic autoimmunity. J. Exp. Med. 192, 1353–1364 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lowell, C.A. Rewiring phagocytic signal transduction. Immunity 24, 243–245 (2006).

    CAS  PubMed  Google Scholar 

  55. Kim, S., Elkon, K.B. & Ma, X. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity 21, 643–653 (2004).

    CAS  PubMed  Google Scholar 

  56. Mevorach, D., Mascarenhas, J.O., Gershov, D. & Elkon, K.B. Complement-dependent clearance of apoptotic cells by human macrophages. J. Exp. Med. 188, 2313–2320 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Morelli, A.E. et al. Internalization of circulating apoptotic cells by splenic marginal zone dendritic cells: dependence on complement receptors and effect on cytokine production. Blood 101, 611–620 (2003).

    CAS  PubMed  Google Scholar 

  58. Verbovetski, I. et al. Opsonization of apoptotic cells by autologous iC3b facilitates clearance by immature dendritic cells, down-regulates DR and CD86, and up-regulates CC chemokine receptor 7. J. Exp. Med. 196, 1553–1561 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Markiewski, M.M. et al. The regulation of liver cell survival by complement. J. Immunol. 182, 5412–5418 (2009).

    CAS  PubMed  Google Scholar 

  60. Nozaki, M. et al. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc. Natl. Acad. Sci. USA 103, 2328–2333 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hajishengallis, G. & Lambris, J.D. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol. 31, 154–163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dunkelberger, J.R. & Song, W.C. Complement and its role in innate and adaptive immune responses. Cell Res. 20, 34–50 (2010).

    CAS  PubMed  Google Scholar 

  63. Zhang, X. et al. Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo. Blood 110, 228–236 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Guo, R.F., Riedemann, N.C. & Ward, P.A. Role of C5a-C5aR interaction in sepsis. Shock 21, 1–7 (2004).

    PubMed  Google Scholar 

  65. Kaczorowski, D.J. et al. Pivotal Advance: The pattern recognition receptor ligands lipopolysaccharide and polyinosine-polycytidylic acid stimulate factor B synthesis by the macrophage through distinct but overlapping mechanisms. J. Leukoc. Biol. published online, doi: 10.1189/jlb.0809588 (22 April 2010).

  66. Chen, N.J. et al. C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 446, 203–207 (2007).

    CAS  PubMed  Google Scholar 

  67. Wang, M. et al. Microbial hijacking of complement-Toll-like receptor crosstalk. Sci. Signal. 3, ra11 (2010).

    PubMed  PubMed Central  Google Scholar 

  68. Weaver, D.J. Jr. et al. C5a receptor-deficient dendritic cells promote induction of Treg and Th17 cells. Eur. J. Immunol. 40, 710–721 (2010).

    PubMed  PubMed Central  Google Scholar 

  69. Ip, W.K.E., Takahashi, K., Moore, K.J., Stuart, L.M. & Ezekowitz, R.A.B. Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome. J. Exp. Med. 205, 169–181 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lappegård, K.T. et al. Human genetic deficiencies reveal the roles of complement in the inflammatory network: lessons from nature. Proc. Natl. Acad. Sci. USA 106, 15861–15866 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. Zarewych, D.M., Kindzelskii, A.L., Todd, R.F. & Petty, H.R. LPS induces CD14 association with complement receptor 3, which is reversed by neutrophil adhesion. J. Immunol. 156, 430–433 (1996).

    CAS  PubMed  Google Scholar 

  72. Kagan, J.C. “Complementing” toll signaling. Sci. Signal. 3, pe15 (2010).

    PubMed  Google Scholar 

  73. Harokopakis, E., Albzreh, M.H., Martin, M.H. & Hajishengallis, G. TLR2 transmodulates monocyte adhesion and transmigration via Rac1- and PI3K-mediated inside-out signaling in response to Porphyromonas gingivalis fimbriae. J. Immunol. 176, 7645–7656 (2006).

    CAS  PubMed  Google Scholar 

  74. Kagan, J.C. & Medzhitov, R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943–955 (2006).

    CAS  PubMed  Google Scholar 

  75. Ritis, K. et al. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J. Immunol. 177, 4794–4802 (2006).

    CAS  PubMed  Google Scholar 

  76. Krarup, A., Wallis, R., Presanis, J.S., Gal, P. & Sim, R.B. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS ONE 2, e623 (2007).

    PubMed  PubMed Central  Google Scholar 

  77. Ghebrehiwet, B., Silverberg, M. & Kaplan, A.P. Activation of the classical pathway of complement by Hageman factor fragment. J. Exp. Med. 153, 665–676 (1981).

    CAS  PubMed  Google Scholar 

  78. Bergmann, S. & Hammerschmidt, S. Fibrinolysis and host response in bacterial infections. Thromb. Haemost. 98, 512–520 (2007).

    CAS  PubMed  Google Scholar 

  79. Ward, P.A. The dark side of C5a in sepsis. Nat. Rev. Immunol. 4, 133–142 (2004).

    CAS  PubMed  Google Scholar 

  80. Dempsey, P.W., Allison, M.E., Akkaraju, S., Goodnow, C.C. & Fearon, D.T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    CAS  PubMed  Google Scholar 

  81. Fischer, M.B. et al. Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280, 582–585 (1998).

    CAS  PubMed  Google Scholar 

  82. Croix, D.A. et al. Antibody response to a T-dependent antigen requires B cell expression of complement receptors. J. Exp. Med. 183, 1857–1864 (1996).

    CAS  PubMed  Google Scholar 

  83. Thornton, B.P., Vetvicka, V. & Ross, G.D. Function of C3 in a humoral response: iC3b/C3dg bound to an immune complex generated with natural antibody and a primary antigen promotes antigen uptake and the expression of co-stimulatory molecules by all B cells, but only stimulates immunoglobulin synthesis by antigen-specific B cells. Clin. Exp. Immunol. 104, 531–537 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J.V. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat. Immunol. 1, 31–36 (2000).

    CAS  PubMed  Google Scholar 

  85. Haas, K.M. et al. Complement receptors CD21/35 link innate and protective immunity during Streptococcus pneumoniae infection by regulating IgG3 antibody responses. Immunity 17, 713–723 (2002).

    CAS  PubMed  Google Scholar 

  86. Da Costa, X.J. et al. Humoral response to herpes simplex virus is complement-dependent. Proc. Natl. Acad. Sci. USA 96, 12708–12712 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fischer, W.H. & Hugli, T.E. Regulation of B cell functions by C3a and C3adesArg: suppression of TNF-α, IL-6, and the polyclonal immune response. J. Immunol. 159, 4279–4286 (1997).

    CAS  PubMed  Google Scholar 

  88. Ottonello, L. et al. rC5a directs the in vitro migration of human memory and naive tonsillar B lymphocytes: implications for B cell trafficking in secondary lymphoid tissues. J. Immunol. 162, 6510–6517 (1999).

    CAS  PubMed  Google Scholar 

  89. Shushakova, N. et al. C5a anaphylatoxin is a major regulator of activating versus inhibitory FcγRs in immune complex-induced lung disease. J. Clin. Invest. 110, 1823–1830 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kumar, V. et al. Cell-derived anaphylatoxins as key mediators of antibody-dependent type II autoimmunity in mice. J. Clin. Invest. 116, 512–520 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gustavsson, S., Kinoshita, T. & Heyman, B. Antibodies to murine complement receptor 1 and 2 can inhibit the antibody response in vivo without inhibiting T helper cell induction. J. Immunol. 154, 6524–6528 (1995).

    CAS  PubMed  Google Scholar 

  92. Kopf, M., Abel, B., Gallimore, A., Carroll, M. & Bachmann, M.F. Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nat. Med. 8, 373–378 (2002).

    CAS  PubMed  Google Scholar 

  93. Nakayama, Y. et al. C3 promotes expansion of CD8+ and CD4+ T cells in a Listeria monocytogenes infection. J. Immunol. 183, 2921–2931 (2009).

    CAS  PubMed  Google Scholar 

  94. Kaya, Z. et al. Contribution of the innate immune system to autoimmune myocarditis: a role for complement. Nat. Immunol. 2, 739–745 (2001).

    CAS  PubMed  Google Scholar 

  95. Marsh, J.E. et al. The allogeneic T and B cell response is strongly dependent on complement components C3 and C4. Transplantation 72, 1310–1318 (2001).

    CAS  PubMed  Google Scholar 

  96. Sacks, S.H. Complement fragments C3a and C5a: The salt and pepper of the immune response. Eur. J. Immunol. 40, 668–670 (2010).

    CAS  PubMed  Google Scholar 

  97. Strainic, M.G. et al. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28, 425–435 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, K. et al. Cyclic AMP plays a critical role in C3a-receptor-mediated regulation of dendritic cells in antigen uptake and T-cell stimulation. Blood 112, 5084–5094 (2008).

    CAS  PubMed  Google Scholar 

  99. Peng, Q. et al. Dendritic cell function in allostimulation is modulated by C5aR signaling. J. Immunol. 183, 6058–6068 (2009).

    CAS  PubMed  Google Scholar 

  100. Longhi, M.P., Harris, C.L., Morgan, B.P. & Gallimore, A. Holding T cells in check—a new role for complement regulators? Trends Immunol. 27, 102–108 (2006).

    CAS  PubMed  Google Scholar 

  101. Wagner, C. et al. The complement receptor 1, CR1 (CD35), mediates inhibitory signals in human T-lymphocytes. Mol. Immunol. 43, 643–651 (2006).

    CAS  PubMed  Google Scholar 

  102. Le Friec, G. & Kemper, C. Complement: coming full circle. Arch. Immunol. Ther. Exp. (Warsz.) 57, 393–407 (2009).

    CAS  Google Scholar 

  103. Price, J.D. et al. Induction of a regulatory phenotype in human CD4+ T cells by streptococcal M protein. J. Immunol. 175, 677–684 (2005).

    CAS  PubMed  Google Scholar 

  104. Köhl, J. et al. A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma. J. Clin. Invest. 116, 783–796 (2006).

    PubMed  PubMed Central  Google Scholar 

  105. Zhang, X. et al. A protective role for C5a in the development of allergic asthma associated with altered levels of B7–H1 and B7-DC on plasmacytoid dendritic cells. J. Immunol. 182, 5123–5130 (2009).

    CAS  PubMed  Google Scholar 

  106. Drouin, S.M., Corry, D.B., Hollman, T.J., Kildsgaard, J. & Wetsel, R.A. Absence of the complement anaphylatoxin C3a receptor suppresses Th2 effector functions in a murine model of pulmonary allergy. J. Immunol. 169, 5926–5933 (2002).

    CAS  PubMed  Google Scholar 

  107. Finkelman, F.D., Hogan, S.P., Hershey, G.K., Rothenberg, M.E. & Wills-Karp, M. Importance of cytokines in murine allergic airway disease and human asthma. J. Immunol. 184, 1663–1674 (2010).

    CAS  PubMed  Google Scholar 

  108. Liu, J. et al. IFN-γ and IL-17 production in experimental autoimmune encephalomyelitis depends on local APC-T cell complement production. J. Immunol. 180, 5882–5889 (2008).

    CAS  PubMed  Google Scholar 

  109. Fang, C., Zhang, X., Miwa, T. & Song, W.C. Complement promotes the development of inflammatory T-helper 17 cells through synergistic interaction with Toll-like receptor signaling and interleukin-6 production. Blood 114, 1005–1015 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hawlisch, H. et al. C5a negatively regulates toll-like receptor 4-induced immune responses. Immunity 22, 415–426 (2005).

    CAS  PubMed  Google Scholar 

  111. la Sala, A., Gadina, M. & Kelsall, B.L. Gi-protein-dependent inhibition of IL-12 production is mediated by activation of the phosphatidylinositol 3-kinase-protein 3 kinase B/Akt pathway and JNK. J. Immunol. 175, 2994–2999 (2005).

    CAS  PubMed  Google Scholar 

  112. Goriely, S., Neurath, M.F. & Goldman, M. How microorganisms tip the balance between interleukin-12 family members. Nat. Rev. Immunol. 8, 81–86 (2008).

    CAS  PubMed  Google Scholar 

  113. Waggoner, S.N., Cruise, M.W., Kassel, R. & Hahn, Y.S. gC1q receptor ligation selectively down-regulates human IL-12 production through activation of the phosphoinositide 3-kinase pathway. J. Immunol. 175, 4706–4714 (2005).

    CAS  PubMed  Google Scholar 

  114. Karp, C.L. et al. Mechanism of suppression of cell-mediated immunity by measles virus. Science 273, 228–231 (1996).

    CAS  PubMed  Google Scholar 

  115. Marth, T. & Kelsall, B.L. Regulation of interleukin-12 by complement receptor 3 signaling. J. Exp. Med. 185, 1987–1995 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hajishengallis, G., Shakhatreh, M.-A.K., Wang, M. & Liang, S. Complement receptor 3 blockade promotes IL-12-mediated clearance of Porphyromonas gingivalis and negates its virulence in vivo. J. Immunol. 179, 2359–2367 (2007).

    CAS  PubMed  Google Scholar 

  117. Manderson, A.P., Botto, M. & Walport, M.J. The role of complement in the development of systemic lupus erythematosus. Annu. Rev. Immunol. 22, 431–456 (2004).

    CAS  PubMed  Google Scholar 

  118. Vaknin-Dembinsky, A., Murugaiyan, G., Hafler, D.A., Astier, A.L. & Weiner, H.L. Increased IL-23 secretion and altered chemokine production by dendritic cells upon CD46 activation in patients with multiple sclerosis. J. Neuroimmunol. 195, 140–145 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Braun, M.C., Lahey, E. & Kelsall, B.L. Selective suppression of IL-12 production by chemoattractants. J. Immunol. 164, 3009–3017 (2000).

    CAS  PubMed  Google Scholar 

  120. Hashimoto, M. et al. Complement drives Th17 cell differentiation and triggers autoimmune arthritis. J. Exp. Med. 207, 1135–1143 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Botto, M. et al. Complement in human diseases: lessons from complement deficiencies. Mol. Immunol. 46, 2774–2783 (2009).

    CAS  PubMed  Google Scholar 

  122. Pettigrew, H.D., Teuber, S.S. & Gershwin, M.E. Clinical significance of complement deficiencies. Ann. NY Acad. Sci. 1173, 108–123 (2009).

    CAS  PubMed  Google Scholar 

  123. Lachmann, P.J. & Smith, R.A. Taking complement to the clinic—has the time finally come? Scand. J. Immunol. 69, 471–478 (2009).

    CAS  PubMed  Google Scholar 

  124. Ricklin, D. & Lambris, J.D. Complement-targeted therapeutics. Nat. Biotechnol. 25, 1265–1275 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wagner, E. & Frank, M.M. Therapeutic potential of complement modulation. Nat. Rev. Drug Discov. 9, 43–56 (2010).

    CAS  PubMed  Google Scholar 

  126. Okroj, M., Heinegard, D., Holmdahl, R. & Blom, A.M. Rheumatoid arthritis and the complement system. Ann. Med. 39, 517–530 (2007).

    CAS  PubMed  Google Scholar 

  127. Zhang, X. & Kohl, J. A complex role for complement in allergic asthma. Expert Rev. Clin. Immunol. 6, 269–277 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Holers, V.M. The spectrum of complement alternative pathway-mediated diseases. Immunol. Rev. 223, 300–316 (2008).

    CAS  PubMed  Google Scholar 

  129. Markiewski, M.M. & Lambris, J.D. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am. J. Pathol. 171, 715–727 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Nilsson, B., Korsgren, O., Lambris, J.D. & Ekdahl, K.N. Can cells and biomaterials in therapeutic medicine be shielded from innate immune recognition? Trends Immunol. 31, 32–38 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kourtzelis, I. et al. Complement anaphylatoxin C5a contributes to hemodialysis-associated thrombosis. Blood 116, 631–639 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Warren, O.J. et al. The inflammatory response to cardiopulmonary bypass: part 1—mechanisms of pathogenesis. J. Cardiothorac. Vasc. Anesth. 23, 223–231 (2009).

    PubMed  Google Scholar 

  133. Mullins, R.F., Russell, S.R., Anderson, D.H. & Hageman, G.S. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 14, 835–846 (2000).

    CAS  PubMed  Google Scholar 

  134. Anderson, D.H. et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog. Retin. Eye Res. 29, 95–112 (2010).

    CAS  PubMed  Google Scholar 

  135. Edwards, A.O. et al. Complement factor H polymorphism and age-related macular degeneration. Science 308, 421–424 (2005).

    CAS  PubMed  Google Scholar 

  136. Hageman, G.S. et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl. Acad. Sci. USA 102, 7227–7232 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Haines, J.L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421 (2005).

    CAS  PubMed  Google Scholar 

  138. Klein, R.J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gehrs, K.M., Jackson, J.R., Brown, E.N., Allikmets, R. & Hageman, G.S. Complement, age-related macular degeneration and a vision of the future. Arch. Ophthalmol. 128, 349–358 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Skerka, C. et al. Autoimmune forms of thrombotic microangiopathy and membranoproliferative glomerulonephritis: Indications for a disease spectrum and common pathogenic principles. Mol. Immunol. 46, 2801–2807 (2009).

    CAS  PubMed  Google Scholar 

  141. Noris, M. & Remuzzi, G. Atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 1676–1687 (2009).

    CAS  PubMed  Google Scholar 

  142. Alexander, J.J., Anderson, A.J., Barnum, S.R., Stevens, B. & Tenner, A.J. The complement cascade: Yin-Yang in neuroinflammation—neuro-protection and -degeneration. J. Neurochem. 107, 1169–1187 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Fonseca, M.I. et al. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer's disease. J. Immunol. 183, 1375–1383 (2009).

    CAS  PubMed  Google Scholar 

  144. Markiewski, M.M., DeAngelis, R.A. & Lambris, J.D. Complexity of complement activation in sepsis. J. Cell. Mol. Med. 12, 2245–2254 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Silasi-Mansat, R. et al. Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of E. coli sepsis. Blood published online, doi: 10.1182/blood-2010–02–269746 (13 May 2010).

  146. Diepenhorst, G.M., van Gulik, T.M. & Hack, C.E. Complement-mediated ischemia-reperfusion injury: lessons learned from animal and clinical studies. Ann. Surg. 249, 889–899 (2009).

    PubMed  Google Scholar 

  147. Tsonis, P.A., Lambris, J.D. & Del Rio-Tsonis, K. To regeneration...with complement. Adv. Exp. Med. Biol. 586, 63–70 (2006).

    CAS  PubMed  Google Scholar 

  148. Markiewski, M.M., DeAngelis, R.A. & Lambris, J.D. Liver inflammation and regeneration: two distinct biological phenomena or parallel pathophysiologic processes? Mol. Immunol. 43, 45–56 (2006).

    CAS  PubMed  Google Scholar 

  149. Hillebrandt, S. et al. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat. Genet. 37, 835–843 (2005).

    CAS  PubMed  Google Scholar 

  150. Addis-Lieser, E., Kohl, J. & Chiaramonte, M.G. Opposing regulatory roles of complement factor 5 in the development of bleomycin-induced pulmonary fibrosis. J. Immunol. 175, 1894–1902 (2005).

    CAS  PubMed  Google Scholar 

  151. Schafer, D.P. & Stevens, B. Synapse elimination during development and disease: immune molecules take centre stage. Biochem. Soc. Trans. 38, 476–481 (2010).

    CAS  PubMed  Google Scholar 

  152. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  PubMed  Google Scholar 

  153. Loeffler, D.A., Camp, D.M. & Conant, S.B. Complement activation in the Parkinson's disease substantia nigra: an immunocytochemical study. J. Neuroinflammation 3, 29 (2006).

    PubMed  PubMed Central  Google Scholar 

  154. Ingram, G., Hakobyan, S., Robertson, N.P. & Morgan, B.P. Complement in multiple sclerosis: its role in disease and potential as a biomarker. Clin. Exp. Immunol. 155, 128–139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Boyajyan, A., Khoyetsyan, A. & Chavushyan, A. Alternative complement pathway in schizophrenia. Neurochem. Res. 35, 894–898 (2010).

    CAS  PubMed  Google Scholar 

  156. Mayilyan, K.R., Weinberger, D.R. & Sim, R.B. The complement system in schizophrenia. Drug News Perspect. 21, 200–210 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Carmona-Fontaine, C. et al. C3 controls neural crest migration during embryo development. 6th Int. Conf. Innate Immunity 44, 36 (2009).

    Google Scholar 

  158. Shinjyo, N., Stahlberg, A., Dragunow, M., Pekny, M. & Pekna, M. Complement-derived anaphylatoxin C3a regulates in vitro differentiation and migration of neural progenitor cells. Stem Cells 27, 2824–2832 (2009).

    CAS  PubMed  Google Scholar 

  159. Raisz, L.G. Potential impact of selective cyclooxygenase-2 inhibitors on bone metabolism in health and disease. Am. J. Med. 110 Suppl 3A, 43S–45S (2001).

    CAS  PubMed  Google Scholar 

  160. Niculescu, F. & Rus, H. Mechanisms of signal transduction activated by sublytic assembly of terminal complement complexes on nucleated cells. Immunol. Res. 24, 191–199 (2001).

    CAS  PubMed  Google Scholar 

  161. Raisz, L.G., Sandberg, A.L., Goodson, J.M., Simmons, H.A. & Mergenhagen, S.E. Complement-dependent stimulation of prostaglandin synthesis and bone resorption. Science 185, 789–791 (1974).

    CAS  PubMed  Google Scholar 

  162. Nicholson-Weller, A. & Halperin, J.A. Membrane signaling by complement C5b-9, the membrane attack complex. Immunol. Res. 12, 244–257 (1993).

    CAS  PubMed  Google Scholar 

  163. de Pablo, P., Chapple, I.L., Buckley, C.D. & Dietrich, T. Periodontitis in systemic rheumatic diseases. Nat. Rev. Rheumatol. 5, 218–224 (2009).

    PubMed  Google Scholar 

  164. Krauss, J.L., Potempa, J., Lambris, J.D. & Hajishengallis, G. Complementary Tolls in the periodontium: how periodontal bacteria modify complement and Toll-like receptor responses to prevail in the host. Periodontol. 2000 52, 141–162 (2010).

    PubMed  PubMed Central  Google Scholar 

  165. McCoy, J.M., Wicks, J.R. & Audoly, L.P. The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. J. Clin. Invest. 110, 651–658 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Chai, L., Song, Y.-Q., Zee, K.-Y. & Leung, W.K. Single nucleotide polymorphisms of complement component 5 and periodontitis. J. Periodontal Res. 45, 301–308 (2010).

    CAS  PubMed  Google Scholar 

  167. Chang, M. et al. A large-scale rheumatoid arthritis genetic study identifies association at chromosome 9q33.2. PLoS Genet. 4, e1000107 (2008).

    PubMed  PubMed Central  Google Scholar 

  168. Fischetti, F. et al. Selective therapeutic control of C5a and the terminal complement complex by anti-C5 single-chain Fv in an experimental model of antigen-induced arthritis in rats. Arthritis Rheum. 56, 1187–1197 (2007).

    CAS  PubMed  Google Scholar 

  169. Williams, A.S., Mizuno, M., Richards, P.J., Holt, D.S. & Morgan, B.P. Deletion of the gene encoding CD59a in mice increases disease severity in a murine model of rheumatoid arthritis. Arthritis Rheum. 50, 3035–3044 (2004).

    CAS  PubMed  Google Scholar 

  170. Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    CAS  PubMed  Google Scholar 

  171. Wellen, K.E. & Hotamisligil, G.S. Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111–1119 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Muscari, A. et al. Serum C3 is a stronger inflammatory marker of insulin resistance than C-reactive protein, leukocyte count, and erythrocyte sedimentation rate: comparison study in an elderly population. Diabetes Care 30, 2362–2368 (2007).

    CAS  PubMed  Google Scholar 

  173. Ohinata, K. & Yoshikawa, M. Food intake regulation by central complement system. Adv. Exp. Med. Biol. 632, 35–46 (2008).

    CAS  PubMed  Google Scholar 

  174. Markiewski, M.M. & Lambris, J.D. Is complement good or bad for cancer patients? A new perspective on an old dilemma. Trends Immunol. 30, 286–292 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Markiewski, M.M. et al. Modulation of the antitumor immune response by complement. Nat. Immunol. 9, 1225–1235 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The scope of research into complement over the past decade makes it impossible to cover every important aspect; we have had to focus on certain areas, and we acknowledge the research that we could not mention specifically. We thank D. McClellan for editorial assistance and A. Tenner for comments. Supported by US Public Health Service grants CA112162, AI68730, AI30040, AI72106, EB3968, GM62134 (to J.D.L.), and DE015254 and DE018292 (to G.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D Lambris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricklin, D., Hajishengallis, G., Yang, K. et al. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11, 785–797 (2010). https://doi.org/10.1038/ni.1923

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1923

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing