[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells

Abstract

In this study we demonstrate a new form of immunoregulation: engagement on CD4+ T cells of the complement regulator CD46 promoted the effector potential of T helper type 1 cells (TH1 cells), but as interleukin 2 (IL-2) accumulated, it switched cells toward a regulatory phenotype, attenuating IL-2 production via the transcriptional regulator ICER/CREM and upregulating IL-10 after interaction of the CD46 tail with the serine-threonine kinase SPAK. Activated CD4+ T cells produced CD46 ligands, and blocking CD46 inhibited IL-10 production. Furthermore, CD4+ T cells in rheumatoid arthritis failed to switch, consequently producing excessive interferon-γ (IFN-γ). Finally, γδ T cells, which rarely produce IL-10, expressed an alternative CD46 isoform and were unable to switch. Nonetheless, coengagement of T cell antigen receptor (TCR) γδ and CD46 suppressed effector cytokine production, establishing that CD46 uses distinct mechanisms to regulate different T cell subsets during an immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-2 regulates TH1 versus Tr1 effector function in CD4+ T cells activated with anti-CD3 and anti-CD46.
Figure 2: CD46–IL-2 signals induce a switch from a TH1 phenotype to a suppressive Tr1 phenotype in CD4+ T cells.
Figure 3: CD46-mediated signals contribute to the regulation of IL-2 expression by CD4+ T cells.
Figure 4: The intracellular CYT-1 domain of CD46 and SPAK are required for IL-10 production in CD4+ T cells.
Figure 5: CD46 directly regulates γδ T cell function.
Figure 6: CD4+ T cells from patients with rheumatoid arthritis are defective in the IFN-γ–IL-10 switch induced by anti-CD3 and anti-CD46.
Figure 7: Engagement of CD46 by locally produced C3b drives IL-10 expression in CD4+ T cells stimulated with anti-CD3 and anti-CD28.

Similar content being viewed by others

References

  1. Moore, K.W., de Waal Malefyt, R., Coffman, R.L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Gazzinelli, R.T. et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-γ and TNF-α. J. Immunol. 157, 798–805 (1996).

    CAS  PubMed  Google Scholar 

  3. O'Garra, A. & Vieira, P. TH1 cells control themselves by producing interleukin-10. Nat. Rev. Immunol. 7, 425–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Franke, A. et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet. 40, 1319–1323 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Hunter, C.A. et al. IL-10 is required to prevent immune hyperactivity during infection with Trypanosoma cruzi. J. Immunol. 158, 3311–3316 (1997).

    CAS  PubMed  Google Scholar 

  7. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Murphy, K.M. et al. Signaling and transcription in T helper development. Annu. Rev. Immunol. 18, 451–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. McGeachy, M.J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Del Prete, G. et al. Human IL-10 is produced by both type 1 helper (TH1) and type 2 helper (TH2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J. Immunol. 150, 353–360 (1993).

    CAS  PubMed  Google Scholar 

  12. Assenmacher, M., Schmitz, J. & Radbruch, A. Flow cytometric determination of cytokines in activated murine T helper lymphocytes: expression of interleukin-10 in interferon-γ and in interleukin-4-expressing cells. Eur. J. Immunol. 24, 1097–1101 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Windhagen, A., Anderson, D.E., Carrizosa, A., Williams, R.E. & Hafler, D.A. IL-12 induces human T cells secreting IL-10 with IFN-γ. J. Immunol. 157, 1127–1131 (1996).

    CAS  PubMed  Google Scholar 

  14. Gerosa, F. et al. Interleukin-12 primes human CD4 and CD8 T cell clones for high production of both interferon-γ and interleukin-10. J. Exp. Med. 183, 2559–2569 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Gerosa, F. et al. CD4+ T cell clones producing both interferon-γ and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients. Clin. Immunol. 92, 224–234 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Anderson, C.F., Oukka, M., Kuchroo, V.J. & Sacks, D. CD4+CD25Foxp3 TH1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J. Exp. Med. 204, 285–297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jankovic, D. et al. Conventional T-bet+Foxp3 TH1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J. Exp. Med. 204, 273–283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gabrysova, L. et al. Negative feedback control of the autoimmune response through antigen-induced differentiation of IL-10-secreting TH1 cells. J. Exp. Med. 206, 1755–1767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kemper, C. et al. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421, 388–392 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kemper, C. & Atkinson, J.P. T-cell regulation: with complements from innate immunity. Nat. Rev. Immunol. 7, 9–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Caudy, A.A., Reddy, S.T., Chatila, T., Atkinson, J.P. & Verbsky, J.W. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J. Allergy Clin. Immunol. 119, 482–487 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Seya, T., Turner, J.R. & Atkinson, J.P. Purification and characterization of a membrane protein (gp45–70) that is a cofactor for cleavage of C3b and C4b. J. Exp. Med. 163, 837–855 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Astier, A., Trescol-Biemont, M.C., Azocar, O., Lamouille, B. & Rabourdin-Combe, C. Cutting edge: CD46, a new costimulatory molecule for T cells, that induces p120CBL and LAT phosphorylation. J. Immunol. 164, 6091–6095 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Zaffran, Y. et al. CD46/CD3 costimulation induces morphological changes of human T cells and activation of Vav, Rac, and extracellular signal-regulated kinase mitogen-activated protein kinase. J. Immunol. 167, 6780–6785 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Liszewski, M.K., Post, T.W. & Atkinson, J.P. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu. Rev. Immunol. 9, 431–455 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, G., Liszewski, M.K., Chan, A.C. & Atkinson, J.P. Membrane cofactor protein (MCP; CD46): isoform-specific tyrosine phosphorylation. J. Immunol. 164, 1839–1846 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Astier, A.L. et al. RNA interference screen in primary human T cells reveals FLT3 as a modulator of IL-10 levels. J. Immunol. 184, 685–693 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, J. et al. The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo. J. Exp. Med. 201, 567–577 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heeger, P.S. et al. Decay-accelerating factor modulates induction of T cell immunity. J. Exp. Med. 201, 1523–1530 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Strainic, M.G. et al. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28, 425–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Price, J.D. et al. Induction of a regulatory phenotype in human CD4+ T cells by streptococcal M protein. J. Immunol. 175, 677–684 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Sanchez, A., Feito, M.J. & Rojo, J.M. CD46-mediated costimulation induces a TH1-biased response and enhances early TCR/CD3 signaling in human CD4+ T lymphocytes. Eur. J. Immunol. 34, 2439–2448 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Pennington, D.J. et al. Early events in the thymus affect the balance of effector and regulatory T cells. Nature 444, 1073–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Glimcher, L.H. & Murphy, K.M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

    CAS  PubMed  Google Scholar 

  35. Stockinger, B. & Veldhoen, M. Differentiation and function of TH17 T cells. Curr. Opin. Immunol. 19, 281–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Saraiva, M. et al. Interleukin-10 production by TH1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity 31, 209–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Powell, J.D., Lerner, C.G., Ewoldt, G.R. & Schwartz, R.H. The −180 site of the IL-2 promoter is the target of CREB/CREM binding in T cell anergy. J. Immunol. 163, 6631–6639 (1999).

    CAS  PubMed  Google Scholar 

  38. Li, Y. et al. SPAK kinase is a substrate and target of PKCθ in T-cell receptor-induced AP-1 activation pathway. EMBO J. 23, 1112–1122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Delpire, E. & Gagnon, K.B. SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. Biochem. J. 409, 321–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, J. & Liu, X.S. Development and function of IL-10 IFN-γ-secreting CD4+ T cells. J. Leukoc. Biol. 86, 1305–1310 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Carroll, M.C. The complement system in regulation of adaptive immunity. Nat. Immunol. 5, 981–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Morgan, B.P., Marchbank, K.J., Longhi, M.P., Harris, C.L. & Gallimore, A.M. Complement: central to innate immunity and bridging to adaptive responses. Immunol. Lett. 97, 171–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Friec, G.L. & Kemper, C. Complement: coming full circle. Arch. Immunol. Ther. Exp. (Warsz.) 57, 393–407 (2009).

    Article  Google Scholar 

  44. Kerekes, K., Prechl, J., Bajtay, Z., Jozsi, M. & Erdei, A. A further link between innate and adaptive immunity: C3 deposition on antigen-presenting cells enhances the proliferation of antigen-specific T cells. Int. Immunol. 10, 1923–1930 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A.H. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Astier, A.L., Meiffren, G., Freeman, S. & Hafler, D.A. Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J. Clin. Invest. 116, 3252–3257 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Collins, M. Tipping the balance in autoimmune disease. Genome Biol. 8, 317 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Meiler, F. et al. In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J. Exp. Med. 205, 2887–2898 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rubtsov, Y.P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. White, J. et al. Biological activity, membrane-targeting modification, and crystallization of soluble human decay accelerating factor expressed in E. coli. Protein Sci. 13, 2406–2415 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Jomaa (Justus-Liebig-Universität) for HMBPP; K. Murphy for advice and discussions; and C. Hawrylowicz for help with manuscript revision. Supported by the American Asthma Foundation (formerly Sandler Program for Asthma Research; J.P.A. and C.K.), the Wellcome Trust (A.H. and A.R.), Cancer Research UK (A.H. and P.V.), the US National Institutes of Health (AI037618 to J.P.A.), the Medical Research Council Centre for Transplantation, Guy's Hospital, King's College (G.L. and C.K.) and the Department of Health, National Institute for Health Research comprehensive Biomedical Research Centre award to Guy's & St. Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital NHS Foundation Trust (G.L.F., A.H and C.K).

Author information

Authors and Affiliations

Authors

Contributions

J.C., G.L.F., P.V., A.R., A.F., I.J., T.S. and C.K. did the experiments, discussed data and corrected the manuscript; G.L. provided financial support for I.J. and T.S. and aided in data discussion; J.P.A. provided reagents, helped design experiments involving CD46-mediated signaling events, assisted in interpreting the data and revised the manuscript; A.C. designed experiments involving patients with rheumatoid arthritis and provided patient samples; A.H. designed experiments with γδ T cells and revised the manuscript; and C.K. designed the study and wrote the manuscript.

Corresponding author

Correspondence to Claudia Kemper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1392 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardone, J., Le Friec, G., Vantourout, P. et al. Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nat Immunol 11, 862–871 (2010). https://doi.org/10.1038/ni.1917

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing