[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination

Abstract

Although approximately 200 viral microRNAs are known, only very few share similar targets with their host's microRNAs. A notable example of this is the stress-induced ligand MICB, which is targeted by several distinct viral and cellular microRNAs. Through the investigation of the microRNA-mediated immune-evasion strategies of herpesviruses, we initially identified two new cellular microRNAs that targeted MICB and were expressed differently both in healthy tissues and during melanocyte transformation. We show that coexpression of various pairs of cellular microRNAs interfered with the downregulation of MICB, whereas the viral microRNAs optimized their targeting ability to efficiently downregulate MICB. Moreover, we demonstrate that through site proximity and possibly inhibition of translation, a human cytomegalovirus (HCMV) microRNA acts synergistically with a cellular microRNA to suppress MICB expression during HCMV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Newly identified cellular microRNAs that downregulate MICB.
Figure 2: The microRNAs miR-376a and miR-433 directly bind the 3′ UTR of MICB, repress its translation and reduce NK cell cytotoxicity.
Figure 3: Expression patterns of MICB-targeting microRNAs in various cell lines and in healthy human tissues.
Figure 4: MICB expression is upregulated in cell lines expressing anti-microRNA sponges, which results in increased killing by NK cells.
Figure 5: Coexpression of cellular microRNAs antagonizes the repression of MICB expression.
Figure 6: The microRNAs miR-UL112 and miR-376a act synergistically to downregulate MICB expression.
Figure 7: Synergistic control of MICB expression by miR-376a and miR-UL112 during HCMV infection.

Similar content being viewed by others

References

  1. Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lakshmikanth, T. et al. NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J. Clin. Invest. 119, 1251–1263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arnon, T.I., Markel, G. & Mandelboim, O. Tumor and viral recognition by natural killer cells receptors. Semin. Cancer Biol. 16, 348–358 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Eagle, R.A. & Trowsdale, J. Promiscuity and the single receptor: NKG2D. Nat. Rev. Immunol. 7, 737–744 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Gasser, S., Orsulic, S., Brown, E.J. & Raulet, D.H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gasser, S. & Raulet, D.H. Activation and self-tolerance of natural killer cells. Immunol. Rev. 214, 130–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez, S., Groh, V. & Spies, T. Immunobiology of human NKG2D and its ligands. Curr. Top. Microbiol. Immunol. 298, 121–138 (2006).

    CAS  PubMed  Google Scholar 

  8. Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl. Acad. Sci. USA 93, 12445–12450 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279, 1737–1740 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Venkataraman, G.M., Suciu, D., Groh, V., Boss, J.M. & Spies, T. Promoter region architecture and transcriptional regulation of the genes for the MHC class I-related chain A and B ligands of NKG2D. J. Immunol. 178, 961–969 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Nachmani, D., Stern-Ginossar, N., Sarid, R. & Mandelboim, O. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5, 376–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Doubrovina, E.S. et al. Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J. Immunol. 171, 6891–6899 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Dranoff, G. Targets of protective tumor immunity. Ann. NY Acad. Sci. 1174, 74–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Stern-Ginossar, N. et al. Host immune system gene targeting by a viral miRNA. Science 317, 376–381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilkinson, G.W. et al. Modulation of natural killer cells by human cytomegalovirus. J. Clin. Virol. 41, 206–212 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chekulaeva, M. & Filipowicz, W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr. Opin. Cell Biol. 21, 452–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Du, T. & Zamore, P.D. microPrimer: the biogenesis and function of microRNA. Development 132, 4645–4652 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Du, T. & Zamore, P.D. Beginning to understand microRNA function. Cell Res. 17, 661–663 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Carrington, J.C. & Ambros, V. Role of microRNAs in plant and animal development. Science 301, 336–338 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Davidson-Moncada, J., Papavasiliou, F.N. & Tam, W. MicroRNAs of the immune system: roles in inflammation and cancer. Ann. NY Acad. Sci. 1183, 183–194 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Garzon, R., Calin, G.A. & Croce, C.M. MicroRNAs in cancer. Annu. Rev. Med. 60, 167–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Yekta, S., Tabin, C.J. & Bartel, D.P. MicroRNAs in the Hox network: an apparent link to posterior prevalence. Nat. Rev. Genet. 9, 789–796 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stern-Ginossar, N. et al. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat. Immunol. 9, 1065–1073 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Jonjić, S., Babić, M., Polić, B. & Krmpotić, A. Immune evasion of natural killer cells by viruses. Curr. Opin. Immunol. 20, 30–38 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Powers, C., DeFilippis, V., Malouli, D. & Fruh, K. Cytomegalovirus immune evasion. Curr. Top. Microbiol. Immunol. 325, 333–359 (2008).

    CAS  PubMed  Google Scholar 

  32. Boss, I.W., Plaisance, K.B. & Renne, R. Role of virus-encoded microRNAs in herpesvirus biology. Trends Microbiol. 17, 544–553 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Friedman, R.C., Farh, K.K., Burge, C.B. & Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Choy, M.K. & Phipps, M.E. MICA polymorphism: biology and importance in immunity and disease. Trends Mol. Med. 16, 97–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Stern-Ginossar, N. & Mandelboim, O. An integrated view of the regulation of NKG2D ligands. Immunology 128, 1–6 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ebert, M.S., Neilson, J.R. & Sharp, P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saetrom, P. et al. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res. 35, 2333–2342 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grey, F. et al. Identification and characterization of human cytomegalovirus-encoded microRNAs. J. Virol. 79, 12095–12099 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eissmann, P. et al. Multiple mechanisms downstream of TLR-4 stimulation allow expression of NKG2D ligands to facilitate macrophage/NK cell crosstalk. J. Immunol. 184, 6901–6909 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Yadav, D., Ngolab, J., Lim, R.S., Krishnamurthy, S. & Bui, J.D. Cutting edge: down-regulation of MHC class I-related chain A on tumor cells by IFN-γ-induced microRNA. J. Immunol. 182, 39–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Gottwein, E. et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature 450, 1096–1099 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Skalsky, R.L. et al. Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J. Virol. 81, 12836–12845 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, F. et al. Epstein-Barr virus-induced miR-155 attenuates NF-κB signaling and stabilizes latent virus persistence. J. Virol. 82, 10436–10443 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grey, F., Meyers, H., White, E.A., Spector, D.H. & Nelson, J. A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog. 3, e163 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Stern-Ginossar, N. et al. Analysis of human cytomegalovirus-encoded microRNA activity during infection. J. Virol. 83, 10684–10693 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mandelboim, O. et al. Protection from lysis by natural killer cells of group 1 and 2 specificity is mediated by residue 80 in human histocompatibility leukocyte antigen C alleles and also occurs with empty major histocompatibility complex molecules. J. Exp. Med. 184, 913–922 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Bernard (Hôpital de l'Archet, Nice, France) for monoclonal anti-CD99 (12E7); Y. Livneh, D. Davis and S. Jonjic and all members of the Mandelboim laboratory for suggestions and discussions and for critical reading of the manuscript; S. Diederichs and W. Filipowicz for discussions and suggestions; and M. Lotem and team (Hadassah Hospital) for primary melanocytes and nevi. Supported by the Israeli Science Foundation (O.M.), The Israeli Science Foundation (Morasha, to O.M.), Croatia-Israel Research (O.M.), Ministry of Science and Technology–Deutsches Krebsforschungszentrum (O.M.), The European Consortium (MRTN-CT-2005 to O.M.), Rosetrees Trust (O.M.), the Israel Cancer Association (20100003 to O.M.) and the Association for International Cancer Research (O.M.).

Author information

Authors and Affiliations

Authors

Contributions

D.N. did all experiments, analyzed the data and wrote the paper; D.L. and D.G.W. provided reagents; and O.M. supervised the project.

Corresponding author

Correspondence to Ofer Mandelboim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–2 and Supplementary Methods (PDF 388 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachmani, D., Lankry, D., Wolf, D. et al. The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat Immunol 11, 806–813 (2010). https://doi.org/10.1038/ni.1916

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1916

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing