[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coordination of multiple dual oxidase–regulatory pathways in responses to commensal and infectious microbes in drosophila gut

Abstract

All metazoan guts are in permanent contact with the microbial realm. However, understanding of the exact mechanisms by which the strength of gut immune responses is regulated to achieve gut-microbe mutualism is far from complete. Here we identify a signaling network composed of complex positive and negative mechanisms that controlled the expression and activity of dual oxidase (DUOX), which 'fine tuned' the production of microbicidal reactive oxygen species depending on whether the gut encountered infectious or commensal microbes. Genetic analyses demonstrated that negative and positive regulation of DUOX was required for normal host survival in response to colonization with commensal and infectious microbes, respectively. Thus, the coordinated regulation of DUOX enables the host to achieve gut-microbe homeostasis by efficiently combating infection while tolerating commensal microbes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of Duox expression.
Figure 2: MEKK1-MKK3-p38-ATF2 as a Duox expression pathway.
Figure 3: PG-dependent Duox expression pathway.
Figure 4: PG-independent Duox expression pathway.
Figure 5: Negative regulation of the Duox expression pathway.
Figure 6: Negative or positive regulation of the Duox expression pathway is required for normal host survival in mutualistic or infectious gut-microbe interactions, respectively.

Similar content being viewed by others

References

  1. Hooper, L.V. & Gordon, J.I. Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    Article  CAS  Google Scholar 

  2. Macdonald, T.T. & Monteleone, G. Immunity, inflammation, and allergy in the gut. Science 307, 1920–1925 (2005).

    Article  CAS  Google Scholar 

  3. Backhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A. & Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  Google Scholar 

  4. Koropatnick, T.A. et al. Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186–1188 (2004).

    Article  CAS  Google Scholar 

  5. Lee, W.J. Bacterial-modulated signaling pathways in gut homeostasis. Sci Signal 1, pe24 (2008).

    PubMed  Google Scholar 

  6. Ha, E.M. et al. Regulation of DUOX by the Gαq-phospholipase Cβ-Ca2+ pathway in Drosophila gut immunity. Dev. Cell 16, 386–397 (2009).

    Article  CAS  Google Scholar 

  7. Ha, E.M., Oh, C.T., Bae, Y.S. & Lee, W.J. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847–850 (2005).

    Article  CAS  Google Scholar 

  8. Ryu, J.H. et al. An essential complementary role of NF-κB pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J. 25, 3693–3701 (2006).

    Article  CAS  Google Scholar 

  9. Ryu, J.H. et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777–782 (2008).

    Article  CAS  Google Scholar 

  10. Zaidman-Remy, A. et al. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24, 463–473 (2006).

    Article  CAS  Google Scholar 

  11. Nehme, N.T. et al. A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog. 3, e173 (2007).

    Article  Google Scholar 

  12. Ha, E.M. et al. An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell 8, 125–132 (2005).

    Article  CAS  Google Scholar 

  13. Lemaitre, B. & Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743 (2007).

    Article  CAS  Google Scholar 

  14. Uvell, H. & Engstrom, Y. A multilayered defense against infection: combinatorial control of insect immune genes. Trends Genet. 23, 342–349 (2007).

    Article  CAS  Google Scholar 

  15. Bischoff, V. et al. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog. 2, e14 (2006).

    Article  Google Scholar 

  16. Ferrandon, D. et al. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17, 1217–1227 (1998).

    Article  CAS  Google Scholar 

  17. Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000).

    Article  CAS  Google Scholar 

  18. Kim, M.S., Byun, M. & Oh, B.H. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nat. Immunol. 4, 787–793 (2003).

    Article  CAS  Google Scholar 

  19. Sano, Y. et al. Drosophila activating transcription factor-2 is involved in stress response via activation by p38, but not c-Jun NH2-terminal kinase. Mol. Biol. Cell 16, 2934–2946 (2005).

    Article  CAS  Google Scholar 

  20. Han, S.J., Choi, K.Y., Brey, P.T. & Lee, W.J. Molecular cloning and characterization of a Drosophila p38 mitogen-activated protein kinase. J. Biol. Chem. 273, 369–374 (1998).

    Article  CAS  Google Scholar 

  21. Han, Z.S. et al. A conserved p38 mitogen-activated protein kinase pathway regulates Drosophila immunity gene expression. Mol. Cell. Biol. 18, 3527–3539 (1998).

    Article  CAS  Google Scholar 

  22. Choe, K.M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K.V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359–362 (2002).

    Article  CAS  Google Scholar 

  23. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002).

    Article  CAS  Google Scholar 

  24. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R.A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002).

    Article  CAS  Google Scholar 

  25. Han, J., Lee, J.D., Bibbs, L. & Ulevitch, R.J.A. MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811 (1994).

    Article  CAS  Google Scholar 

  26. Slack, D.N., Seternes, O.M., Gabrielsen, M. & Keyse, S.M. Distinct binding determinants for ERK2/p38α and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J. Biol. Chem. 276, 16491–16500 (2001).

    Article  CAS  Google Scholar 

  27. Sun, L. et al. Molecular identification and functional characterization of a Drosophila dual-specificity phosphatase DMKP-4 which is involved in PGN-induced activation of the JNK pathway. Cell. Signal. 20, 1329–1337 (2008).

    Article  CAS  Google Scholar 

  28. Kim, M. et al. MKP-3 has essential roles as a negative regulator of the Ras/mitogen-activated protein kinase pathway during Drosophila development. Mol. Cell. Biol. 24, 573–583 (2004).

    Article  CAS  Google Scholar 

  29. Martin-Blanco, E. et al. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 12, 557–570 (1998).

    Article  CAS  Google Scholar 

  30. Lee, W.J. et al. Inhibition of mitogen-activated protein kinase by a Drosophila dual-specific phosphatase. Biochem. J. 349, 821–828 (2000).

    Article  CAS  Google Scholar 

  31. Kim, S.H. et al. Isolation and characterization of a Drosophila homologue of mitogen-activated protein kinase phosphatase-3 which has a high substrate specificity towards extracellular-signal-regulated kinase. Biochem. J. 361, 143–151 (2002).

    Article  CAS  Google Scholar 

  32. Lim, H.W., New, L., Han, J. & Molkentin, J.D. Calcineurin enhances MAPK phosphatase-1 expression and p38 MAPK inactivation in cardiac myocytes. J. Biol. Chem. 276, 15913–15919 (2001).

    Article  CAS  Google Scholar 

  33. Sugimoto, T., Stewart, S. & Guan, K.L. The calcium/calmodulin-dependent protein phosphatase calcineurin is the major Elk-1 phosphatase. J. Biol. Chem. 272, 29415–29418 (1997).

    Article  CAS  Google Scholar 

  34. Crabtree, G.R. Calcium, calcineurin, and the control of transcription. J. Biol. Chem. 276, 2313–2316 (2001).

    Article  CAS  Google Scholar 

  35. Sullivan, K.M. & Rubin, G.M. The Ca2+-calmodulin-activated protein phosphatase calcineurin negatively regulates EGF receptor signaling in Drosophila development. Genetics 161, 183–193 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Harper, R.W. et al. Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, by Th1 and Th2 cytokines in respiratory tract epithelium. FEBS Lett. 579, 4911–4917 (2005).

    Article  CAS  Google Scholar 

  37. Geiszt, M. & Leto, T.L. The Nox family of NAD(P)H oxidases: host defense and beyond. J. Biol. Chem. 279, 51715–51718 (2004).

    Article  CAS  Google Scholar 

  38. Lambeth, J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).

    Article  CAS  Google Scholar 

  39. Geiszt, M., Witta, J., Baffi, J., Lekstrom, K. & Leto, T.L. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J. 17, 1502–1504 (2003).

    Article  CAS  Google Scholar 

  40. El Hassani, R.A. et al. Dual oxidase2 is expressed all along the digestive tract. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G933–G942 (2005).

    Article  CAS  Google Scholar 

  41. Forteza, R., Salathe, M., Miot, F., Forteza, R. & Conner, G.E. Regulated hydrogen peroxide production by Duox in human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 32, 462–469 (2005).

    Article  CAS  Google Scholar 

  42. Zhuang, Z.H., Zhou, Y., Yu, M.C., Silverman, N. & Ge, B.X. Regulation of Drosophila p38 activation by specific MAP2 kinase and MAP3 kinase in response to different stimuli. Cell. Signal. 18, 441–448 (2006).

    Article  CAS  Google Scholar 

  43. Inoue, H. et al. A Drosophila MAPKKK, D-MEKK1, mediates stress responses through activation of p38 MAPK. EMBO J. 20, 5421–5430 (2001).

    Article  CAS  Google Scholar 

  44. Brun, S. et al. The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes Cells 11, 397–407 (2006).

    Article  CAS  Google Scholar 

  45. Craig, C.R., Fink, J.L., Yagi, Y., Ip, Y.T. & Cagan, R.L. A Drosophila p38 orthologue is required for environmental stress responses. EMBO Rep. 5, 1058–1063 (2004).

    Article  CAS  Google Scholar 

  46. Lhocine, N. et al. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 4, 147–158 (2008).

    Article  CAS  Google Scholar 

  47. Kleino, A. et al. Pirk is a negative regulator of the Drosophila Imd pathway. J. Immunol. 180, 5413–5422 (2008).

    Article  CAS  Google Scholar 

  48. Aggarwal, K. et al. Rudra interrupts receptor signaling complexes to negatively regulate the IMD pathway. PLoS Pathog. 4, e1000120 (2008).

    Article  Google Scholar 

  49. Lee, W.J. How do flies tolerate microorganisms in the gut? Cell Host Microbe 4, 91–93 (2008).

    Article  CAS  Google Scholar 

  50. Lim, J.H. et al. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem. 281, 8286–8295 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Chung (Korea Advanced Institute of Science and Technology) for fly stocks. Supported by the National Creative Research Initiative Program of the Korean Ministry of Education, Science and Technology, World Class University project (R31-2008-000-10010-0), Global Research Laboratory program (K20815000001 to B.-H.O.), and Brain Korea 21 project (E.-M.H., K.-A.L. and Y.Y.S.).

Author information

Authors and Affiliations

Authors

Contributions

E.-M.H., K.-A.L., Y.Y.S., S.-H.K. and J.-H.L. did the experiments; W.-J.L. supervised the research; J.K. and B.-H.O. provided technical support; W.-J.L. sponsored the research; and E.-M.H., K.-A.L. and W.-J.L. prepared the manuscript.

Corresponding author

Correspondence to Won-Jae Lee.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1–2, Supplementary Text and Supplementary References (PDF 4263 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, EM., Lee, KA., Seo, Y. et al. Coordination of multiple dual oxidase–regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat Immunol 10, 949–957 (2009). https://doi.org/10.1038/ni.1765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1765

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing