Abstract
Antarctic sea-ice extent has been slowly increasing in the satellite record that began in 19791,2. Since the late 1990s, the increase has accelerated, but the average of all climate models shows a decline3. Meanwhile, the Interdecadal Pacific Oscillation, an internally generated mode of climate variability4, transitioned from positive to negative5, with an average cooling of tropical Pacific sea surface temperatures5, a slowdown of the global warming trend6,7,8 and a deepening of the Amundsen Sea Low near Antarctica1,9,10,11,12 that has contributed to regional circulation changes in the Ross Sea region and expansion of sea ice10. Here we show that the negative phase of the Interdecadal Pacific Oscillation in global coupled climate models is characterized by anomalies similar to the observed sea-level pressure and near-surface 850 hPa wind changes near Antarctica since 2000 that are conducive to expanding Antarctic sea-ice extent, particularly in the Ross Sea region in all seasons, involving a deepening of the Amundsen Sea Low. These atmospheric circulation changes are shown to be mainly driven by precipitation and convective heating anomalies related to the Interdecadal Pacific Oscillation in the equatorial eastern Pacific, with additional contributions from convective heating anomalies in the South Pacific convergence zone and tropical Atlantic regions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£169.00 per year
only £14.08 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Turner, J., Hosking, J. S., Marshall, G. J., Phillips, T. & Bracegirdle, T. J. Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea Low. Clim. Dynam. 46, 2391–2402 (2015).
Gagne, M. E., Gillett, N. P. & Fyfe, J. C. Observed and simulated changes in Antarctic sea ice extent over the past 50 years. Geophys. Res. Lett. 42, 90–95 (2015).
Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, 2013).
Power, S. Interdecadal modulation of the impact of ENSO on Australia. Clim. Dynam. 15, 319–324 (1999).
Lee, T. & McPhaden, M. J. Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett. 35, L01605 (2008).
Meehl, G. A. et al. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim. Change 1, 360–364 (2011).
Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).
England, M. H. et al. Slowdown of surface greenhouse warming due to recent Pacific trade wind acceleration. Nature Clim. Change 4, 222–227 (2014).
Clem, K. R. & Fogt, R. L. South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. J. Geophys. Res. 120, 2773–2792 (2015).
Clem, K. R. & Renwick, J. A. Austral spring Southern Hemisphere circulation and temperature changes and links to the SPCZ. J. Clim. 28, 7371–7384 (2015).
Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J. & Orr, A. The Amundsen Sea low. Int. J. Climatol. 33, 1818–1829 (2013).
Fogt, R. L., Wovrosh, A. J., Langen, R. A. & Simmonds, I. The characteristic variability and connection to the underlying synoptic activity of the Amundsen Bellingshausen Seas low. J. Geophys. Res. 117, D07111 (2012).
Meehl, G. A., Teng, H. & Arblaster, J. M. Climate model simulations of the observed early-2000s hiatus of global warming. Nature Clim. Change 4, 898–902 (2014).
Polvani, L. M. & Smith, K. L. Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys. Res. Lett. 40, 3195–3199 (2013).
Hobbs, W. R., Bindoff, N. L. & Raphael, M. N. New perspectives on observed and simulated Antarctic sea ice extent trends using optimal fingerprinting techniques. J. Clim. 28, 1543–1560 (2015).
Ciasto, L. M., Simpkins, G. R. & England, M. H. Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Clim. 28, 56–65 (2015).
Ding, Q. & Steig, E. J. Temperature change on the Antarctic Peninsula linked to tropical Pacific. J. Clim. 26, 7570–7585 (2013).
Simpkins, G. R., McGregor, S., Taschetto, A. S., Ciasto, L. M. & England, M. H. Tropical connections to climatic change in the extratropical Southern Hemisphere: the role of Atlantic SST trends. J. Clim. 27, 4923–4936 (2014).
Li, X., Holland, D. M., Gerber, E. P. & Yoo, C. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 505, 538–542 (2014).
Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nature Geosci. 5, 872–875 (2012).
Hobbs, W. R. & Raphael, M. N. The Pacific zonal asymmetry and its influence on Southern Hemisphere sea ice variability. Antarct. Sci. 22, 559–571 (2010).
Hosking, J. S., Orr, A., Marshall, G. J., Turner, J. & Phillips, T. The influence of the Amundsen-Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Clim. 26, 6633–6648 (2013).
Raphael, M. N. et al. The Amundsen Sea Low: variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 97, 111–121 (2016).
Li, X., Holland, D. M., Gerber, E. P. & Yoo, C. Rossby waves mediate impacts of tropical oceans on West Antarctic atmospheric circulation in Austral winter. J. Clim. 28, 8151–8164 (2015).
Karoly, D. J. Southern Hemisphere circulation features associated with El Niño-Southern Oscillation events. J. Clim. 2, 1239–1252 (1989).
Han, W. et al. Indian Ocean sea level change in a warming climate. Nature Geosci. 3, 546–550 (2010).
Arblaster, J. M. & Meehl, G. A. Contribution of various external forcings to trends in the Southern Annular Mode. J. Clim. 19, 2896–2905 (2006).
Simpkins, G., R, Ciasto, L. M., Thompson, D. W. J. & England, M. H. Seasonal relationships between large-scale climate variability and Antarctic sea ice concentration. J. Clim. 25, 5451–5469 (2012).
Sigmond, M. & Fyfe, J. C. The Antarctic sea ice response to the ozone hole in climate models. J. Clim. 27, 1336–1342 (2014).
Trenberth, K. E., Zhang, Y. & Fasullo, J. T. Relationships among top-of-atmosphere radiation and atmospheric state variables in observations and CESM. J. Geophys. Res. 120, 10074–10090 (2015).
Meehl, G. A., Arblaster, J. M. & Chung, C. T. Y. Disappearance of southeast U.S. “warming hole” with the late-1990s transition of the Interdecadal Pacific Oscillation. Geophys. Res. Lett. 42, 5564–5570 (2015).
Fetterer, F., Knowles, K., Meier, W. & Savoie, M. Sea Ice Index Updated Daily (National Snow and Ice Data Center, 2002); http://dx.doi.org/10.7265/N5QJ7F7W
Acknowledgements
Portions of this study were supported by the Regional and Global Climate Modeling Program (RGCM) of the US Department of Energy’s Office of Biological & Environmental Research (BER) Cooperative Agreement no. DE-FC02-97ER62402, and the National Science Foundation. C.M.B. is grateful for funding from the National Science Foundation through grant PLR-1341497. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. Parts of this research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The National Center for Atmospheric Research is sponsored by the National Science Foundation.
Author information
Authors and Affiliations
Contributions
G.A.M. directed this work with contributions from all authors. G.A.M., J.M.A., C.M.B., C.T.Y.C. and H.T. performed the analyses. All of the authors discussed the results and contributed to writing the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 5259 kb)
Rights and permissions
About this article
Cite this article
Meehl, G., Arblaster, J., Bitz, C. et al. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nature Geosci 9, 590–595 (2016). https://doi.org/10.1038/ngeo2751
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo2751